Пироптоз — воспалительная форма клеточной гибели

А.А. Вартанян, В.С. Косоруков

ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Москва, Российская Федерация, 115478

Для переписки: Aмалия Арташевна Вартанян, д-р биол. наук, ул. Каширская, д. 24, Москва, Российская Федерация, 115478; тел.: +7(499)324-10-65; e-mail: zhivotov57@mail.ru

Для цитирования: Вартанян А.А., Косоруков В.С. Пироптоз — воспалительная форма клеточной гибели. Клиническая онкогематология. 2020;13(2):129–35.

DOI: 10.21320/2500-2139-2020-13-2-129-135


РЕФЕРАТ

Пироптоз, каспаза-1-зависимая воспалительная форма гибели клетки, индуцируется внутриклеточными патогенами или повреждением тканей. Активация прокаспазы-1, необходимая для процессинга провоспалительных цитокинов про-IL-1β и про-IL-18, происходит в макромолекулярных белковых комплексах, называемых инфламмасомами. При инфекциях, вызванных грамотрицательными бактериями, в сборке инфламмасомы участвует каспаза-4 и каспаза-5. Первоначально идентифицированный как защитный механизм врожденного иммунитета, пироптоз сегодня не ограничивается ингибированием размножения внутриклеточных патогенов. В данном обзоре обсуждаются молекулярные механизмы гибели клетки по типу пироптоза и возможности вовлечения пироптоза в гибель опухолевых клеток.

Ключевые слова: клеточная гибель, пироптоз, каспазы, воспаление, врожденный иммунитет.

Получено: 24 декабря 2019 г.

Принято в печать: 17 марта 2020 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Zychlinsky A, Prevost MC, Sansonetti PJ. Shigella flexneri induces apoptosis in infected macrophages. Nature. 1992;358(6382):167–9. doi: 10.1038/358167a0.

  2. Brennan MA, Cookson BT. Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol Microbiol. 2000;38(1):31–40. doi: 10.1046/j.1365-2958.2000.02103.x.

  3. Cookson BT, Brennan MA. Pro-inflammatory programmed cell death. Trends Microbiol. 2001;9(3):113–4. doi: 10.1016/s0966-842x(00)01936-3.

  4. Li P, Allen H, Banerjee S, et al. Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell. 1995;80(3):401–11. doi: 10.1016/0092-8674(95)90490-5.

  5. Yuan YY, Xie KX, Wang SL, et al. Inflammatory caspase-related pyroptosis: mechanism, regulation and therapeutic potential for inflammatory bowel disease. Gastroenterology Report. 2018;6(3):167–76. doi: 10.1093/gastro/goy011.

  6. Doitsh G, Cavrois M, Lassen KG, et al. Abortive HIV infection mediates CD4 T cell depletion and inflammation in human lymphoid tissue. Cell. 2010;143(5):789–801. doi: 10.1016/j.cell.2010.11.001.

  7. Franchi L, Warner N, Viani K, et al. Function of Nod-like receptors in microbial recognition and host defense. Immunol Rev. 2009;227(1):106–28. doi: 10.1111/j.1600-065x.2008.00734.x.

  8. Bortoluci KR, Medzhitov R. Control of infection by pyroptosis and autophagy: role of TLR and NLR. Cell Mol Life Sci. 2010;67(10):1643–51. doi: 10.1007/s00018-010-0335-5.

  9. Lamkanfi M, Dixit V. Mechanisms and functions of inflammasomes. Cell. 2014;157(5):1013–22. doi: 10.1016/j.cell.2014.04.007.

  10. Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 2017;277(1):61–75. doi: 10.1111/imr.12534.

  11. Malireddi RK, Ippagunta S, Lamkanfi M, et al. Cutting edge: proteolytic inactivation of poly(ADP-ribose) polymerase 1 by the Nlrp3 and Nlrc4 inflammasomes. J Immunol. 2010;185(6):3127–30. doi: 10.4049/jimmunol.1001512.

  12. Kovacs SB, Miao EA. Gasdermins: Effectors of Pyroptosis. Trends Cell Biol. 2017;27(9):673–84. doi: 10.1016/j.tcb.2017.05.005.

  13. Feng S, Fox D, Man SM. Mechanisms of Gasdermin Family Members in Inflammasome Signaling and Cell Death. J Mol Biol. 2018;430(18):3068–80. doi: 10.1016/j.jmb.2018.07.002.

  14. Prajwal G, Lukens JR, Thirumala-Devi K. Mitochondria: diversity in the regulation of the NLRP3 inflammasome. Trends Mol Med. 2015;21(3):193–201. doi: 10.1016/j.molmed.2014.11.008.

  15. Yu J, Nagasu H, Murakami T, et al. Inflammasome activation leads to Caspase-1-dependent mitochondrial damage and block of mitophagy. Proc Natl Acad Sci USA. 2014;111(43):15514–9. doi: 10.1073/pnas.1414859111.

  16. Diamond CE, Khameneh HJ, Brough D, et al. Novel perspectives on non-canonical inflammasome activation. Immunotargets Ther. 2015;4:131–41. doi: 10.2147/ITT.S57976.

  17. Lamkanfi M, Dixit VM. Modulation of inflammasome pathways by bacterial and viral pathogens. J Immunol. 2011;187(2):597–602. doi: 10.4049/jimmunol.1100229.

  18. Strowig T, Henao-Mejia J, Elinav E, et al. Inflammasomes in health and disease. Nature. 2012;481(7381):278–86. doi: 10.1038/nature10759.

  19. Rashidi M, Simpson DS, Hempel A, et al. The Pyroptotic Cell Death Effector Gasdermin D Is Activated by Gout-Associated Uric Acid Crystals but Is Dispensable for Cell Death and IL-1β J Immunol. 2019;203(3):736–48. doi: 10.4049/jimmunol.1900228.

