V(D)J Recombination Excision Circles of B- and T-cells as Prognostic Marker in B-Cell Chronic Lymphocytic Leukemia

IV Obraztsov1,2, MA Gordukova 3, NA Severina4, BV Biderman4, SYu Smirnova4, AB Sudarikov4, EA Nikitin5, AG Rumyantsev1

1 Dmitrii Rogachev Federal Scientific Clinical Centre of Pediatric Hematology, Oncology and Immunology under the Ministry of Health of the Russian Federation, 1 Samory Mashela str., Moscow, Russian Federation, 117198

2 AN Ryzhikh State Scientific Center for Coloproctology under the Ministry of Health of the Russian Federation, 2 Salyama Adilya str., Moscow, Russian Federation, 123423

3 GN Speranskii Municipal Children’s Hospital No. 9, 29 Shmitovskii pr-d, Moscow, Russian Federation, 123317

4 Hematology Research Center under the Ministry of Health of the Russian Federation, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

5 SP Botkin Municipal Clinical Hospital, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284

For correspondence: Igor’ Vladimirovich Obraztsov, junior researcher, 1 Samory Mashela str., Moscow, Russian Federation, 117997; е-mail: igor_obraztsov@yahoo.com

For citation: Obraztsov IV, Gordukova MA, Severina NA, et al. V(D)J Recombination Excision Circles of B- and T-cells as Prognostic Marker in B-Cell Chronic Lymphocytic Leukemia. Clinical oncohematology. 2017;10(2):131–40 (In Russ).

DOI: 10.21320/2500-2139-2017-10-2-131-140


ABSTRACT

Background & Aims. T-cell receptor excision circles (TREC) and κ-deleting recombination excision circles (KREC) are extrachromosomal DNA segments generated during V(D)J re combination process that characterize the diversity of the antigen repertoire of T- and B-cells. The aim of our study is to identify the prognostic value of the excision circles in the chronic lymphocytic leukemia (CLL) setting.

Methods. The excision circles’ levels were assessed by means of real time PCR in 109 patients with high-risk CLL and 16 matched healthy individuals.

Results. KREC levels were signifi cantly (p < 0.001) lower in CLL patients vs. the reference group. TREC levels were lower in groups with unmutated status of immunoglobulin heavy chain variable region genes (p < 0.05) and 11q deletions (p < 0.1). Moreover, the KREC levels were higher in NOTCH1 mutation carriers than in noncarriers (p < 0.05). The comparison of treatment outcomes demonstrated a correlation between a high TREC level and achievement of complete remission. The prognostic value of the biomarker was confirmed by ROC-analysis: AUCTREC = 0.713 (p = 0.001)

Conclusion. Association between excision circles’ levels and clinical/laboratory CLL prognostic factors, as well as complete remission achievement, makes possible the implementation of the test for early prediction of the treatment outcome.

Key words: CLL, TREC, KREC, naive T-cells, naive B-cells, biomarkers, outcome predictors.

