Theory and Practice of Immunotherapy Directed against the PRAME Antigen

VA Misyurin

NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Vsevolod Andreevich Misyurin, PhD in Biology, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(985)4363019; e-mail: vsevolod.misyurin@gmail.com

For citation: Misyurin VA. Theory and Practice of Immunotherapy Directed against the PRAME Antigen. Clinical oncohematology. 2018;11(2):138–49.

DOI: 10.21320/2500-2139-2018-11-2-138-149


ABSTRACT

The preferentially expressed antigen of melanoma (PRAME) is a significant target for monoclonal antibodies and an oncospecific marker known for its activity on all the tumor cell differentiation stages and its eliciting of a spontaneous T-cell response. Since PRAME protein is active in approximately every second patient with solid tumors and oncohematological diseases, anti-PRAME immunotherapy is very promising. In current review the mechanism of spontaneous immune response against PRAME is discussed as well as the role of this antigen in immunosurveillance. The review deals with the PRAME-specific T-cell genesis and risk assessment of immunotherapy directed against PRAME-positive cells. The risks and benefits of various immunotherapy approaches including the use of dendritic cell vaccines, PRAME vaccination, development of specific T-cells, and development of specific monoclonal antibodies were analysed. Possible causes of treatment failure are analysed, and methods of overcoming them are suggested. The literature search in the Pubmed, Scopus, and eLibrary databases, with the use of “PRAME” as a keyword was performed. Only publications related to various aspects of immunotherapy and anti-PRAME-specific agents were included in the review.

Keywords: PRAME, immunotherapy, dendritic cell vaccines, peptide vaccines, T-cell vaccines, therapeutic antibodies.

