Analysis Results of the Regional Registry of Patients with Diffuse Large B-cell Lymphoma: Risk Factors and Chemo-Immunotherapy Issues

KD Kaplanov1,2, NP Volkov1, TYu Klitochenko1, IV Matveeva1, AL Shipaeva1, MN Shirokova1, NV Davydova3, EG Gemdzhian4, DS Abramov5, DM Konovalov5, GL Snigur2, NA Red’kina1

1 Volgograd Regional Clinical Oncology Dispensary No. 1, 78 Zemlyachki str., Volgograd, Russian Federation, 400138

2 Volgograd Medical Scientific Center, 1G Rokossovskogo str., Volgograd, Russian Federation, 400081

3 Consultation and Diagnosis Polyclinic No. 2, 114A Angarskaya str., Volgograd, Russian Federation, 400081

4 National Medical Hematology Research Center, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

5 Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela str., Moscow, Russian Federation, 117997

For correspondence: Kamil’ Daniyalovich Kaplanov, MD, PhD, 78 Zemlyachki str., Volgograd, Russian Federation, 400138; e-mail: kamilos@mail.ru

For citation: Kaplanov KD, Volkov NP, Klitochenko TYu, et al. Analysis Results of the Regional Registry of Patients with Diffuse Large B-cell Lymphoma: Risk Factors and Chemo-Immunotherapy Issues. Clinical oncohematology. 2019;12(2):154–64.

DOI: 10.21320/2500-2139-2019-12-2-154-164


ABSTRACT

Background & Aims. At least one third of patients with diffuse large B-cell lymphoma (DLBCL) are resistant to first-line therapy. R-CHOP chemo-immunotherapy does not yield acceptable results in high-risk patients. Effectiveness of options based either on increasing the dose intensity or on including auto-HSCT into the first-line therapy was not supported by the results of controlled studies. With this background the present study focuses on options, issues and failures of first-line on the basis of long-term follow-up of DLBCL patient population in the Volgograd Region.

Materials & Methods. From 2004 to 2017 the population-based registry of the Hematology Department in the Volgograd Regional Clinical Oncology Dispensary included all 492 primary DLBCL patients: 235 (48 %) men and 257 (52 %) women aged 18 to 88 years. Mean and median age was 59 and 61 years, respectively. CHOP therapy was administered to 206 (42 %) patients, and 223 (45 %) patients received R-CHOP. Other regimens including NHL-BFM-90 and R-DA-EPOCH were used only in 63 (13 %) patients. Second- and third-line therapies were administered to 145 (30 %) and 54 (11 %) patients, respectively. Value of the International Prognostic Index (IPI) and immunomorphologic characteristics was determined by multivariate Cox regression analysis. Pharmacoeconomic aspect of first-line therapy failures was analyzed using Markov model.

Results. Improvement of DLBCL therapy effects with the use of R-CHOP chemo-immunotherapy is particularly obvious in the groups with favorable and intermediate prognosis with 5-year overall survival (OS) of 90 % and 69 %, respectively. R-CHOP results are not considered to be satisfactory in the high-risk group: 5-year OS was 38 %. Pharmacoeconomic analysis proves the advantage of chemo-immunotherapy strategy in comparison with the period before rituximab era in terms of the life years gained (LYG) and the incremental cost-effectiveness ratio (ICER). With respect to immunotherapy effects the most significant immunomorphologic parameter is bcl-2 tumor cell expression. In the group of patients with bcl-2 > 50 % 5-year OS was 61 % with median of 88 months, event-free survival (EFS) was 52 % with median of 62 months. In the group without bcl-2 expression above the threshold 5-year OS and EFS were 88 % and 75 %, respectively, medians were not achieved. With c-myc and bcl-2 coexpression EFS and OS appeared to be even worse: 5-year EFS was 29 % with median of 6 months, and 5-year OS was 31 % with median of 15 months.

Conclusion. The analysis of actual practice demonstrates the need for new options of first-line therapy for DLBCL high-risk patients and also for introducing new discriminating prognostic factors which include the IPI-independent ones.

Keywords: diffuse large B-cell lymphoma, R-CHOP, chemoimmunotherapy, survival, pharmacoeconomics, Markov model, life years gained (LYG), incremental cost-effectiveness ratio (ICER).

Received: July 16, 2018

Accepted: January 10, 2019

Read in PDF 


REFERENCES

  1. Armitage JO, Weisenburger DD. New approach to classifying non-Hodgkin’s lymphomas: clinical features of the major histologic subtypes. Non-Hodgkin’s Lymphoma Classification Project. J Clin Oncol. 1998;16(8):2780–95. doi: 10.1200/JCO.1998.16.8.2780.

