Рибонуклеазы с антипролиферативной активностью: молекулярно-биологические и биохимические свойства

В.С. Покровский1, Е.М. Трещалина1, Н.В. Андронова1, С.М. Деев2

1 ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Москва, Российская Федерация, 115478

2 ФГБУН «Институт биоорганической химии им. акад. М.М. Шемякина и Ю.А. Овчинникова» РАН, ул. Миклухо-Маклая, д. 16/10, Москва, Российская Федерация, 117997

Для переписки: Вадим Сергеевич Покровский, канд. мед. наук, Каширское ш., д. 24, Москва, Российская Федерация, 115478; тел.: +7(499)324-14-09; e-mail: vadimpokrovsky@yandex.ru

Для цитирования: Покровский В.С., Трещалина Е.М., Андронова Н.В., Деев С.М. Рибонуклеазы с антипролиферативной активностью: молекулярно-биологические и биохимические свойства. Клиническая онкогематология. 2016;9(2):130–7.

DOI: 10.21320/2500-2139-2016-9-2-130-137


РЕФЕРАТ

Статья посвящена рибонуклеазам (РНКазы), цитотоксический эффект которых определяется ферментативной активностью, т. е. способностью катализировать расщепление фосфодиэфирных связей РНК. Представлены известные и собственные данные о РНКазах с противоопухолевыми свойствами различного происхождения, проведен поиск параллелей между механизмами цитотоксичности, биохимическими и молекулярно-биологическими свойствами. Анализ данных литературы дает возможность считать, что все перечисленные свойства вносят свой вклад в антипролиферативное действие РНКаз. Основной проблемой для этого ряда ферментов остается достижение селективной биодоступности. Это решается путем создания конъюгатов, как это показано для ранпирназы и барназы. По основным фармакологическим характеристикам активные противоопухолевые РНКазы перспективны не только в онкогематологии, но и при терапии солидных опухолях.


Ключевые слова: рибонуклеаза, ранпирназа, амфиназа, биназа, барназа, фармакологические характеристики.

Получено: 4 января 2016 г.

