Факторы, определяющие выживаемость клеток множественной миеломы человека in vitro

С.С. Шушанов1, Т.А. Кравцова1, Ю.Б. Черных2

1 ФГБУ «Российский онкологический научный центр им. Н.Н. Блохина» РАМН, Москва, Российская Федерация

2 ГБУЗ МО «Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского», Москва, Российская Федерация


РЕФЕРАТ

В настоящей работе проведено исследование выживаемости линий клеток множественной миеломы (ММ) человека RPMI1640, RPMI8226 и IM9 в зависимости от степени их дифференцировки в среде без сыворотки и/или при воздействии экзогенного инсулиноподобного фактора роста 1-го типа (IGF-1). Установлено, что наиболее чувствительны к сывороточным факторам роста клетки IM9 с иммунофенотипом CD138+, CD38–, CD45+, CD56–, CD19+ и наименее чувствительны клетки RPMI1640 и RPMI8226, имеющие иммунофенотип CD138+, CD38+, CD45–, CD56+/–, CD19–. Исследование генов показало, что в клетках IM9 уровень экспрессии мРНК IGF-1R и IR-A значительно ниже, чем в клетках RPMI1640 и RPMI8226. Кроме того, установлено, что экзогенный IGF-1 может по-разному влиять на выживаемость и рост клеток ММ. Изолированное воздействие IGF-1 не влияет на жизнеспособность миеломных клеток, а в сочетании с факторами роста — усиливает.