  2. Smith A, Howell D, Patmore R, et al. Incidence of haematological malignancy by sub-type: a report from the Haematological Malignancy Research Network. Br J Cancer. 2011;105(11):1684–92. doi: 10.1038/bjc.2011.450.

  3. Cunningham D, Hawkes EA, Jack A, et al. Rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisolone in patients with newly diagnosed diffuse large B-cell non-Hodgkin lymphoma: a phase 3 comparison of dose intensification with 14-day versus 21-day cycles. Lancet. 2013;381(9880):1817–26. doi: 10.1016/S0140-6736(13)60313-X.

  4. Ziepert, M, Hasenclever D, Kuhnt E, et al. Standard international prognostic index remains a valid predictor of outcome for patients with aggressive CD20+ B-cell lymphoma in the rituximab era. J Clin Oncol. 2010;28(14):2373–80. doi: 10.1200/JCO.2009.26.2493.

  5. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90. doi: 10.1182/blood-2016-01-643569.

  6. Sehn LH, Gascoyne RD. Diffuse large B-cell lymphoma: optimizing outcome in the context of clinical and biologic heterogeneity. Blood. 2015;125(1):22–32. doi: 10.1182/blood-2014-05-577189.

  7. Tilly H, Gomes da Silva M, Vitolo U, et al. Diffuse large B-cell lymphoma (DLBCL): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(Suppl 5):v116–25. doi: 10.1093/annonc/mdv304.

  8. Prochazka KT, Melchardt T, Posch F, et al. NCCN-IPI score-independent prognostic potential of pretreatment uric acid levels for clinical outcome of diffuse large B-cell lymphoma patients. Br J Cancer. 2016;115(10):1264–72. doi: 10.1038/bjc.2016.325.

  9. Montalban C, Diaz-Lopez A, Dlouhy I, et al. Validation of the NCCN-IPI for diffuse large B-cell lymphoma (DLBCL): the addition of beta2-microglobulin yields a more accurate GELTAMO-IPI. Br J Haematol. 2017;176(6):918–28. doi: 10.1111/bjh.14489.

  10. Wight J, Chong G, Grigg A, et al. Prognostication of diffuse large B-cell lymphoma in the molecular era: moving beyond the IPI. Blood. 2018;32(5):400–15. doi: 10.1016/j.blre.2018.03.005.

  11. Khor S, Beca J, Krahm M, et al. Real world costs and cost-effectiveness of Rituximab for diffuse large B-cell lymphoma patients: A population-based analysis. BMC Cancer. 2014;14(1):586. doi: 10.1186/1471-2407-14-586.

  12. Van Keep M, Gairy K, Seshagiri D, et al. Cost-effectiveness analysis of bortezomib in combination with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone (VR-CAP) in patients with previously untreated mantle cell lymphoma. BMC Cancer. 2016;16(1):598. doi: 10.1186/s12885-016-2633-2.

  13. Капланов К.Д., Шипаева А.Л., Васильева В.А. и др. Международный прогностический индекс при распространенных стадиях лимфомы Ходжкина в условиях современной терапии. Клиническая онкогематология. 2013;6(3):294–302.

    [Kaplanov KD, Shipaeva AL, Vasil’eva VA, et al. International prognostic score in advanced Hodgkin’s lymphoma. Klinicheskaya onkogematologiya. 2013;6(3):294–302. (In Russ)]

  14. Капланов К.Д., Шипаева А.Л., Васильева В.А. и др. Эффективность программ химиотерапии первой линии при различных стадиях лимфомы Ходжкина. Клиническая онкогематология. 2012;5(1):22–9.

    [Kaplanov KD, Shipaeva AL, Vasil’eva VA, et al. Efficacy of first line chemotherapy programs for different stages of Hodgkin’s lymphomas. Klinicheskaya onkogematologiya. 2012;5(1):22–9. (In Russ)]

  15. Капланов К.Д., Волков Н.П., Клиточенко Т.Ю. и др. Первая линия терапии лимфомы из клеток зоны мантии: анализ эффективности и клинико-экономическая оценка. Клиническая онкогематология. 2018;11(2):150–9. doi: 10.21320/2500-2139-2018-11-2-150-159.

    [Kaplanov KD, Volkov NP, Klitochenko TYu, et al. First-Line Treatment of Mantle-Cell Lymphoma: Analysis of Effectiveness and Cost-Effectiveness. Clinical oncohematology. 2018;11(2):150–9. doi: 10.21320/2500-2139-2018-11-2-150-159. (In Russ)]

  16. Abner EL, Charnigo RJ, Kryscio RJ, et al. Markov chains and semi-Markov models in time-to-event analysis. J Biom Biostat. 2013;S1:e001. doi: 10.4172/2155-6180.S1-e001.

