Острые лейкозы: различия иммунофенотипа бластных клеток и их неопухолевых аналогов в костном мозге

А.М. Попов1, Т.Ю. Вержбицкая2,3, Л.Г. Фечина2, А.В. Шестопалов1,4, С.А. Плясунова1

1 ФГБУ «Федеральный научно-клинический центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России, ул. Саморы Машела, д. 1, Москва, Российская Федерация, 117997

2 ГБУЗ СО «Областная детская клиническая больница № 1», ул. Серафимы Дерябиной, д. 32, Екатеринбург, Российская Федерация, 620149

3 ГАУЗ СО «Институт медицинских клеточных технологий», ул. Карла Маркса, д. 22а, Екатеринбург, Российская Федерация, 620026

4 ГБОУ ВПО «Российский национальный исследовательский университет им. Н.И. Пирогова» Минздрава России, ул. Саморы Машела, д. 1, Москва, Российская Федерация, 117997

Для переписки: Александр Михайлович Попов, канд. мед. наук, ул. Саморы Машела, д. 1, Москва, Российская Федерация, 117997; тел.: +7(495)287-65-70; e-mail: uralcytometry@gmail.com

Для цитирования: Попов А.М., Вержбицкая Т.Ю., Фечина Л.Г. и др. Острые лейкозы: различия иммунофенотипа бластных клеток и их неопухолевых аналогов в костном мозге. Клиническая онкогематология. 2016;9(3):302-13.

DOI: http://dx.doi.org/10.21320/2500-2139-2016-9-3-302-313


РЕФЕРАТ

Определение иммунофенотипа опухолевых бластных клеток в костном мозге методом проточной цитометрии на протяжении многих лет является одним из основных методов диагностики острых лейкозов (ОЛ). Клетки нормального лимфопоэза и миелопоэза, сходные по антигенному профилю с опухолевыми бластами, могут серьезно осложнять процесс диагностики ОЛ. Генетические нарушения, приводящие к образованию опухолевого клона, способствуют формированию иммунофенотипа, отличающегося от нормальных клеток. Аберрантная экспрессия маркеров, определяемая исключительно на бластных клетках ОЛ, формирует так называемый лейкоз-ассоциированный иммунофенотип. Определение лейкоз-ассоциированного иммунофенотипа методом многоцветной проточной цитометрии позволяет четко отличать нормальные и лейкозные клетки-предшественницы. Однако для этого необходим анализ большого количества маркеров одновременно на одних и тех же клетках, т. е. применение многоцветной проточной цитометрии с хорошо продуманными и отработанными панелями моноклональных антител. Кроме того, правильная оценка положения клеточных популяций на графиках требует максимально адекватной настройки цитометра, корректной подготовки проб и наличия у оператора достаточного опыта. Чаще всего соблюдение этих условий возможно в крупных лабораториях, проводящих референс-иммунофенотипирование в рамках многоцентровых исследований.

Ключевые слова: острые лейкозы, проточная цитометрия, экспрессия антигенов, иммунофенотип.

Получено: 19 февраля 2016 г.