Received: December 19, 2017

Accepted: February 5, 2018

Read in PDF 

REFERENCES

  1. Lehmann F, Marchand M, Hainaut P, et al. Differences in the antigens recognized by cytolytic T cells on two successive metastases of a melanoma patient are consistent with immune selection. Eur J Immunol. 1995;25(2):340–7. doi: 10.1002/eji.1830250206.
  2. Ikeda H, Lethe B, Lehmann F, et al. Characterization of an Antigen That Is Recognized on a Melanoma Showing Partial HLA Loss by CTL Expressing an NK Inhibitory Receptor. Immunity. 1997;6(2):199–208. doi: 10.1016/s1074-7613(00)80426-4.
  3. Rezvani K, Yong AS, Tawab A, et al. Ex vivo characterization of polyclonal memory CD8 T-cell responses to PRAME-specific peptides in patients with acute lymphoblastic leukemia and acute and chronic myeloid leukemia. Blood. 2009;113(10):2245–55. doi: 10.1182/blood-2008-03-144071.
  4. Lutz M, Worschech A, Alb M, et al. Boost and loss of immune responses against tumor-associated antigens in the course of pregnancy as a model for allogeneic immunotherapy. Blood. 2015;125(2):261–72. doi: 10.1182/blood-2014-09-601302.
  5. LaVoy EC, Bollard CM, Hanley PJ, et al. A single bout of dynamic exercise enhances the expansion of MAGE-A4 and PRAME-specific cytotoxic T-cells from healthy adults. Exerc Immunol Rev. 2015;21:144–53.
  6. Saldanha-Araujo F, Haddad R, Zanette DL, et al. Cancer/Testis Antigen Expression on Mesenchymal Stem Cells Isolated from Different Tissues. Anticancer Res. 2010;30(12):5023–7. doi: 10.1007/978-94-007-4798-2_11.
  7. Kirkin AF, Dzhandzhugazyan K, Zeuthen J. The Immunogenic Properties of Melanoma-Associated Antigens Recognized by Cytotoxic T Lymphocytes. Exp Clin Immunogenet. 1998;15(1):19–32. doi: 10.1159/000019050.
  8. Luetkens T, Schafhausen P, Uhlich F, et al. Expression, epigenetic regulation, and humoral immunogenicity of cancer-testis antigens in chronic myeloid leukemia. Leuk Res. 2010;34(12):1647–55. doi: 10.1016/j.leukres.2010.03.039.
  9. Luetkens T, Kobold S, Cao Y, et al. Functional autoantibodies against SSX-2 and NY-ESO-1 in multiple myeloma patients after allogeneic stem cell transplantation. Cancer Immunol Immunother. 2014;63(11):1151–62. doi: 10.1007/s00262-014-1588-x.
  10. Kessler JH, Beekman NJ, Bres-Vloemans SA, et al. Efficient Identification of Novel HLA-A*0201–presented Cytotoxic T Lymphocyte Epitopes in the Widely Expressed Tumor Antigen PRAME by Proteasome-mediated Digestion Analysis. J Exp Med. 2001;193(1):73–88. doi: 10.1084/jem.193.1.73.
  11. Quintarelli C, Dotti G, Hasan ST, et al. High-avidity cytotoxic T lymphocytes specific for a new PRAME-derived peptide can target leukemic and leukemic-precursor cells. Blood. 2011;117(12):3353–62. doi: 10.1182/blood-2010-08-300376.
  12. Kessler JH, Mommaas B, Mutis T, et al. Competition-Based Cellular Peptide Binding Assays for 13 Prevalent HLA Class I Alleles Using Fluorescein-Labeled Synthetic Peptides. Hum Immunol. 2003;64(2):245–55. doi: 10.1016/S0198-8859(02)00787-5.
  13. Kawahara M, Hori T, Matsubara Y, et al. Identification of HLA class I–restricted tumor-associated antigens in adult T cell leukemia cells by mass spectrometric analysis. Exp Hematol. 2006;34(11):1496–504. doi: 10.1016/j.exphem.2006.06.010.
  14. Kessler JH, Khan S, Seifert U, et al. Antigen processing by nardilysin and thimet oligopeptidase generates cytotoxic T cell epitopes. Nat Immunol. 2011;12(1):45–53. doi: 10.1038/ni.1974.
  15. Grunebach F, Mirakaj V, Mirakaj V, et al. BCR-ABL Is Not an Immunodominant Antigen in Chronic Myelogenous Leukemia. Cancer Res. 2006;66(11):5892–900. doi: 10.1158/0008-5472.CAN-05-2868.
  16. Greiner J, Schmitt M, Li L, et al. Expression of tumor-associated antigens in acute myeloid leukemia: implications for specific immunotherapeutic approaches. Blood. 2006;108(13):4109–17. doi: 10.1182/blood-2006-01-023127.
  17. Weber G, Caruana I, Rouce RH, et al. Generation of tumor antigen-specific T cell lines from pediatric patients with acute lymphoblastic leukemia – implications for immunotherapy. Clin Cancer Res. 2013;19(18):5079–91. doi: 10.1158/1078-0432.CCR-13-0955.
  18. Schneider V, Zhang L, Rojewski M, et al. Leukemic progenitor cells are susceptible to targeting by stimulated cytotoxic T cells against immunogenic leukemia-associated antigens. Int J Cancer. 2015;137(9):2083–92. doi: 10.1002/ijc.29583.