  17. Wyndham W, Jung sin-Ho, Brandelyn P, et al. Phase III Randomized Study of R-CHOP Versus DA-EPOCH-R and Molecular Analysis of Untreated Diffuse Large B-Cell Lymphoma: CALGB/Alliance 50303. Blood. 2016;128:469.

  18. The International Non-Hodgkin’s Lymphoma Prognostic Factors Project. A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med. 1993;329(14):987–94. doi: 10.1056/NEJM199309303291402.

  19. Wang HI, Smith A, Aas E, et al. Treatment cost and life expectancy of diffuse large B-cell lymphoma (DLBCL): a discrete event simulation model on a UK population-based observational cohort. Eur J Health Econ. 2017;18(2):255–67. doi: 10.1007/s10198-016-0775-4.

  20. Gisselbrecht C, Glass B, Mounier N, et al. Salvage regimens with autologous transplantation for relapsed large B-cell lymphoma in the rituximab era. J Clin Oncol. 2010; 28(27):4184–90. doi: 10.1200/JCO.2010.28.1618.

  21. Gisselbrecht C, Schmitz N, Mounier N, et al. Rituximab maintenance therapy after autologous stem-cell transplantation in patients with relapsed CD20(+) diffuse large B-cell lymphoma: final analysis of the collaborative trial in relapsed aggressive lymphoma. J Clin Oncol. 2012;30(36):4462–9. doi: 10.1200/JCO.2012.41.9416.

  22. Crump M, Neelapu SS, Farooq U, et al. Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood. 2017;130(16):1800–8. doi: 10.1182/blood-2017-11-817775.

  23. Sehn LH, Berry B, Chhanabhai M, et al. The revised International Prognostic Index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B-cell lymphoma treated with R-CHOP. Blood. 2007;109(5):1857–61. doi: 10.1182/blood-2006-08-038257.

  24. Gang AO, Pedersen M, d’Amore F, et al. A clinically based prognostic index for diffuse large B-cell lymphoma with a cut-off at 70 years of age significantly improves prognostic stratification: population-based analysis from the Danish Lymphoma Registry. Leuk Lymphoma. 2015;56(9):2556–62. doi: 10.3109/10428194.2015.1010078.

  25. Zhou Z, Sehn LH, Rademaker AW, et al. An enhanced International Prognostic Index (NCCN-IPI) for patients with diffuse large B-cell lymphoma treated in the rituximab era. Blood 2014;123(6):837–42. doi: 10.1182/blood-2014-06-583476.

  26. Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in multiple regression: a bad idea. Stat Med. 2006;25(1):127–41. doi: 10.1002/sim.2331.

  27. Harrell FE. Regression modeling strategies. New York: Springer-Verlag; 2001. doi: 10.1007/978-1-4757-3462-1.

  28. Biccler J, Eloranta S, de Nully Brown P, et al. Simplicity at the cost of predictive accuracy in diffuse large B-cell lymphoma: a critical assessment of the R-IPI, IPI, and NCCN-IPI. Cancer Med. 2018;7(1):114–22. doi: 10.1002/cam4.1271.

  29. Johnson NA, Slack GW, Savage KJ, et al. Concurrent expression of MYC and BCL2 in diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol. 2012;30(28):3452–9. doi: 10.1200/JCO.2011.41.0985.

  30. Schneider KMС, Banks PM, Collie AM, et al. Dual expression of MYC and BCL2 proteins predicts worse outcomes in diffuse large B-cell lymphoma. Leuk Lymphoma. 2016;57(7):1640–8. doi: 10.3109/10428194.2015.1101099.

  31. Barrans SL, Evans PA, O’Connor SJ, et al. The t(14;18) is associated with germinal center-derived diffuse large B-cell lymphoma and is a strong predictor of outcome. Clin Cancer Res. 2003;9(6):2133–9.

  32. Tsuyama N, Sakata S, Baba S, et al. BCL2 expression in DLBCL: reappraisal of immunohistochemistry with new criteria for therapeutic biomarker evaluation. Blood. 2017;130(4):489–500. doi: 10.1182/blood-2016-12-759621.

  33. Burton C, Barrans S, Ahmed S, et al. Cross-Platform validation of gene expression profiling (GEP) based cell of origin classification in a clinical laboratory setting. Hematol Oncol. 2017;35(S2):107. doi: 10.1002/hon.2437_96.

Clinical Efficacy of Chelation Therapy in Patients with Low-Risk Myelodysplastic Syndrome

SV Gritsaev, II Kostroma, AA Zhernyakova

Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

For correspondence: Sergei Vasil’evich Gritsaev, MD, PhD, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024; Tel.: +7(812)717-54-68; e-mail: gritsaevsv@mail.ru

For citation: Gritsaev SV, Kostroma II, Zhernyakova AA. Clinical Efficacy of Chelation Therapy in Patients with Low-Risk Myelodysplastic Syndrome. Clinical oncohematology. 2019;12(2):120–4.