Принято в печать: 16 марта 2016 г.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Morike A, Zimmermann M, Reiter A, et al. Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia. 2010;24(2):265–84. doi: 10.1038/leu.2009.257.
  2. Pui CH, Carroll WL, Meshinchi S, Arceci RJ. Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol. 2011;29(5):551–65. doi: 10.1200/jco.2010.30.7405.
  3. Pui CH, Mullighan CG, Evans WE, Relling MV. Pediatric acute lymphoblastic leukemia: where are we going and how do we get there? Blood. 2012;120(6):1165–74. doi: 10.1182/blood-2012-05-
  4. Bene M, Castoldi G, Knapp W, et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia. 1995;9(10):1783–6.
  5. van Lochem EG, Wiegers YM, van den Beemd R, et al. Regeneration pattern of precursor-B-cells in bone marrow of acute lymphoblastic leukemia patients depends on the type of preceding chemotherapy. Leukemia. 2000;14(4):688–95. doi: 10.1038/sj.leu.2401749.
  6. McKenna RW, Washington LT, Aquino DA, et al. Immunophenotypic analysis of hematogones (B-lymphocyte precursors) in 662 consecutive bone marrow specimens by 4-color flow cytometry. Blood. 2001;98(8):2498–507. doi: 10.1182/blood.v98.8.2498.
  7. Campana D, Coustan-Smith E. Advances in the immunological monitoring of childhood acute lymphoblastic leukaemia. Best Pract Res Clin Hematol. 2002;15(1):1–19. doi: 1053/beha.2002.0182.
  8. Dworzak MN, Fritsch G, Fleischer C, et al. Comparative phenotype mapping of normal vs. malignant pediatric B-lymphopoiesis unveils leukemia-associated aberrations. Exp Hematol. 1998;26(4):305–13.
  9. Lucio P, Parreira A, van den Beemd MVM, et al. Flow cytometric analysis of normal B cell differentiation: a frame of reference for the detection of minimal residual disease in precursor-B-ALL. Leukemia. 1999;13(3):419–27. doi: 1038/sj.leu.2401279.
  10. Lucio P, Gaipa G, van Lochem EG, et al. BIOMED-I concerted action report: flow cytometric immunophenotyping of precursor B-ALL with standardized triple-stainings. Leukemia. 2001;15(8):1185–92. doi: 10.1038/sj.leu.2402150.
  11. Dworzak MN, Fritsch G, Fleisher C, et al. Multiparameter phenotype mapping of normal and post-chemotherapy B lymphopoiesis in pediatric bone marrow. Leukemia. 1997;11(8):1266–73. doi: 10.1038/sj.leu.2400732.
  12. Попов А.М., Вержбицкая Т.Ю., Цаур Г.А. и др. Аберрации иммунофенотипа, применимые для мониторинга минимальной остаточной болезни методом проточной цитометрии при CD10-позитивном остром лимфобластном лейкозе из В-линейных предшественников. Иммунология. 2010;31(6):299–304. [Popov AM, Verzhbitskaya TYu, Tsaur GA, et al. Immunophenotype aberrations used for monitoring of the minimal residual disease using flow cytometry in CD10-positive acute lymphoblastic leukemia from B-linear precursors. 2010;31(6):299–304. (In Russ)]
  13. Мовчан Л.В. Лейкоз-ассоциированный иммунофенотип опухолевых клеток у детей с острым лимфобластным лейкозом из предшественников В-лимфоцитов. Онкогематология. 2012;1:22–8. [Movchan LV. Leukemia-associated immunophenotype of tumor cells in childhood B-precursors acute lymphoblastic leukemia. Onkogematologiya. 2012;1:22–8. (In Russ)]
  14. Попов А.М., Вержбицкая Т.Ю., Цаур Г.А. и др. Алгоритм применения проточной цитометрии для мониторинга минимальной остаточной болезни при CD10-негативном остром лимфобластном лейкозе из B-линейных предшественников. Вопросы диагностики в педиатрии. 2012;4(5):31–5. [Popov AM, Verzhbitskaya TYu, Tsaur GA, et al. Methodology of flow cytometry application for minimal residual disease monitoring in childhood CD10-negative B-cell precursor acute lymphoblastic leukemia. Voprosy diagnostiki v pediatrii. 2012;4(5):31–5. (In Russ)]