Принято в печать: 7 января 2016 г.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Deutscher MP, Li Z. Exoribonucleases and their multiple roles in RNA metabolism. Prog Nucl Acid Res Mol Biol. 2001;66:67–105. doi: 10.1016/s0079-6603(00)66027-0.
  2. Зеленихин П.В., Мамедзаде К.Р., Ильинская О.Н. Цитофлуориметрическая характеристика влияния РНКаз на клетки про- и эукариот. Гены и клетки. 2012;3(7):62–5. [Zelenikhin PV, Mamedzade KR, Ilinskaya ON. The cytofluorimetric characteristics of RNAse influence towards pro- and eucariotic cells. Geny i kletki. 2012;3(7):62–5. (In Russ)]
  3. Ledoux L. Action of ribonuclease on two solid tumours in vivo. Nature. 1955;176(4470):36–7. doi: 10.1038/176036a0.
  4. Edelweiss E, Balandin TG, Ivanova JL, et al. Barnase as a new therapeutic agent triggering apoptosis in human cancer cells. PLoS ONE. 2008;3(6):e2434. doi: 10.1371/journal.pone.0002434.
  5. Глинка Е.М., Эдельвейс Э.Ф., Деев С.М. Эукариотические экспрессирующие векторы и иммуноконъюгаты для терапии рака. Биохимия. 2006;71:597–60. [Glinka EM, Edel’veis EF, Deev SM. Eukaryotic expressing vectors and immunoconjugates for treatment of cancer. Biokhimiya. 2006;71:597–60. (In Russ)]
  6. Deyev SM, Lebedenko EN, Petrovskaya LE, et al. Man-made antibodies and immunoconjugates with desired properties: function optimization using structure engineering. Russ Chem Rev. 2015;84(1):1–26. doi: 10.1070/RCR4459.
  7. Mitkevich VA, Tchurikov NA, Zelenikhin PV, et al. Binase cleaves cellular noncoding RNAs and affects coding mRNAs. FEBS J. 2010;277(1):186–96. doi: 10.1111/j.1742-4658.2009.07471.x.
  8. Кабрера Фуентес Э.А., Зеленихин П.В., Колпаков А.И. и др. Сравнительная цитотоксичность биназы по отношению к опухолевым и нормальным клеткам. Ученые записки Казанского университета. Серия: Естественные науки. 2010;152(3):143–8. [Caberra Fuentes HA, Zelenikhin PV, Kolpakov AI, et al. Comparative Toxicity of Binase towards Tumor and Normal Cells. Uchenye zapiski Kazanskogo universiteta. Seriya: Estestvennye nauki. 2010;152(3):143–8. (In Russ)]
  9. Darzynkiewicz Z, Carter SP, Mikulski SM, et al. Cytostatic and cytotoxic effects of Pannon (P-30 Protein), a novel anticancer agent. Cell Tissue Kinet. 1988;21(3):169–82. doi: 10.1111/j.1365-2184.1988.tb00855.x.
  10. Ardelt W, Mikulski SM, Shogen K. Amino acid sequence of an anti-tumor protein from Rana pipiens oocytes and early embryos. Homology to pancreatic ribonucleases. Biol Chem. 1991;266(1):245–51.
  11. Raines RT. Active site of ribonuclease A. In: Zenkova MA, ed. Artificial Nucleases. Heidelberg: Springer Verlag; 2004. pp. 19–32.
  12. Juan G, Ardelt B, Mikulski SM, et al. G1 arrest of U-937 cells by onconase is associated with suppression of cyclin D3 expression, induction of p16INK4A, p21WAF1/CIP1 and p27KIP and decreased pRb phosphorylation. Leukemia. 1998;12(8):1241–8. doi: 10.1038/sj.leu.2401100.
  13. Deptala A, Halicka HD, Ardelt B, et al. Potentiation of tumor necrosis factor induced apoptosis by onconase. Int J Oncol. 1998;13(1):11–6. doi: 10.3892/ijo.13.1.11.
  14. Tsai SY, Ardelt B, Hsieh TC, et al. Treatment of Jurkat acute T-lymphocytic leukemia cells by onconase (Ranpirnase) is accompanied by an altered nucleocytoplasmic distribution and reduced expression of transcription factor NF-kappaB. Int J Oncol. 2004;25(6):1745–52. doi: 10.3892/ijo.25.6.1745.