  19. Babiak A, Steinhauser M, Gotz M, et al. Frequent T cell responses against immunogenic targets in lung cancer patients for targeted immunotherapy. Oncol Rep. 2014;31(1):384–90. doi: 10.3892/or.2013.2804.
  20. Greiner J, Ringhoffer M, Simikopinko O, et al. Simultaneous expression of different immunogenic antigens in acute myeloid leukemia. Exp Hematol. 2000;28(12):1413–22. doi: 10.1016/S0301-472X(00)00550-6.
  21. Griffioen M, Kessler JH, Borghi M, et al. Detection and Functional Analysis of CD8+ T Cells Specific for PRAME: a Target for T-Cell Therapy. Clin Cancer Res. 2006;12(10):3130–6. doi: 10.1158/1078-0432.CCR-05-2578.
  22. Yao J, Caballero OL, Yung WK, et al. Tumor subtype-specific cancer-testis antigens as potential biomarkers and immunotherapeutic targets for cancers. Cancer Immunol Res. 2014;2(4):371–9. doi: 10.1158/2326-6066.CIR-13-0088.
  23. Qin YZ, Zhu HH, Liu YR, et al. PRAME and WT1 transcripts constitute a good molecular marker combination for monitoring minimal residual disease in myelodysplastic syndromes. Leuk Lymphoma. 2013;54(7):1442–9. doi: 10.3109/10428194.2012.743656.
  24. Gutierrez-Cosio S, de la Rica L, Ballestar E, et al. Epigenetic regulation of PRAME in acute myeloid leukemia is different compared to CD34+ cells from healthy donors: Effect of 5-AZA treatment. Leuk Res. 2012;36(7):895–9. doi: 10.1016/j.leukres.2012.02.030.
  25. Greiner J, Ringhoffer M, Taniguchi M, et al. mRNA expression of leukemia-associated antigens in patients with acute myeloid leukemia for the development of specific immunotherapies. Int J Cancer. 2004;108(5):704–11. doi: 10.1002/ijc.11623.
  26. Paydas S, Tanriverdi K, Yavuz S, et al. PRAME mRNA Levels in Cases With Acute Leukemia: Clinical Importance and Future Prospects. Am J Hematol. 2005;79(4):257–61.
  27. Gerber JM, Qin L, Kowalski J, et al. Characterization of chronic myeloid leukemia stem cells. Am J Hematol. 2011;86(1):31–7. doi: 10.1002/ajh.21915.
  28. Yong AS, Keyvanfar K, Eniafe R, et al. Hematopoietic stem cells and progenitors of chronic myeloid leukemia express leukemia-associated antigens: implications for the graft-versus-leukemia effect and peptide vaccine-based immunotherapy. Leukemia. 2008;22(9):1721–7. doi: 10.1038/leu.2008.161.
  29. Steger B, Milosevic S, Doessinger G, et al. CD4+ and CD8+ T-cell reactions against leukemia-associated- or minor-histocompatibility-antigens in AML-patients after allogeneic SCT. Immunobiology. 2014;219(4):247–60. doi: 10.1016/j.imbio.2013.10.008.
  30. Doolan P, Clynes M, Kennedy S, et al. Prevalence and prognostic and predictive relevance of PRAME in breast cancer. Breast Cancer Res Treat. 2008;109(2):359–65. doi: 10.1007/s10549-007-9643-3.
  31. Altvater B, Kailayangiri S, Theimann N, et al. Common Ewing sarcoma-associated antigens fail to induce natural T cell responses in both patients and healthy individual. Cancer Immunol Immunother. 2014;63(10):1047–60. doi: 10.1007/s00262-014-1574-3.
  32. Hughes A, Clarson J, Tang C, et al. CML patients with deep molecular responses to TKI have restored immune effectors and decreased PD-1 and immune suppressors. Blood. 2017;129(9):1166–1176. doi: 10.1182/blood-2016-10-745992.
  33. Schmitt M, Li L, Giannopoulos K, et al. Chronic myeloid leukemia cells express tumor-associated antigens eliciting specific CD8+ T-cell responses and are lacking costimulatory molecules. Exp Hematol. 2006;34(12):1709–19. doi: 10.1016/j.exphem.2006.07.009.
  34. Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G. Immunological aspects of cancer chemotherapy. Nat Rev Immunol. 2008;8(1):59–73. doi: 10.1038/nri2216.
  35. Morandi F, Chiesa S, Bocca P, et al. Tumor mRNA–Transfected Dendritic Cells Stimulate the Generation of CTL That Recognize Neuroblastoma-Associated Antigens and Kill Tumor Cells: Immunotherapeutic Implications. Neoplasia. 2006;8(10):833–42. doi: 10.1593/neo.06415.
  36. Winkler C, Steingrube DS, Altermann W, et al. Hodgkin’s lymphoma RNA-transfected dendritic cells induce cancer/testis antigen-specific immune responses. Cancer Immunol Immunother. 2012;61(10):1769–79. doi: 10.1007/s00262-012-1239-z.