DOI: 10.21320/2500-2139-2019-12-2-120-124


ABSTRACT

The present literature review provides evidence that in patients with low-risk myelodysplastic syndrome and transfusion dependence blood parameters and survival rates can be improved by administration of iron chelators. Dose adequacy and therapy duration underlie clinical efficacy of chelators. Toxicity can be reduced by administrating a new formula of deferasirox that does not need to be dissolved in liquid before consuming.

Keywords: myelodysplastic syndrome, low risk, transfusion dependence, iron chelators, survival.

Received: August 20, 2018

Accepted: February 2, 2019

Read in PDF 


REFERENCES

  1. Greenberg P, Cox C, LeBeau MM, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89(6):2079–88.

  2. Bennett JM. Consensus statement on iron overload in myelodysplastic syndromes. Am J Hematol. 2008;83(11):858–61. doi: 10.1002/ajh.21269.

  3. Malcovati L, Porta MG, Pascutto C, et al. Prognostic factors and life expectancy in myelodysplastic syndromes classified according to WHO criteria: a basis for clinical decision making. J Clin Oncol. 2005;23(30):7594–603. doi: 1200/JCO.2005.01.7038.

  4. Steensma DP, Bennett JM. The myelodysplastic syndromes: Diagnosis and treatment. Mayo Clin Proc. 2006;81(1):104–30. doi: 10.4065/81.1.104.

  5. Mitchell M, Gore SD, Zeidan AM. Iron chelation therapy in myelodysplastic syndromes: where do we stand? Expert Rev Hematol. 2013;6(4):397–410. doi: 10.1586/17474086.2013.814456.

  6. Gattermann N, Jarisch A, Schlag R, et al. Deferasirox treatment of iron-overloaded chelation-naive and prechelated patients with myelodysplastic syndromes in medical practice: results from the observational studies eXtend and eXjange. Eur J Haematol. 2012;88(3):260–8. doi: 10.1111/j.1600-0609.2011.01726.x.

  7. List AF, Baer MR, Steensma DP, et al. Deferasirox reduces serum ferritin and labile plasma iron in RBC transfusion-dependent patients with myelodysplastic syndrome. J Clin Oncol. 2012;30(17):2134–9. doi: 10.1200/JCO.2010.34.1222.

  8. Greenberg PL, Koller CA, Cabantchik ZI, et al. Prospective assessment of effects on iron-overload parameters of deferasirox therapy in patients with myelodysplastic syndromes. Leuk Res. 2010;34(12):1560–5. doi: 10.1016/j.leukres.2010.06.013.

  9. Remacha AF, Arrizabalaga B, Del Canizo C, et al. Iron overload and chelation therapy in patients with low-risk myelodysplastic syndromes with transfusion requirements. Ann Hematol. 2010;89(2):147–54. doi: 10.1007/s00277-009-0794-7.

  10. Rose C, Brechignac S, Vassilief D, et al. Does iron chelation therapy improve survival in regularly transfused lower risk MDS patients? A multicenter study by the GFM (Groupe Francophone des Myelodysplasies). Leuk Res. 2010;34(7):864–70. doi: 10.1016/j.leukres.2009.12.004.

  11. Malcovati L. Impact of transfusion dependency and secondary iron overload on the survival of patients with myelodysplastic syndromes. Leuk Res. 2007;31(Suppl 3):S2–6. doi: 10.1016/S0145-2126(07)70459-9.

  12. Kohgo Y, Ikuta K, Ohtake T, et al. Body iron metabolism and pathophysiology of iron overload. Int J Hematol. 2008;88(1):7–15. doi: 10.1007/s12185-008-0120-5.

  13. Andrews NC. Closing the iron gate. N Engl J Med. 2012;366(4):376–7. doi: 10.1056/NEJMcibr1112780.

  14. Gardenghi S, Marongiu MF, Ramos P, et al. Ineffective erythropoiesis in beta-thalassemia is characterized by increased iron absorption mediated by down-regulation of hepcidin and up-regulation of ferroportin. 2007;109(11):5027–35. doi: 10.1182/blood-2006-09-048868.

  15. Andrews NC. Disorders of iron metabolism. N Engl J Med. 1999;341(26):1986–95. doi: 10.1056/NEJM199912233412607.

  16. Takatoku M, Uchiyama T, Okamoto S, et al. Retrospective nationwide survey of Japanese patients with transfusion-dependent MDS and aplastic anemia highlights the negative impact of iron overload on morbidity/mortality. Eur J Haematol. 2007;78(6):487–94. doi: 10.1111/j.1600-0609.2007.00842.x.