  15. Rodriguez M, Torrent G, Bosch M, et al. Intracellular pathway of Onconase that enables its delivery to the cytosol. J Cell Sci. 2007;120(8):1405–11. doi: 10.1242/jcs.03427.
  16. Marquez M, Nilsson S, Lennartsson L, et al. Charge dependent targeting: Results in six tumor cell lines. Anticancer Res. 2004;24:1347–51.
  17. Leland PA, Raines RT. Cancer chemotherapy: ribonucleases to the rescue. Chem Biol. 2001;8(5):405–13. doi: 10.1016/s1074-5521(01)00030-8.
  18. Wu Y, Mikulski SM, Ardelt W, et al. A cytotoxic ribonuclease. Study of the mechanism of onconase cytotoxicity. J Biol Chem. 1993;268(14):10686–93.
  19. Saxena SK, Sirdeshmukh R, Ardelt W, et al. Entry into cells and selective degradation of tRNAs by a cytotoxic member of the RNase A family. J Biol Chem. 2002;277(17):15142–6. doi: 10.1074/jbc.m10811520020.
  20. Suhasini AN, Sirdeshmukh R. Transfer RNA cleavages by onconase reveal unusual cleavage sites. J Biol Chem. 2006;281(18):12201–9. doi: 10.1074/jbc.m504488200.
  21. Gong J, Li X, Darzynkiewicz Z. Different patterns of apoptosis of HL-60 cells induced by cycloheximide and camptothecin. J Cell Physiol. 1993;157(2):263–70. doi: 10.1002/jcp.1041570208.
  22. Ardelt B, Ardelt W, Darzynkiewicz Z. Cytotoxic ribonucleases and RNA interference (RNAi). Cell Cycle 2003;2(1):22–4. doi: 10.4161/cc.2.1.232.
  23. Zhao H, Ardelt B, Ardelt W, et al. The cytotoxic ribonuclease Onconase targets RNA interference (siRNA). Cell Cycle. 2008;7(20):3258–61. doi: 10.4161/cc.7.20.6855.
  24. Volinia S, Calin GA, Liu CG, et al. A microRNAs expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 2006;103(7):2257–61. doi: 10.1073/pnas.0510565103.
  25. Basseres DS, Baldwin AS. Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene. 2006;30(25):6817–30. doi: 10.1038/sj.onc.1209942.
  26. Lee I, Kalota A, Gewirtz AM, Shogen K. Antitumor efficacy of the cytotoxic RNase, ranpirnase, on A549 human lung cancer xenografts of nude mice. Anticancer Res. 2007;27(1A):299–307.
  27. Lee I, Lee YH, Mikulski SM, Shogen K. Effect of onconase +/- tamoxifen on ASPC-1 human pancreatic tumors in nude mice. Adv Exp Med Biol. 2003;530:187–96. doi: 10.1007/978-1-4615-0075-9_18
  28. Rybak SM, Pearson JW, Fogler WE, et al. Enhancement of vincristine cytotoxicity in drug-resistant cells by simultaneous treatment with onconase, an antitumor ribonuclease. J Natl Cancer Inst. 1996;88(11):747–53. doi: 10.1093/jnci/88.11.747.
  29. Ita M, Halicka HD, Tanaka T, et al. Remarkable enhancement of cytotoxicity of onconase and cepharanthine when used in combination on various tumor cell lines. Cancer Biol Ther. 2008;7(7):1104–8. doi: 10.4161/cbt.7.7.6172.
  30. Smolewski P, Witkowska M, Zwolinska M, et al. Cytotoxic activity of the amphibian ribonucleases onconase and r-amphinase on tumor cells from B cell lymphoproliferative disorders. Int J Oncol. 2014;45(1):419–25. doi: 10.3892/ijo.2014.2405.
  31. Majchrzak A, Witkowska M, Medra A, et al. In vitro cytotoxicity of ranpirnase (onconase) in combination with components of R-CHOP regimen against diffuse large B cell lymphoma (DLBCL) cell line. Postepy Hig Med Dosw. 2013;67:1166–72. doi: 10.5604/17322693.107838632.
  32. Porta C, Paglino C, Mutti L. Ranpirnase and its potential for the treatment of unresectable malignant mesothelioma. Biologics. 2008;2(4):601–9. doi: 10.2147/btt.s2383.
  33. Costanzi J, Sidransky D, Navon A, et al. Ribonucleases as a novel pro-apoptotic anticancer strategy: review of the preclinical and clinical data for ranpirnase. Cancer Invest. 2005;23(7):643–50. doi: 10.1080/07357900500283143.