  37. Gerdemann U, Katari U, Christin AS, et al. Cytotoxic T Lymphocytes Simultaneously Targeting Multiple Tumor-associated Antigens to Treat EBV Negative Lymphoma. Mol Ther. 2011;19(12):2258–68. doi: 10.1038/mt.2011.167.
  38. Mohamed YS, Bashawri LA, Vatte C, et al. The in vitro generation of multi-tumor antigen-specific cytotoxic T cell clones: Candidates for leukemia adoptive immunotherapy following allogeneic stem cell transplantation. Mol Immunol. 2016;77:79–88. doi: 10.1016/j.molimm.2016.07.012.
  39. Li L, Schmitt A, Reinhardt P, et al. Reconstitution of CD40 and CD80 in dendritic cells generated from blasts of patients with acute myeloid leukemia. Cancer Immun. 2003;3:8.
  40. Li L, Reinhardt P, Schmitt A, et al. Dendritic cells generated from acute myeloid leukemia (AML) blasts maintain the expression of immunogenic leukemia associated antigens. Cancer Immunol Immunother. 2005;54(7):685–93. doi: 10.1007/s00262-004-0631-8.
  41. Li L, Giannopoulos K, Reinhardt P, et al. Immunotherapy for patients with acute myeloid leukemia using autologous dendritic cells generated from leukemic blasts. Int J Oncol. 2006;28(4):855–61. doi: 10.3892/ijo.28.4.855.
  42. Altvater B, Pscherer S, Landmeier S, et al. Activated human γδ T cells induce peptide-specific CD8+ T-cell responses to tumor-associated self-antigens. Cancer Immunol Immunother. 2012;61(3):385–96. doi: 10.1007/s00262-011-1111-6.
  43. Matsushita M, Ikeda H, Kizaki M, et al. Quantitative monitoring of the PRAME gene for the detection of minimal residual disease in leukaemia. Br J Haematol. 2001;112(4):916–26. doi: 10.1046/j.1365-2141.2001.02670.x.
  44. van den Ancker W, Ruben JM, Westers TM, et al. Priming of PRAME- and WT1-specific CD8+ T cells in healthy donors but not in AML patients in complete remission. Oncoimmunology. 2013;2(4):e23971. doi: 10.4161/onci.23971.
  45. Yao Y, Zhou J, Wang L, et al. Increased PRAME-Specific CTL Killing of Acute Myeloid Leukemia Cells by Either a Novel Histone Deacetylase Inhibitor Chidamide Alone or Combined Treatment with Decitabine. PLoS One. 2013;8(8):e70522. doi: 10.1371/journal.pone.0070522.
  46. Zhang M, Graor H, Visioni A, et al. T Cells Derived From Human Melanoma Draining Lymph Nodes Mediate Melanoma-specific Antitumor Responses In Vitro and In Vivo in Human Melanoma Xenograft Model. J Immunother. 2015;38(6):229–38. doi: 10.1097/CJI.0000000000000078.
  47. Yan M, Himoudi N, Basu BP, et al. Increased PRAME antigen-specific killing of malignant cell lines by low avidity CTL clones, following treatment with 5-Aza-20-Deoxycytidine. Cancer Immunol Immunother. 2011;60(9):1243–55. doi: 10.1007/s00262-011-1024-4.
  48. Quintarelli C, Dotti G, De Angelis B, et al. Cytotoxic T lymphocytes directed to the preferentially expressed antigen of melanoma (PRAME) target chronic myeloid leukemia. Blood. 2008;112(5):1876–85. doi: 10.1182/blood-2008-04-150045.
  49. Amir AL, van der Steen DM, van Loenen MM, et al. PRAME-Specific Allo-HLA–Restricted T Cells with Potent Antitumor Reactivity Useful for Therapeutic T-Cell Receptor Gene Transfer. Clin Cancer Res. 2011;17(17):5615–25. doi: 10.1158/1078-0432.CCR-11-1066.
  50. van Loenen MM, de Boer R, Hagedoorn RS, et al. Multi-cistronic vector encoding optimized safety switch for adoptive therapy with T-cell receptor-modified T cells. Gene Ther. 2013;20(8):861–7. doi: 10.1038/gt.2013.4.
  51. Spel L, Boelens JJ, van der Steen DM, et al. Natural killer cells facilitate PRAME-specific T-cell reactivity against neuroblastoma. Oncotarget. 2015;6(34):35770–81. doi: 10.18632/oncotarget.5657.
  52. Weber JS, Vogelzang NJ, Ernstoff MS, et al. A Phase 1 Study of a Vaccine Targeting Preferentially Expressed Antigen in Melanoma and Prostate-specific Membrane Antigen in Patients With Advanced Solid Tumors. J Immunother. 2011;34(7):556–67. doi: 10.1097/CJI.0b013e3182280db1.
  53. Garcon N, Silvano J, Kuper CF, et al. Non-clinical safety evaluation of repeated intramuscular administration of the AS15 immunostimulant combined with various antigens in rabbits and cynomolgus monkeys. J Appl Toxicol. 2016;36(2):238–56. doi: 10.1002/jat.3167.
  54. Gerard C, Baudson N, Ory T, et al. A Comprehensive Preclinical Model Evaluating the Recombinant PRAME Antigen Combined With the AS15 Immunostimulant to Fight Against PRAME-expressing Tumors. J Immunother. 2015;38(8):311–20. doi: 10.1097/CJI.0000000000000095.