  17. Gattermann N. Iron overload in myelodysplastic syndromes. Int J Hematol. 2018;107(1):55–63. doi: 10.1007/s12185-017-2367-1.

  18. Lyons R, Marek B, Paleyc C, et al. Relation between chelation and clinical outcomes in lower-risk patients with myelodysplastic syndromes: Registry analysis at 5 years. Leuk Res. 2017;56:88–95. doi: 10.1016/j.leukres.2017.01.033.

  19. Leitch H, Parmar A, Wells R, et al. Overall survival in lower IPSS risk MDS by receipt of iron chelation therapy, adjusting for patient-related factors and measuring from time of first red blood cell transfusion dependence: an MDS-CAN analysis. Br J Haematol. 2017;179(1):83–97. doi: 10.1111/bjh.14825.

  20. Mainous A, Tanner R, Hulihan M, et al. The impact of chelation therapy on survival in transfusional iron overload: a meta-analysis of myelodysplastic syndrome. Br J Haematol. 2014;167(5):720–3. doi: 10.1111/bjh.13053.

  21. Abraham I, Yami M, Yun S et al. Survival outcomes in iron chelated and non-chelated patients with lower-risk myelodysplastic syndromes: Review and pooled analysis of observational studies. Leuk Res. 2017;57:104–8. doi: 10.1016/j.leukres.2017.03.007.

  22. Gattermann N, Finelli C, Della Porta M, et al. Hematologic responses to deferasirox therapy in transfusion-dependent patients with myelodysplastic syndromes. Haematologica. 2012;97(9):1364–71. doi: 10.3324/haematol.2011.048546.

  23. Pullarkat V. Objectives of iron chelation therapy in myelodysplastic syndromes: more than meets the eye? Blood. 2009;114(26):5251–5. doi: 10.1182/blood-2009-07-234062.

  24. Zeidan AM, Hendrick F, Friedmann E, et al. Deferasirox therapy is associated with reduced mortality risk in a medicare population with myelodysplastic syndromes. J Comp Eff Res. 2015;4(4):327–40. doi: 10.2217/cer.15.20.

  25. Improta S, Villa MR, Volpe A, et al. Transfusion-dependent low-risk myelodysplastic patients receiving deferasirox: Long-term follow-up. Oncol Lett. 2013;6(6):1774–8. doi: 10.3892/ol.2013.1617.

  26. Breccia M, Voso M, Spiriti M, et al. An increase in hemoglobin, platelets and white blood cells levels by iron chelation as single treatment in multitransfused patients with myelodysplastic syndromes: clinical evidences and possible biological mechanisms. Ann Hematol. 2015;94(5):771–7. doi: 10.1007/s00277-015-2341-z.

  27. Delforge M, Selleslag D, Beguin Y, et al. Adequate iron chelation therapy for at least six months improves survival in transfusion-dependent patients with lower risk myelodysplastic syndromes. Leuk Res. 2014;38(5):557–63. doi: 10.1016/j.leukres.2014.02.003.

  28. Cermak J, Jonasova A, Vondrakova J, et al. A comparative study of deferasirox and deferiprone in the treatment of iron overload in patients with myelodysplastic syndromes. Leuk Res. 2013;37(12):1612–5. doi: 10.1016/j.leukres.2013.07.021.

  29. Nolte F, Angelucci E, Breccia M, et al. Updated recommendations on the management of gastrointestinal disturbances during iron chelation therapy with deferasirox in transfusion dependent patients with myelodysplastic syndrome – emphasis on optimized dosing schedules and new formulations. Leuk Res. 2015;39(10):1028–33. doi: 10.1016/j.leukres.2015.06.008.

  30. Taher AT, Origa R, Perrotta S, et al. New film-coated tablet formulation of deferasirox is well tolerated in patients with thalassemia or lower-risk MDS: Results of the randomized, phase II ECLIPSE study. Am J Hematol. 2017;92(5):420–8. doi: 10.1002/ajh.24668.