  34. Mikulski SM, Costanzi JJ, Vogelzang NJ, et al. Phase II trial of a single weekly intravenous dose of ranpirnase in patients with unresectable malignant mesothelioma. J Clin Oncol. 2002;20(1):274–81. doi: 10.1200/jco.20.1.274.
  35. Vasandani VM, Burris JA, Sung C. Reversible nephrotoxicity of onconase and effect of lysine pH on renal onconase uptake. Cancer Chemother Pharmacol. 1999;44(2):164–9. doi: 10.1007/s002800050962.
  36. Singh UP, Ardelt W, Saxena SK, et al. Enzymatic and Structural Characterisation of Amphinase, a Novel Cytotoxic Ribonuclease from Rana pipiens Oocytes. J Mol Biol. 2007;371(1):93–111. doi: 10.1016/j.jmb.2007.04.071.
  37. Ardelt B, Ardelt W, Pozarowski P, et al. Cytostatic and cytotoxic properties of Amphinase: a novel cytotoxic ribonuclease from Rana pipiens oocytes. Cell Cycle. 2007;6(24):3097–102. doi: 10.4161/cc.6.24.5045.
  38. Sevcik J, Sanishili RG, Pavlovsky AG, Polyakov KM. Comparison of active sites of some microbial ribonucleases: structural basis for guanylic specificity. Trends Biochem Sci. 1990;15(4):158–62. doi: 10.1016/0968-0004(90)90217-y.
  39. Makarov AA, Ilinskaya ON. Cytotoxic ribonucleases: molecular weapons and their targets. FEBS Lett. 2003;540(1–3):15–20. doi: 10.1016/s0014-5793(03)00225-4.
  40. Makarov AA, Kolchinski A, Ilinskaya ON. Binase and other microbial RNases as potential anticancer agents. BioEssays. 2008;30(8):789–90. doi: 10.1002/bies.20789.
  41. Ильинская О.Н., Макаров А.А. Почему рибонуклеазы вызывают гибель раковых клеток. Молекулярная биология. 2005;39(1):3–13. [Il’inskaya ON, Makarov AA. Why ribonucleases cause tumor cell death. Molekulyarnaya biologiya. 2005;39(1):3–13. (In Russ)]
  42. Ильинская О.Н., Зеленихин П.В., Колпаков А.И. и др. Избирательная цитотоксичность биназы в отношении фибробластов, экспрессирующих онкогены ras и AML/ETO. Ученые записки Казанского университета. Серия: Естественные науки. 2008;150(4):268–73. [Ilinskaya ON, Zelenikhin PV, Kolpakov AI, et al. Selective Cytotoxicity of Binase towards Fibroblasts with Expression of the ras- and AML/ETO Oncogenes. Uchenye zapiski Kazanskogo universiteta. Seriya: Estestvennye nauki. 2008;150(4):268–73. (In Russ)]
  43. Mitkevich VA, Petrushanko IY, Spirin PV, et al. Sensitivity of acute myeloid leukemia Kasumi-1 cells to binase toxic action depends on the expression of KIT and АML1-ETO oncogenes. Cell Cycle. 2011;10(23):4090–7. doi: 10.4161/cc.10.23.18210.
  44. Mitkevich VA, Kretova OV, Petrushanko IY, et al. Ribonuclease binase apoptotic signature in leukemic Kasumi-1 cells. Biochimie. 2013;95(6):1344–9. doi: 10.1016/j.biochi.2013.02.016.
  45. Петрушанко И.Ю., Зеленихин П.В., Митькевич В.А. и др. Биназа обладает избирательным цитотоксическим действием на kit-трансформированные предшественники миелоидных клеток. Биофизика. 2007;52(5):876–81. [Petrushanko IYu, Zelenikhin PV, Mit’kevich VA, et al. Binasa produces selective cytotoxic effect on kit-transformed myeloid cell precursors. Biofizika. 2007;52(5):876–81. (In Russ)]
  46. Зеленихин П.В., Колпаков А.И., Черепнев Г.В., Ильинская О.Н. Индукция апоптоза опухолевых клеток биназой. Молекулярная биология. 2005;39(3):457–63. [Zelenikhin PV, Kolpakov AI, Cherepnev GV, Il’inskaya ON. Induction of tumor cell apoptosis by binasa. Molekulyarnaya biologiya. 2005;39(3):457–63. (In Russ)]