Ключевые слова: множественная миелома (ММ), инсулиноподобный фактор роста 1-го типа (IGF-1), выживаемость клеток, экспрессия мРНК.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Вотякова О.М., Демина Е.А. Множественная миелома. В кн.: Клиниче- ская онкогематология. Руководство для врачей, 2-е изд., перераб и доп. Под ред. М.А. Волковой. М.: Медицина, 2007: 847–73. [Votyakova O.M., Demina Ye.A. Mnozhestvennaya miyeloma. V kn.: Klinicheskaya onkogematologiya. Rukovodstvo dlya vrachey, 2-e izd., pererab i dop. Pod red. M.A. Volkovoy. (Multiple myeloma. In: Clinical oncohematology. Manual for medical practitioners. 2nd ed., rev.&upd. Ed by: M.A. Volkova). M.: Meditsina, 2007: 847–73.]
  2. Jaffe E.E., Harris N., Stein H. et al. World Health Organization Classification of Tumors. Pathology and Genetics of Tumors of Hematopoietic and Lymphoid Tissues. Lyon: IARC Press, 2001: 351.
  3. Raab M.S, Podar K., Breitkreutz I. et al. Multiple myeloma. Lancet 2009; 374: 324–39.
  4. Dispenzieri A., Kyle R.A. Multiple myeloma: clinical features and indications for therapy. Best Pract. Res. Clin. Haematol. 2005; 18: 553–68.
  5. Hideshima T., Bergsagel P.L., Kuehl W.M. et al. Advances in Biology of Multiple Myeloma: Clinical Applications. Blood 2004; 104: 607–18.
  6. Sprynski A.C., Hose D., Caillot L. et al. The role of IGF-1 as a major growth factor for myeloma cell lines and the prognostic relevance of the expression of its receptor. Blood 2009; 113: 4614–26.
  7. Mitsiades C.S., Mitsiades N., Kung A.L. et al. The IGF/IGF-1R system is a major therapeutic target for multiple myeloma, other hematologic malignancies and solid tumors. Blood 2002; 100(11): Abstract 637.
  8. Samani A.A., Yakar S., LeRoith D. et al. The role of the IGF system in cancer growth and metastasis: Overview and recent insights. Endocr. Rev. 2007; 28: 20–47.
  9. Hernandez-Sanchez С., Werner H., Roberts C.T. et al. Differential Regulation of Insulin-like Growth Factor-I (IGF-I) Receptor Gene Expression by IGF-I and Basic Fibroblastic Growth Factor: JBC 1997; 272(8): 4663–70.
  10. Kalitin N., Kostjukova M., Kakpakova E. et al. Vascular endothelial growth factor 1 (VEGFR1) gene expression depends on immunophenotype of human multiple myeloma сells. Eur. J. Cancer 2011; 47(1): S644.
  11. Шушанов С.С., Кравцова Т.А. Цитотоксическое действие доксору- бицина in vitro на клетки множественной миеломы человека. Бюл. экспер. биол. и мед. 2013; 155(2): 195–200. [Shushanov S.S., Kravtsova T.A. Doxorubicine cytotoxic in vitro effect on cells of human multiple myeloma. Byul. eksper. biol. i med. 2013; 155(2): 195–200. (In Russ.)].
  12. Шушанов C.C. Роль инсулиноподобного фактора роста 1 типа (IGF-1) и некоторых других членов системы IGF/инсулин в прогрессии множественной миеломы. Рос. биотер. журн. 2012; 11(3):71–80. [Shushanov C.C. Role of insulin-like growth factor 1 and some other members of IGF/insulin system in progression of multiple myeloma. Ros. bioter. zhurn. 2012; 11(3):71–80. (In Russ.)].
  13. Ludwig T., EggenschwillerJ., Fisher P. et al. Mouse mutants lacking the type 2 IGF receptor (IGF2R) are rescued from perinatal lethality in igf2 and igf-1r null backgrounds. Dev. Biol. 1996; 177: 517–35.
  14. Sacco A., Morcavallo A., Pandini G. et al. Differential signaling activation by insulin and insulin-like growth factors I and II upon binding to insulin receptor isoform A. Endocrinology 2009; 150(8): 3594–602.
  15. Moxham C.P., Duronio V., Jacobs S. et al. Insulin-like growth factor 1 receptor beta–subunit geterogeneity. Evidence for hybrid tetramers composed of insulin-like growth factor 1 and insulin receptor heterodimers. J. Biol. Chem. 1989; 264: 13238–44.
  16. Frasca F., Pandini G., Scalia P. et al. Insulin receptor isoform A a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol. Cell Biol. 1999; 19: 3278–88.
  17. Yamaguchi Y., Flier J.S., Yokoto A. et al. Functional properties of two naturally occurring isoforms of the human insulin receptor in Chinese hamster ovary cells. Endocrinology 1991; 129: 2058–66.
  18. Yu H., Rohan T. Role of insulin-like growth factor family in cancer development and Progression. J. Natl. Cancer Inst. 2000; 92: 1472–89.
  19. Weber J.D., Kuo M.L., Bothner B. et al. Cooperative signals governing ARF mdm2 interaction and nucleolar localization of the complex. Mol. Cell Biol. 2000; 20: 2517–28.
  20. Barton E.R. The ABCs of IGF-1 isoforms: impact of muscle hypertrophy and implications for repair. Appl. Physiol. Nutr. Metab. 2006; 31: 791–7.
  21. Parker A., Cheville J.C., Lohse C. et al. Expression of insulin-like growth factor I receptor and survival in patients with clear cell renal cell carcinoma. J. Urol. 2003; 170: 420–4.
  22. Parker A.S., Cheville J.C., Janney C.A. High expression levels of insulinlike growth factor-I receptor predict poor survival among women with clear-cell renal cell carcinomas. Hum. Pathol. 2002; 33(8): 801–5.
  23. Gicquel C., Bertagna X., Gaston V. et al. Molecular Markers and LongTerm Recurrences in a Large Cohort of Patients with Sporadic Adrenocortical Tumors. Cancer Res. 2001; 61: 6762–67.
  24. Sayer R.A., Lancaster J.M., Pittman J. et al. High insulin-like growth factor-2 (IGF-2) gene expression is an independent predictor of poor survival for patients with advanced stage serous epithelial ovarian cancer. Gynecol. Oncol. 2005; 96(2): 355–61.
  25. Shariat S.F., Kim J., Nguyen C. et al. Correlation of preoperative levels of IGF-I and IGFBP-3 with pathologic parameters and clinical outcome in patients with bladder cancer. Urology 2003; 61(2): 359–64.
  26. Hernandez-Sanchez S., Werner H. et al. Differential regulation of insulinlike growth factor-1 (IGF-1) receptor gene expression by IGF-1 and basic fibroblastic growth factor. Biol. Chem. 1997; 272(8): 4663–70.
  27. Rubini M., Werner H. Gandini E. et al. Platelet-derived growth factor increases the activity of the promotor of the insulin-like growth factor-1 (IGF-1) receptor gene. Exp. Cell Res. 1994; 211(2): 374–9.
  28. Van Riet I., Vande Broek I., Asosingh K. et al. Endothelial cell-tumor cell interactions in multiple myeloma. Hematol. J. 2003; 4(Suppl. 1): P6.3 (abstract).
  29. Vanderkerken K., De Greef C., Asosingh K. et al. Selective initial in vivo homing pattern of 5T2 multiple myeloma cells in the C57BL/KalwRij mouse. Br. J. Cancer 2000; 82: 953–9.
  30. Coppola D., Ferber A., Miura M. et al. A functional insulin-like growth factor 1 receptor is required for the mitogenic and transforming activities of the epidermal growth factor receptor. Mol. Cell Biol. 1994; 14(7): 4588–99.
  31. DeAngelis T., Ferber A., Baserga R. A functional insulin-like growth factor 1 receptor is required for the mitogenic and transforming activities of the platelet derived growth factor receptor. J. Cell Physiol. 1995; 164(1): 214–21.
  32. Ferlin M., Noraz N., Hertogh C. Insulin-like growth factor induces the survival and proliferation of myeloma cells through an interleukin-6-independent transduction pathway. Br. J. Haematol. 2000; 111: 626–4.
  33. Georgii-Hemming P., Wiklund H.J., Ljunggren O. et al. Insulin-like growth factor I is a growth and survival factor in human multiple myeloma cell lines. Blood 1996; 88: 2250–8.
  34. Qiang Y.W., Kopantzev E., Rudikoff S. et al. Insulin like growth factor-I signaling in multiple myeloma: downstream elements, functional correlates, and pathway cross-talk. Blood 2002; 99: 4138–46.