  31. Джадену® (инструкция по медицинскому применению). Швейцария: Novartis pharma, AG. Доступно по: https://www.vidal.ru/drugs/dzhadenu. Ссылка активна на 30.11.2018. [Dzhadenu® (package insert). Switzerland: Novartis pharma, AG. Available from: https://www.vidal.ru/drugs/dzhadenu. (accessed 30.11.2018) (In Russ)]

Epidemiology of Multiple Myeloma in Novosibirsk (Siberian Federal District)

NV Skvortsova1, TI Pospelova1, IB Kovynev1, GS Soldatova2, IN Nechunaeva3

1 Novosibirsk State Medical University, 52 Krasnyi pr-t, Novosibirsk, Russian Federation, 630091

2 Novosibirsk National Research State University, 2 Pirogova str., Novosibirsk, Russian Federation, 630090

3 Municipal Clinical Hospital No. 2 of Novosibirsk Region, Center of Hematology, 21 Polzunov str., Novosibirsk, Russian Federation, 630051

For correspondence: Nataliya Valer’evna Skvortsova, MD, PhD, 52 Krasnyi pr-t, Novosibirsk, Russian Federation, 630091; Tel.: +7(905)955-59-91; e-mail: nata_sk78@mail.ru.

For citation: Skvortsova NV, Pospelova TI, Kovynev IB, et al. Epidemiology of Multiple Myeloma in Novosibirsk (Siberian Federal District). Clinical oncohematology. 2019;12(1):86–94.

DOI: 10.21320/2500-2139-2019-12-1-86-94


ABSTRACT

Aim. To analyze major epidemiological parameters of multiple myeloma, i.e. registered incidence, prevalence, mortality, and survival in Novosibirsk, megalopolis in Siberian Federal District.

Materials & Methods. The study covered medical records of 335 patients with newly diagnosed multiple myeloma (MM) treated from January 1, 2006 to December 31, 2016 at the Center of Hematology in Novosibirsk. Median age was 67 years (range 30–89), the trial enrolled 218 (65 %) women and 117 (35 %) men.

Results. Over the last decade the mean registered MM incidence in Novosibirsk increased by 1.6 times, and MM prevalence increased by 4.9 times. These parameters correspond to 2.4 and 13.8 per 100,000 population per year, respectively, with the linear trend of growth which demonstrates not only the increased number of patients with newly diagnosed MM, but the increased longevity of them. MM incidence and prevalence parameters are significantly higher in women than in men, which most probably can be accounted for by specific administrative factors in the Novosibirsk region. Yearly mortality of MM patients decreased from 28.3 % to 8.2 % with a negative linear trend over the entire analyzed period, which is most likely to be associated with availability of new drugs and transplantation procedures.

Conclusion. The obtained epidemiological data will enable to plan the provision of timely and effective care for MM patients and to elaborate a system of judicious allocation of costly equipment and drugs.

Keywords: multiple myeloma, epidemiology, registered incidence, prevalence, mortality, survival.

Received: September 24, 2018

Accepted: December 27, 2018

Read in PDF 


REFERENCES

  1. Менделеева Л.П., Вотякова О.М., Покровская О.С. и др. Национальные клинические рекомендации по диагностике и лечению множественной миеломы. Гематология и трансфузиология. 2016;61(1, прил. 2):1–24. doi: 10.18821/0234-5730-2016-61-1(Прил.2).

    [Mendeleeva LP, Votyakova OM, Pokrovskaya OS, et al. National clinical guidelines on diagnosis and treatment of multiple myeloma. Gematologiya i transfuziologiya. 2016;61(1, Suppl 2):1–24. doi: 10.18821/0234-5730-2016-61-1(Прил.2). (In Russ)]

  2. Kyle RA, Rajkumar SV. Epidemiology of the plasma-cell disorders. Best Pract Res Clin Haematol. 2007;20(4):637–64. doi: 10.1016/j.beha.2007.08.001.

  3. Waxman AJ, Mink PJ, Devesa SS, et al. Racial disparities in incidence and outcome in multiple myeloma: a population-based study. Blood. 2010;116(25):5501–6. doi: 10.1182/blood-2010-07-298760.

  4. de Queiroz Crusoe E, Marinho da Silva AM, Agareno J, et al. Multiple myeloma: a rare case in an 8-year-old child. Clin Lymph Myel Leuk. 2015;15(1):e31–3. doi: 10.1016/j.clml.2014.08.004.

  5. Аль-Ради Л.С., Белоусова И.Э., Барях Е.А. и др. Российские клинические рекомендации по диагностике и лечению лимфопролиферативных заболеваний. Современная онкология. 2013;Экстравыпуск:6–102.

    [Al’-Radi LS, Belousova IE, Baryakh EA, et al. Russian clinical guidelines on diagnosis and treatment of lymphoproliferative disorders. Sovremennaya onkologiya. 2013;Special Issue:6–102. (In Russ)]

  6. Ковынев И.Б., Поспелова Т.И., Агеева Т.А. и др. Частота и структура неходжкинских злокачественных лимфом в Новосибирске, НСО и городах Сибирского федерального округа. Бюллетень Сибирского отделения РАМН. 2006;26(4):175–81.