  55. Pujol JL, De Pas T, Rittmeyer A, et al. Safety and Immunogenicity of the PRAME Cancer Immunotherapeutic in Patients with Resected Non–Small Cell Lung Cancer: A Phase I Dose Escalation Study. J Thorac Oncol. 2016;11(12):2208–17. doi: 10.1016/j.jtho.2016.08.120.
  56. Gutzmer R, Rivoltini L, Levchenko E, et al. Safety and immunogenicity of the PRAME cancer immunotherapeutic in metastatic melanoma: results of a phase I dose escalation study. ESMO Open. 2016;1(4):e000068.
  57. Blais N, Martin D, Palmantier RM. Vaccin. Patent PCT/EP2008/050290. Available from: https://patentscope.wipo.int/search/ru/detail.jsf?docId=WO2008087102&redirectedID=true. (accessed 08.12.2017).
  58. Chang AY, Dao T, Gejman RS, et al. A therapeutic T cell receptor mimic antibody targets tumor-associated PRAME peptide/HLA-I antigens. J Clin Invest. 2017;127(7):2705–18. doi: 10.1172/JCI92335.
  59. Pankov D, Sjostrom L, Kalidindi T, et al. In vivo immuno-targeting of an extracellular epitope of membrane bound preferentially expressed antigen in melanoma (PRAME). Oncotarget. 2017;8(39):65917–31. doi: 10.18632/oncotarget.19579.
  60. Финашутина Ю.П., Мисюрин А.В., Ахлынина Т.В. и др. Получение рекомбинантного раково-тестикулярного белка PRAME и моноклональных антител к нему. Российский биотерапевтический журнал. 2015;14(3):29–36.[Finashutina YuP, Misyurin AV, Akhlynina TV, et al. Production of recombinant PRAME cancer testis antigen and its specific monoclonal antibodies. Rossiiskii bioterapevticheskii zhurnal. 2015;14(3):29–36. (In Russ)]
  61. Мисюрин А.В., Финашутина Ю.П. Антигенная композиция и ее терапевтическое применение для профилактики и лечения онкологических заболеваний, рекомбинантная плазмидная ДНК, обеспечивающая синтез гибридного белка, а также способ получения белка. Патент РФ на изобретение № 2590701/13.04.29. Бюл. № 19. Доступно по: http://www.fips.ru/cdfi/fips.dll/en?ty=29&docid=2590701. Ссылка активна на 08.12.2017.[Misyurin AV, Finashutina YuP. Antigennaya kompozitsiya i ee terapevticheskoe primenenie dlya profilaktiki i lecheniya onkologicheskikh zabolevanii, rekombinantnaya plazmidnaya DNK, obespechivayushchaya sintez gibridnogo belka, a takzhe sposob polucheniya belka. Patent RUS No. 2590701/13.04.29. Byul. No. 19. Available from: http://www.fips.ru/cdfi/fips.dll/en?ty=29&docid=2590701. (accessed 08.12.2017) (In Russ)]
  62. Лыжко Н.А., Ахлынина Т.В., Мисюрин А.В. и др. Повышение уровня экспрессии гена PRAME в опухолевых клетках сопровождается локализацией белка в клеточном ядре. Российский биотерапевтический журнал. 2015;14(4):19–30.[Lyzhko NA, Ahlynina TV, Misyurin AV, et al. The increased PRAME expression in cancer cells is associated with deposit of the protein in cell nucleus. Rossiiskii bioterapevticheskii zhurnal. 2015;14(4):19–30. (In Russ)]
  63. Лыжко Н.А., Мисюрин В.А., Финашутина Ю.П. и др. Проявление цитостатического эффекта моноклональных антител к белку PRAME. Российский биотерапевтический журнал. 2016;15(4):53–8. doi: 10.17650/1726-9784-2016-15-4-53-58.[Lyzhko NA, Misyurin VA, Finashutina YuP, et al. Development of cytostatic effect of monoclonal antibodies to the protein PRAME. Rossiiskii bioterapevticheskii zhurnal. 2016;15(4):53–8. doi: 10.17650/1726-9784-2016-15-4-53-58. (In Russ)]
  64. Dillman RO. Cancer immunotherapy. Cancer Biother Radiopharm 2011;26:1–64. doi: 10.1089/cbr.2010.0902.
  65. Theisen D, Murphy K. The role of cDC1s in vivo: CD8 T cell priming through cross-presentation. F1000Res. 2017;6:98. doi: 10.12688/f1000research.9997.1.
  66. Epping MT, Wang L, Edel MJ, et al. The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling. Cell. 2005;122(6):835–47. doi: 10.1016/j.cell.2005.07.003.
  67. De Carvalho DD, Mello BP, Pereira WO, Amarante-Mendes GP. PRAME/EZH2-mediated regulation of TRAIL: a new target for cancer therapy. Curr Mil Med. 2013;13(2):296–304. doi: 10.2174/1566524011313020006.
  68. Мисюрин В.А. Клиническое значение экспрессии гена PRAME при онкогематологических заболеваниях. Клиническая онкогематология. 2018;11(1):26–33. doi: 10.21320/2500-2139-2018-11-1-26-33.[Misyurin VA. Clinical Significance of the PRAME Gene Expression in Oncohematological Diseases. Clinical oncohematology.2018;11(1):26–33. doi: 10.21320/2500-2139-2018-11-1-26-33. (In Russ)]