  47. Трещалина Е.М. Коллекция опухолевых штаммов человека. М.: Практическая медицина, 2009. 70 с. [Treshchalina EM. Kollektsiya opukholevykh shtammov cheloveka. (Collection of human tumor strains.) Moscow: Prakticheskaya Meditsina Publ.; 2009. 70 p. (In Russ)]
  48. Трещалина Е.М. Иммунодефицитные мыши разведения РОНЦ им. Н.Н. Блохина РАМН. Возможности использования. М.: Издательская группа РОНЦ, 2010. 16 с. [Treshchalina EM. Immunodefitsitnye myshi razvedeniya RONTs im. N.N. Blokhina RAMN. Vozmozhnosti ispol’zovaniya. (Mice with immune deficiency bred in NN Blokhin Russian Cancer Research Center. Opportunities for use.) Moscow: Izdatel’skaya gruppa RONTs Publ.; 2010. 16 p. (In Russ)]
  49. Трещалина Е.М., Жукова О.С., Герасимова Г.К. и др. Методические рекомендации по доклиническому изучению противоопухолевой активности лекарственных средств. В кн.: Руководство по проведению доклинических исследований лекарственных средств. Часть первая. М.: Гриф и К, 2012. С. 642–57. [Treshchalina EM, Zhukova OS, Gerasimova GK, et al. Guidelines for pre-clinical studies of antitumor activity of drugs. In: Rukovodstvo po provedeniyu doklinicheskikh issledovanii lekarstvennykh sredstv. (Guidelines for pre-clinical studies of medicinal agents.) Part 1. Moscow: Grif i K Publ.; 2012. pp. 642–57. (In Russ)]
  50. Ulyanova V, Vershinina V, Ilinskaya O. Barnase and binase: twins with distinct fates. FEBS J. 2011;8(19):3633–43. doi: 10.1111/j.1742-4658.2011.08294.x.
  51. Hoefling M, Gottschalk KE. Barnase–barstar: from first encounter to final complex. J Struct Biol. 2010;171(1):52–63. doi: 10.1016/j.jsb.2010.03.001.
  52. Deyev SM, Yazynin SA, Kuznetsov DA, et al. Ribonuclease-charged vector for facile direct cloning with positive selection. Mol Gen Genet. 1998;259(4):379–82. doi: 10.1007/s004380050825.
  53. Semenyuk EG, Stremovskiy OA, Edelweiss EF, et al. Expression of single-chain antibody–barstar fusion in plants. Biochimie. 2007;89(1):31–8. doi: 10.1016/j.biochi.2006.07.012.
  54. Liao YD, Huang HC, Chan HJ, Kuo SJ. Large-scale preparation of a ribonuclease from Rana catesbeiana (bullfrog) oocytes and characterization of its specific cytotoxic activity against tumor cells. Prot Express Purif. 1996;7(2):194–202. doi: 10.1006/prep.1996.0027.
  55. Tatsuta T, Sugawara S, Takahashi K, et al. Cancer-selective induction of apoptosis by leczyme. Front Oncol. 2014;4:139. doi: 10.3389/fonc.2014.00139.
  56. Zhang R, Zhao L, Wang H, Ng TB. A novel ribonuclease with antiproliferative activity toward leukemia and lymphoma cells and HIV-1 reverse transcriptase inhibitory activity from the mushroom, Hohenbuehelia serotina. Int J Mol Med. 2014;33(1):209–14.
  57. Tatsuta T, Sugawara S, Takahashi K, et al. Leczyme: A New Candidate Drug for Cancer Therapy. BioMed Re Intern. 2014. doi: 10.1155/2014/421415.
  58. Nitta K, Ozaki K, Ishikawa M, et al. Inhibition of cell proliferation by Rana catesbeiana and Rana japonica lectins belonging to the ribonuclease superfamily. Cancer Res. 1994;54(4):920–7.
  59. Tatsuta T, Hosono M, Sugawara S, et al. Sialic acid-binding lectin (leczyme) induces caspase-dependent apoptosis-mediated mitochondrial perturbation in Jurkat cells. Intern J Oncol. 2013;43(5):1402–12. doi: 10.3892/ijo.2013.2092.
  60. Glinka EM, Edelweiss EF, Sapozhnikov AM, Deyev SM. A new vector for controllable expression of an anti-HER2/neu mini-antibody-barnase fusion protein in HEK 293T cells. Gene. 2006;366(1):97–103. doi: 10.1016/j.gene.2005.06.042.