    [Kovynev IB, Pospelova TI, Ageeva TA, et al. Incidence and structure of non-Hodgkin’s malignant lymphomas in Novosibirsk, Novosibirsk Region, and cities of Siberian Federal District. Byulleten’ Sibirskogo otdeleniya RAMN. 2006;26(4):175–81. (In Russ)]

  7. Kazandjian D. Multiple myeloma epidemiology and survival: A unique malignance. Semin Oncol. 2016;43(6):676–81. doi: 10.1053/j.seminoncol.2016.11.004.

  8. Becker N. Epidemiology of multiple myeloma. Rec Res Cancer Res. 2011;183:25–35. doi: 10.1007/978-3-540-85772-3_2.

  9. Jemal A, Siegel R, Ward E, et al. Cancer statistics. CA Cancer J Clin. 2007;57(1):43–66. doi: 10.3322/canjclin.57.1.43.

  10. Ruzafa JC, Merinopoulou E, Baggaley RF, et al. Patient population with multiple myeloma and transitions across different lines of therapy in the USA: an epidemiologic model. Pharmacoepidemiol Drug Saf. 2016;25(8):871–9. doi: 10.1002/pds.3927.

  11. Rosenberg PS, Barker KA, Anderson WF. Future distribution of multiple myeloma in the United States by sex, age, and race/ethnicity. Blood. 2015;125(2):410–2. doi: 10.1182/blood-2014-10-609461.

  12. Yamabe K, Inoue S, Hiroshima C. Epidemiology and burden of multiple myeloma in Japan: a systematic review. Value Health. 2015;18(7):A449. doi: 10.1016/j.jval.2015.09.1129.

  13. Hong J, Lee JH. Recent advances in multiple myeloma: a Korean perspective. Korean J Intern Med. 2016;31(5):820–34. doi: 10.3904/kjim.2015.408.

  14. Chen XC, Chen XZ. Epidemiological differences in haematological malignancies between Europe and China. Lancet Oncol. 2014;15(11):е471–2. doi: 10.1016/S1470-2045(14)70441-3.

  15. Chen JH, Chung CH, Wang YC, et al. Prevalence and mortality-related factors of multiple myeloma in Taiwan. PLoS One. 2016;11(12):e0167227. doi: 10.1371/journal.pone.0167227.

  16. Лучинин А.С., Семочкин С.В., Минаев Н.В. и др. Эпидемиология множественной миеломы по данным анализа популяционного регистра Кировской области. Онкогематология. 2017;12(3):50–6. doi: 10.17650/1818-8346-2017-12-3-50-56.

    [Luchinin AS, Semochkin SV, Minaeva NV, et al. Epidemiology of Multiple Myeloma According to the Кirov Region Population Registers. Oncohematology. 2017;12(3):50–6. doi: 10.17650/1818-8346-2017-12-3-50-56. (In Russ)]

  17. Kristinsson SY, Landgren O, Dickman PW, et al. Patterns of survival in multiple myeloma: a population-based study of patients diagnosed in Sweden from 1973 to 2003. J Clin Oncol. 2007;25(15):1993–9. doi: 10.1200/jco.2006.09.0100.

  18. Brenner H, Gondos A, Pulte D. Recent major improvements in long-term survival of younger patients with multiple myeloma. Blood. 2008;111(5):2521–6. doi: 10.1182/blood-2007-08-104984.

  19. Schaapveld M, Visser O, Siesling S, et al. Improved survival among younger but not among older patients with multiple myeloma in the Netherlands, a population-based study since 1989. Eur J Cancer. 2010;46(1):160–9. doi: 10.1016/j.ejca.2009.07.006.

  20. Kumar SK, Rajkumar SV, Dispenzieri A, et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008;111(5):2516–20. doi: 10.1182/blood-2007-10-116129.

  21. Altekruse SF, Kosary CL, Krapcho M, et al. SEER Cancer Statistics Review. Bethesda, MD: National Cancer Institute; 1975–2007. Available from: http://seer.cancer.gov/csr/1975_2007/ (accessed 6.11.2018).

  22. Каприн А.Д., Старинский В.В., Петрова Г.В. Злокачественные новообразования в России в 2015 г. (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена, 2017. 250 с.

    [Kaprin AD, Starinskii VV, Petrova GV. Zlokachestvennye novoobrazovaniya v Rossii v 2015 g. (zabolevaemost’ i smertnost’). (Malignant neoplasms in Russia in 2015: incidence and mortality.) Moscow: PA Herzen MNIOI Publ.; 2017. 250 p. (In Russ)]

  23. Володичева Е.М., Воробьева Т.В., Пивник А.В. Анализ заболеваемости множественной миеломой в Тульской области. Проблемы гематологии и переливания крови. 2000;4:31–4.