  15. Ciudad J, Orfao A, Vidriales B, et al. Immunophenotypic analysis of CD19+ precursors in normal human adult bone marrow: implications for minimal residual disease detection. Haematologica. 1998;83(12):1069–75.
  16. Veltroni M, De Zen L, Sanzari MC, et al. Expression of CD58 in normal, regenerating and leukemic bone marrow B cells: implications for the detection of minimal residual disease in acute lymphocytic leukemia. Haematologica. 2003;88(11):1245–52.
  17. van Lochem EG, van der Velden VH, Wind HK, et al. Immunophenotypic differentiation patterns of normal hematopoiesis in human bone marrow: reference patterns for age-related changes and disease-induced shifts. Cytometry B Clin Cytom. 2004;60B(1):1–13. doi: 10.1002/cyto.b.20008.
  18. Lee RV, Braylan RC, Rimsza LM. CD58 expression decreases as nonmalignant B cells mature in bone marrow and is frequently overexpressed in adult and pediatric precursor B-cell acute lymphoblastic leukemia. Am J Clin Pathol. 2005;123(1):119–24. doi: 1309/x5vv6fkjq6mublpx.
  19. Robillard N, Cave H, Mechinaud F, et al. Four-color flow cytometry bypasses limitations of IG/TCR polymerase chain reaction for minimal residual disease detection in certain subsets of children with acute lymphoblastic leukemia. Haematologica. 2005;90(11):1516–23.
  20. Seegmiller AC, Kroft SH, Karandikar NJ, McKenna RW. Characterization of immunophenotypic aberrancies in 200 cases of B acute lymphoblastic leukemia. Am J Clin Pathol. 2009;132(6):940–9. doi: 10.1309/AJCP8G5RMTWUEMUU.
  21. Sedek L, Bulsa J, Sonsala A, et al. The immunophenotypes of blast cells in B-cell precursor acute lymphoblastic leukemia: how different are they from their normal counterparts. Cytometry B Clin Cytom. 2014;86(5):329–39. doi: 10.1002/cyto.b.21176.
  22. Hulspas R, O’Gorman MRG, Wood BL, et al. Consideration for the control of background fluorescence in clinical flow cytometry. Cytometry B Clin Cytom. 2009;76В(6):355–64. doi: 10.1002/cyto.b.20485.
  23. Hrusak O, Porwit-MacDonald A. Antigen expression patterns reflecting genotype of acute leukemias. Leukemia. 2002;16(7):1233–58. doi: 10.1038/sj.leu.2402504.
  24. Попов А.М., Цаур Г.А., Вержбицкая Т.Ю. и др. Иммунофенотипическая характеристика острого лимфобластного лейкоза у детей первого года жизни. Онкогематология. 2012;7(2):14–24. doi: 17650/1818-8346-2012-7-2-14-24. [Popov AM, Tsaur GA, Verzhbitskaya TY, et al. Immunophenotypic investigation of infant acute lymphoblastic leukemia. Oncohematology. 2012;7(2):14–24. doi: 10.17650/1818-8346-2012-7-2-14-24. (In Russ)]
  25. Fuda FS, Karandikar NJ, Chen W. Significant CD5 expression on normal stage 3 hematogones and mature B-lymphocytes in bone marrow. Am J Clin Pathol. 2009;132(5):733–7. doi: 10.1309/AJCPU5E3NXEKLFIY.
  26. Gaipa G, Basso G, Maglia O, et al. Drug-induced immunophenotypic modulation in childhood ALL: implications for minimal residual disease detection. Leukemia. 2005;19(1):49–56. doi: 10.1038/sj.leu.2403559.
  27. Gaipa G, Basso G, Ratei R, et al. Reply to van der Sluijs-Gelling, et al. Leukemia. 2005;19(12):2351–2. doi: 10.1038/sj.leu.2403912.
  28. van der Sluijs-Gelling AJ, van der Velden VHJ, Roeffen ETJM, et al. Immunophenotypic modulation in childhood precursor-B-ALL can be mimicked in vitro and is related to the induction of cell death. Leukemia. 2005;19(10):1845–7. doi: 10.1038/sj.leu.2403911.