  20. Sahoo AK, Dandapat J, Dash UC, et al. Features and outcomes of drugs for combination therapy as multi-targets strategy to combat Alzheimer’s disease. J Ethnopharmacol. 2018;215:42–73. doi: 10.1016/j.jep.2017.12.015.

  21. Freeman LC, Ting JP. The pathogenic role of the inflammasome in neurodegenerative diseases. J Neurochem. 2016;136(Suppl 1):29–38. doi: 10.1111/jnc.13217.

  22. Corrigan KL, Wall KC, Bartlett JA, et al. Cancer disparities in people with HIV: A systematic review of screening for non-AIDS-defining malignancies. 2019;125(6):843–53. doi: 10.1002/cncr.31838.

  23. Doitsh G, Galloway NL, Geng X, et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature. 2014;505(7484):509–14. doi: 10.1038/nature12940.

  24. Monroe KM, Yang Z, Johnson JR, et al. IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV. Science. 2014;343(6169):428–32. doi: 10.1126/science.1243640.

  25. Wannamaker W, Davies R, Namchuk M, et al. VX-765, an orally available selective interleukin (IL)-converting enzyme/caspase-1 inhibitor, exhibits potent anti-inflammatory activities by inhibiting the release of IL-1beta and IL-18. J Pharmacol Exp Ther. 2007;321(2):509–16. doi: 10.1124/jpet.106.111344.

  26. Asahchop EL, Meziane O, Mamik MK, et al. Reduced antiretroviral drug efficacy and concentration in HIV-infected microglia contributes to viral persistence in brain. Retrovirology. 2017;14(1):47. doi: 10.1186/s12977-017-0370-5.

  27. Mamik MK, Hui E, Branton WG, et al. HIV-1 Viral Protein R Activates NLRP3 Inflammasome in Microglia: Implications for HIV-1 Associated Neuroinflammation. J Neuroimmune Pharmacol. 2017;12(2):233–48. doi: 10.1007/s11481-016-9708-3.

  28. Vandanmagsar B, Youm Y, Ravussin A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 2011;17(2):179–88. doi: 10.1038/nm.2279.

  29. Nagarajan K, Soundarapandian K, Thorne RF, et al. Activation of Pyroptotic Cell Death Pathways in Cancer: An Alternative Therapeutic Approach. Transl Oncol. 2019;12(7):925–31. doi: 10.1016/j.tranon.2019.04.010.

  30. Luan J, Ju D. Inflammasome: A Double-Edged Sword in Liver Front Immunol. 2018;9:2201–9. doi: 10.3389/fimmu.2018.02201.

  31. Chu Q, Jiang Y, Zhang W, et al. Pyroptosis is involved in the pathogenesis of human hepatocellular carcinoma. Oncotarget. 2016;7(51):84658–65. doi: 10.18632/oncotarget.12384.

  32. Place DE, Kanneganti TD. Recent advances in inflammasome biology. Curr Opin Immunol. 2018;50:32–8. doi: 10.1016/j.coi.2017.10.011.

  33. Wang H, Luo Q, Feng X, et al. NLRP3 promotes tumor growth and metastasis in human oral squamous cell carcinoma. BMC Cancer. 2018;18(1):500–12. doi: 10.1186/s12885-018-4403-9.

  34. Elion DL, Jacobson ME, Hicks DJ, et al. Therapeutically Active RIG-I Agonist Induces Immunogenic Tumor Cell Killing in Breast Cancer Res. 2018;78(21):6183–95. doi: 10.1158/0008-5472.can-18-0730.

  35. Pizato N, Luzete BC, Kiffer LV, et al. Omega-3 docosahexaenoic acid induces pyroptosis cell death in triple-negative breast cancer cells. Sci Rep. 2018;8(1):1952–60. doi: 10.1038/s41598-018-20422-0.

  36. Baranovskiy AG, Babayeva ND, Suwa Y, et al. Structural basis for inhibition of DNA replication by aphidicolin. Nucl Acids Res. 2014;42(22):14013–21. doi: 10.1093/nar/gku1209.

  37. Han T, Goralski M, Capota E, et al. The antitumor toxin CD437 is a direct inhibitor of DNA polymerase α. Nat Chem Biol. 2016;12(7):511–5. doi: 10.1038/nchembio.2082.

  38. Gutteridge RE, Ndiaye MA, Liu X, et al. Plk1 Inhibitors in Cancer Therapy: From Laboratory to Clinics. Mol Cancer 2016;15(7):1427–35. doi: 10.1158/1535-7163.mct-15-0897.

  39. Liu X. Targeting Polo-Like Kinases: A Promising Therapeutic Approach for Cancer Transl Oncol. 2015;8(3):185–95. doi: 10.1016/j.tranon.2015.03.010.

  40. Konjevic GM, Vuletic AM, Mirjacic Martinovic KM, et al. The role of cytokines in the regulation of NK cells in the tumor environment. Cytokine. 2019;117:30–40. doi: 10.1016/j.cyto.2019.02.001.

  41. Nakanishi K. Unique Action of Interleukin-18 on T Cells and Other Immune Cells. Front Immunol. 2018;9:763. doi: 10.3389/fimmu.2018.00763.

  42. Cao R, Farnebo J, Kurimoto M, et al. Interleukin-18 acts as an angiogenesis and tumor suppressor FASEB J. 1999;13(15):2195–202. doi: 10.1096/fasebj.13.15.2195.

  43. Li A, Yi M, Qin S, et al. Prospects for combining immune checkpoint blockade with PARP inhibition. J Hematol Oncol. 2019;12(1):98. doi: 10.1186/s13045-019-0784-8.