Received: November 10, 2016

Accepted: January 13, 2017

Read in PDF (RUS)pdficon


REFERENCES

  1. Rai KR, Jain P. Chronic lymphocytic leukemia (CLL)-Then and now. Am J Hematol. 2016;91(3):330–40. doi: 10.1002/ajh.24282.
  2. Nicholas NS, Apollonio B, Ramsay AG. Tumor microenvironment (TME)-driven immune suppression in B cell malignancy. Biochim Biophys Acta. 2016;1863(3):471–82. doi: 10.1016/j.bbamcr.2015.11.003.
  3. Ohshima K. Molecular Pathology of Adult T-Cell Leukemia/Lymphoma. Oncology. 2015;89(Suppl 1):7–15. doi: 10.1159/000431058.
  4. Best OG, Crassini K, Freeman JA, Mulligan SP; CLL Australian Research Consortium. The clinical significance of hypogammaglobulinaemia and serum immunoglobulin G subclass deficiency in patients with chronic lymphocytic leukaemia (CLL). Scand J Infect Dis. 2013;45(9):729. doi: 10.3109/00365548.2013.809477.
  5. Riches JC, Gribben JG. Understanding the immunodeficiency in chronic lymphocytic leukemia: potential clinical implications. Hematol Oncol Clin North Am. 2013;27(2):207–35. doi: 10.1016/j.hoc.2013.01.003.
  6. Davis JE, Ritchie DS. The passive-aggressive relationship between CLL-B cells and T cell immunity. Leuk Res. 2014;38(10):1160–1. doi: 10.1016/j.leukres.2014.08.005.
  7. Toubert A, Glauzy S, Douay C, et al. Thymus and immune reconstitution after allogeneic hematopoietic stem cell transplantation in humans: never say never again. Tissue Antigens. 2012;79(2):83–9. doi: 10.1111/j.1399-0039.2011.01820.x.
  8. Pai S-Y. The Immune Response. In: Nathan and Oski’s Hematology of Infancy and Childhood. Philadelphia: Elsevier; 2009. рр. 1221–53.
  9. Mensen A, Ochs C, Stroux A, et al. Utilization of TREC and KREC quantification for the monitoring of early T- and B-cell neogenesis in adult patients after allogeneic hematopoietic stem cell transplantation. J Transl Med. 2013;11(1):188. doi: 10.1186/1479-5876-11-188.
  10. Ravkov E, Slev P, Heikal N. Thymic output: Assessment of CD4+ Recent Thymic Emigrants and T-Cell Receptor Excision Circles in Infants. Cytometry B Clin Cytom. 2015. doi: 10.1002/cyto.b.21341. [Epub ahead of print]
  11. de Felipe B, Olbrich P, Lucenas JM, et al. Prospective neonatal screening for severe T- and B-lymphocyte deficiencies in Seville. Pediatr Allergy Immunol. 2016;27(1):70–7. doi: 10.1111/pai.12501.
  12. Politikos I, Kim HT, Nikiforow S, et al. IL-7 and SCF Levels Inversely Correlate with T Cell Reconstitution and Clinical Outcomes after Cord Blood Transplantation in Adults. PLoS One. 2015;10(7):e0132564. doi: 10.1371/journal.pone.0132564.
  13. Drylewicz J, Vrisekoop N, Mugwagwa T, et al. Reconciling Longitudinal Naive T-Cell and TREC Dynamics during HIV-1 Infection. PLoS One. 2016;11(3):e0152513. doi: 10.1371/journal.pone.0152513.
  14. Гордукова М.А., Оскорбин И.П., Мишукова О.В. и др. Разработка набора реагентов для количественного определения молекул ДНК TREC и KREC в цельной крови и сухих пятнах крови методом мультиплексной ПЦР в режиме реального времени. Медицинская иммунология. 2015;17(5):467–78. doi: 10.15789/1563-0625-2015-5-467-478.
    [Gordukova MA, Oskorbin IP, Mishukova OV, et al. Development of real-time multiplex PCR for the quantitative determination of TREC’s and KREC’s in whole blood and in dried blood spots. Medical Immunology (Russia). 2015;17(5):467–78. doi: 10.15789/1563-0625-2015-5-467-478. (In Russ)].
  15. Motta M, Chiarini M, Ghidini C, et al. Quantification of newly produced B and T lymphocytes in untreated chronic lymphocytic leukemia patients. J Transl Med. 2010;8(1):111. doi: 10.1186/1479-5876-8-111.
  16. Holler C, Zaborsky N, Pinon-Hofbauer J, et al. Diversity of T-Cell Repertoire Predicts Disease Progression in Chronic Lymphocytic Leukaemia. Clin Lymph Myel Leuk. 2011;11(Suppl 2):S212. doi: 10.1016/j.clml.2011.09.111.
  17. Никитин Е.А. Особенности пациентов с хроническим лимфолейкозом в России — данные Российского регистра больных онкогематологическими заболеваниями. Материалы XII Российской конференции с международным участием «Злокачественные лимфомы». М., 2015. С. 20.
    [Nikitin EA. Characteristics of patients with chronic lymphocytic leukemia in Russia: data from the Russian register for patients with oncohematological diseases. Proceedings of 12th Russian Conference with International Participation ‘Malignant lymphomas’. Moscow; 2015. pр. 20. (In Russ)]
  18. Zubakov D, Liu F, van Zelm MC, et al. Estimating human age from T-cell DNA rearrangements. Curr Biol. 2010;20(22):R970–1. doi: 10.1016/j.cub.2010.10.022.