  61. Chang CH, Sapra P, Vanama SS, et al. Effective therapy of human lymphoma xenografts with a novel recombinant ribonuclease/anti-CD74 humanized IgG4 antibody immunotoxin. Blood. 2005;106(13):4308–14. doi: 10.1182/blood-2005-03-1033.
  62. Newton DL, Stockwin LH, Rybak SM. Anti-CD22 Onconase: preparation and characterization. Meth Mol Biol. 2009;525:425–43. doi: 10.1007/978-1-59745-554-1_22.
  63. Newton DL, Hansen HJ, Mikulski SM, et al. Potent and specific antitumor effects of an anti-CD22-targeted cytotoxic ribonuclease: potential for the treatment of non-Hodgkin lymphoma. Blood. 2001;97(2):528–35. doi: 10.1182/blood.v97.2.528.
  64. Глинка Е.M., Эдельвейс Э.Ф., Деев С.М. Эукариотические экспрессирующие векторы и иммуноконъюгаты для терапии рака. Биохимия. 2006;71(6):742–53. [Glinka EM, Edel’veis EF, Deev SM. Eukaryotic expressing vectors and immunoconjugates for treatment of cancer. Biokhimiya. 2006;71(6):742–53. (In Russ)]
  65. Deyev SM, Lebedenko EN. Modern technologies for creating synthetic antibodies for clinical application. Acta Naturae. 2009;1(1):32–50.
  66. Эдельвейс Э.Ф. Иммунобарназные конъюгаты для диагностики и терапии рака: Автореф. дис. ¼ канд. биол. наук. М., 2010. 24 с. [Edel’veis EF. Immunobarnaznye kon’yugaty dlya diagnostiki i terapii raka. (Immunobarnase conjugates for diagnosis and treatment of cancer.) [dissertation] Moscow; 2010. 24 p. (In Russ)]
  67. Эдельвейс Э.Ф., Баландин Т.Г., Стремовский О.А. и др. Иммуноконъюгат анти-EGFR-мини-антитело–барназа высокотоксичен для опухолевых клеток человека. Доклады Академии наук. 2010;434(4):558–61. [Edel’veis EF, Balandin TG, Stremovskii OA, et al. Anti-anti-EGFR–barnase immunoconjugate is highly toxic for human tumor cells. Doklady Akademii nauk. 2010;434(4):558–61. (In Russ)]
  68. Schirrmann T, Krauss J, Arndt MA, et al. Targeted therapeutic RNases (ImmunoRNases). Expert Opin Biol Ther. 2009;9:79–95. doi: 10.1517/14712590802631862.
  69. De Lorenzo C, Arciello A, Cozzolino R, et al. A fully human antitumor immunoRNase selective for ErbB-2-positive carcinomas. Cancer Res. 2004;64(14):4870–4. doi: 10.1158/0008-5472.can-03-3717.
  70. De Lorenzo C, Tedesco A, Terrazzano G, et al. A human, compact, fully functional anti-ErbB2 antibody as a novel antitumour agent. Br J Cancer. 2004;91(6):1200–4. doi: 10.1038/sj.bjc.6602110.
  71. Покровский В.С., Трещалина Е.М. Ферментные препараты в онкогематологии: актуальные направления экспериментальных исследований и перспективы клинического применения. Клиническая онкогематология. 2014;7(1):28–39. [Pokrovskii VS, Treshchalina EM. Enzymes in oncohaematology: relevant directions of experimental studies and prospects of clinical use. Klinicheskaya onkogematologiya. 2014;7(1):28–39. (In Russ)]
  72. Покровский В.С., Лесная Н.А., Трещалина Е.М. и др. Перспективы разработки новых ферментных противоопухолевых препаратов. Вопросы онкологии. 2011;57(2):155–64. [Pokrovskii VS, Lesnaya NA, Treshchalina EM, et al. Perspectives of development of novel enzymatic antitumor agents. Voprosy onkologii. 2011;57(2):155–64. (In Russ)]
  73. Hatlen MA, Wang L, Nimer SD. AML1-ETO driven acute leukemia: insights into pathogenesis and potential therapeutic approaches. Front Med. 2012;6(3):248–62. doi: 10.1007/s11684-012-0206-6.
  74. Ziai JM, Siddon AJ, et al. Pathology Consultation on Gene Mutations in Acute Myeloid Leukemia. Am J Clin Pathol. 2015;144(4):539–54. doi: 10.1309/AJCP77ZFPUQGYGWY.