  29. Dworzak MN, Schumich A, Printz D, et al. CD20 up-regulation in pediatric B-cell precursor acute lymphoblastic leukemia during induction treatment: setting the stage for anti-CD20 directed immunotherapy. Blood. 2008;112(10):3982–8. doi: 10.1182/blood-2008-06-
  30. Gaipa G, Basso G, Aliprandi S, et al. Prednisone induces immunophenotypic modulation of CD10 and CD34 in nonapoptotic B-cell precursor acute lymphoblastic leukemia cells. Cytometry B Clin Cytom. 2008;74B(3):150–5. doi: 10.1002/cyto.b.20408.
  31. Попов А.М., Вержбицкая Т.Ю., Цаур Г.А. и др. Изменения иммунофенотипа опухолевых бластов при CD10-позитивном остром лимфобластном лейкозе у детей к 15-му дню индукционной терапии по протоколу ALL-MB-2008. Иммунология. 2010;31(2):60–4. [Popov AM, Verzhbitskaya TYu, Tsaur GA, et al. Changes of tumor blast immunophenotype in CD10-positive acute lymphoblastic leukemia in children by the 15th day of induction therapy according to the ALL-MB-2008 protocol. Immunologiya. 2010;31(2):60–4. (In Russ)]
  32. Мовчан Л.В., Шман Т.В., Белевцев М.В. и др. Изменение иммунофенотипа лейкемических клеток на этапах индукционной терапии острого лимфобластного лейкоза из предшественников В-лимфоцитов у детей. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2011;10(1):21–6. [Movchan LV, Shman TV, Belevtsev MV, et al. Immunophenotypic modulation of the leukemic cells during induction therapy in children with B-cell precursor acute lymphoblastic leukemia. Voprosy gematologii/onkologii i immunopatologii v pediatrii. 2011;10(1):21–6. (In Russ)]
  33. Dworzak MN, Gaipa G, Schumich A, et al. Modulation of antigen expression in B-cell precursor acute lymphoblastic leukemia during induction therapy is partly transient: evidence for a drug-induced regulatory phenomenon. Results of the AIEOP-BFM-ALL-FLOW-MRD-Study Group. Cytometry B Clin Cytom. 2010;78В(3):147–53. doi: 10.1002/cyto.b.20516.
  34. Borowitz MJ, Pullen DJ, Winick N, et al. Comparison of diagnostic and relapse flow cytometry phenotypes in childhood acute lymphoblastic leukemia: implications for residual disease detection: a report from the Children’s Oncology Group. Cytometry B Clin Cytom. 2005;68В(1):18–24. doi: 1002/cyto.b.20071.
  35. Liu YR, Chang Y, Fu JY, et al. Comparison of the immunophenotype of patients with B lineage acute lymphoblastic leukemia at diagnosis and relapse. Zhonghua Xue Ye Xue Za Zhi. 2006;27(5):335–8.
  36. Dworzak MN, Froschl G, Printz D, et al. Prognostic significance and modalities of flow cytometric minimal residual disease detection in childhood acute lymphoblastic leukemia. Blood. 2002;99(6):1952–8. doi: 10.1182/blood.v99.6.1952.
  37. Coustan-Smith E, Ribeiro RC, Stow P, et al. A simplified flow cytometric assay identifies children with acute lymphoblastic leukemia who have a superior clinical outcome. Blood. 2006;108(1):97–102. doi: 1182/blood-2006-01-0066.
  38. Попов А.М., Вержбицкая Т.Ю., Цаур Г.А. и др. Ограниченная возможность применения упрощенного подхода для определения минимальной остаточной болезни методом проточной цитометрии у детей с острым лимфобластным лейкозом из B-линейных предшественников. Клиническая лабораторная диагностика. 2011;3:25–9. [Popov AM, Verzhbitskaya TYu, Tsaur GA, et al. Limited potential for use of simplified approach for determining minimal residual disease by means of flow cytometry in children with acute lymphoblastic leukemia from B-linear precursors. Klinicheskaya laboratornaya diagnostika. 2011;3:25–9. (In Russ)]
  39. Porwit-MacDonald A, Bjorklund E, Lucio P, et al. BIOMED-1 concerted action report: flow cytometric characterization of CD7+ cell subsets in normal bone marrow as a basis for the diagnosis and follow-up of T cell acute lymphoblastic leukemia (T-ALL). Leukemia. 2000;14(5):816–25. doi: 1038/sj.leu.2401741.
  40. Dworzak MN, Fritsch G, Buchinger P, et al. Flow cytometric assessment of human MIC2 expression in bone marrow, thymus, and peripheral blood. Blood. 1994;83(2):415–25.
  41. Dworzak MN, Fritsch G, Fleischer C, et al. CD99 (MIC2) expression in paediatric B-lineage leukaemia/lymphoma reflects maturation-associated patterns of normal B-lymphopoiesis. Br J Haematol. 1999;105(3):690–5. doi:1046/j.1365-2141.1999.01426.x.
  42. Dworzak MN, Froschl G, Printz D, et al. CD99 expression in T-lineage ALL: implications for flow cytometric detection of minimal residual disease. Leukemia. 2004;18(4):703–8. doi:1038/sj.leu.2403303.
  43. Roshal M, Fromm JR, Winter S, et al. Immaturity associated antigens are lost during induction for T cell lymphoblastic leukemia: implications for minimal residual disease detection. Cytometry B Clin Cytom. 2010;78В(3):139–46. doi: 10.1002/cyto.b.20511.
  44. Lund-Johansen F, Terstappen LW. Differential surface expression of cell adhesion molecules during granulocyte maturation. J Leuk Biol. 1993;54(1):47–55.
  45. Terstappen LW, Huang S, Picker LJ. Flow cytometric assessment of human T-cell differentiation in thymus and bone marrow. B 1992;79(3):666–77.
  46. Aalbers AM, van den Heuvel-Eibrink MM, Baumann I, et al. Bone marrow immunophenotyping by flow cytometry in refractory cytopenia of childhood. Haematologica. 2015;100(3):315–23. doi: 10.3324/haematol.2014.107706.
  47. Feng B, Verstovsek S, Jorgensen JL, Lin P. Aberrant myeloid maturation identified by flow cytometry in primary myelofibrosis. Am J Clin Pathol. 2010;133(2):314–20. doi: 10.1309/AJCPNC99DHXIOOTD.
  48. Loken MR, Chu S-Ch, Fritschle W, et al. Normalization of bone marrow aspirates for hemodilution in flow cytometric analyses. Cytometry B Clin Cytom. 2009;76В(1):27–36. doi: 10.1002/cyto.b.20429.
  49. Kussick SJ, Wood BL. Using 4-color flow cytometry to identify abnormal myeloid populations. Arch Pathol Lab Med. 2003;127(9):1140–7.
  50. Leandro MJ, Cooper N, Cambridge G, et al. Bone marrow B-lineage cells in patients with rheumatoid arthritis following rituximab therapy. Rheumatology (Oxford). 2007;46(1):29–36. doi: 10.1093/rheumatology/kel148.
  51. Rehnberg M, Amu S, Tarkowski A, et al. Short- and long-term effects of anti-CD20 treatment on B cell ontogeny in bone marrow of patients with rheumatoid arthritis. Arthritis Res Ther. 2009;11(4):R123. doi: 10.1186/ar2789.
  52. Nakou M, Katsikas G, Sidiropoulos P, et al. Rituximab therapy reduces activated B cells in both the peripheral blood and bone marrow of patients with rheumatoid arthritis: depletion of memory B cells correlates with clinical response. Arthritis Res Ther. 2009;11(4):R131. doi: 10.1186/ar2798.
  53. Borowitz MJ. Minimal residual disease detection in childhood ALL. Haematopoiesis Immunology. 2010;7(1):24–35.
  54. Вержбицкая Т.Ю., Попов А.М., Томилов А.Ф. и др. Определение опухолевых клеток в спинномозговой жидкости у детей с острыми лейкозами методом проточной цитометрии. Вопросы диагностики в педиатрии. 2012;5:31–5. [Verzhbitskaya TYu, Popov AM, Tomilov AF, et al. Detection of tumor cells in cerebrospinal fluid in children with acute leukemias using flow cytometry. Voprosy diagnostiki v pediatrii. 2012;5:31–5. (In Russ)]