    [Volodicheva EM, Vorob’eva TV, Pivnik AV. Analysis of multiple myeloma incidence in the Tula region. Problemy gematologii i perelivaniya krovi. 2000;4:31–4. (In Russ)]

  24. Капорская Т.С., Киселев И.В., Силин А.П. Анализ заболеваемости множественной миеломой в Иркутской области. Сибирский медицинский журнал. 2006;66(8):65–7.

    [Kaporskaya TS, Kiselev IV, Silin AP. Analysis of multiple myeloma incidence in the Irkutsk region. Sibirskii meditsinskii zhurnal. 2006;66(8):65–7. (In Russ)]

  25. Гильфанова Л.Р., Крисанкова К.А. Новосибирская агломерация: проблемы и перспективы развития. Новая наука: теоретический и практический взгляд. 2017;1(4):116–9.

    [Gil’fanova LR, Krisankova KA. Novosibirsk agglomeration: challenges and prospects for the development. Novaya nauka: teoreticheskii i prakticheskii vzglyad. 2017;1(4):116–9. (In Russ)]

  26. Региональная база статистических данных «Новосибирская область» [электронный документ]. Доступно по: http://www.novosibstat.gks.ru. Ссылка активна на 6.11.2018.

    [Regional statistical database “Novosibirsk region” [Internet]. Available from: http://www.novosibstat.gks.ru. (accessed 6.11.2018) (In Russ)]

  27. Durie BGM, Harousseau J-L, Miguel JS, et al. International uniform response criteria for multiple myeloma. Leukemia. 2006;20(9):1467–73. doi: 10.1038/sj.leu.2404284.

  28. Pulte D, Jansen L, Castro FA, et al. Trends in survival of multiple myeloma patients in Germany and the United States in the first decade of the 21st century. Br J Haematol. 2015;171(2):189–96. doi: 10.1111/bjh.13537.

  29. Лосева М.И., Поспелова Т.И., Гавалова Р.Ф. и др. Полиорганная патология у больных гемобластозами в отдаленном периоде лечения. Терапевтический архив. 1999;71(7):39–42.

    [Loseva MI, Pospelova TI, Gavalova RF, et al. Multiple organ failure in patients with tumors of hematopoietic tissue during long-term follow-up. Terapevticheskii arkhiv. 1999;71(7):39–42. (In Russ)]

Clinical and Hematological Predictors of Response to First-Line Therapy in Patients with Diffuse Large B-Cell Lymphoma

SV Samarina1, EL Nazarova1, NV Minaeva1, EN Zotina1, IV Paramonov1, SV Gritsaev2

1 Kirov Research Institute of Hematology and Transfusiology, 72 Krasnoarmeiskaya str., Kirov, Russian Federation, 610027

2 Russian Research Institute of Hematology and Transfusiology, 16 2-ya Sovetskaya str., Saint Petersburg, Russian Federation, 191024

For correspondence: Svetlana Valer’evna Samarina, 72 Krasnoarmeiskaya str., Kirov, Russian Federation, 610027; e-mail: samarinasv2010@mail.ru

For citation: Samarina SV, Nazarova EL, Minaeva NV, et al. Clinical and Hematological Predictors of Response to First-Line Therapy in Patients with Diffuse Large B-Cell Lymphoma. Clinical oncohematology. 2019;12(1):68–72.

DOI: 10.21320/2500-2139-2019-12-1-68-72


ABSTRACT

Aim. To assess the prognostic value of clinical and hematological parameters used by hematologists for risk stratification in diffuse large B-cell lymphoma (DLBCL), and to justify the need for discovering new prognostic factors.

Methods. The trial included 101 patients (48 men and 53 women) with newly diagnosed DLBCL at the age of 18–80 years (median age 58 years). The patients received R-CHOP as first-line therapy. Depending on their response all patients were stratified into 4 groups: with complete response (CR; n = 58), partial response (PR; n = 15), resistance to first-line therapy (n = 19), and early relapses (ER; n = 9). Median follow-up was 22 months (range 2–120 months).

Results. In terms of age influence on the efficacy of R-СНОР as first-line therapy no significant differences were established in regard to response in patients younger and older than 65 years. Statistically significant differences were observed while analyzing two parameters of International Prognostic Index (IPI; disease stage and extranodal lesions) and B-symptoms in the CR and therapy-resistant groups. With respect to the same parameters no significant differences were found in the CR and ER groups. Median 2-year disease-free survival was not achieved in patients with CR. In patients with PR it was 12 months. Median 2-year overall survival in patients with CR, PR, and ER was not achieved, and in patients with therapy-resistant DLBCL it was 10 months.

Conclusion. Results of the trial confirm prognostic value of factors applied for risk stratification in DLBCL. However, variability of clinical course of the disease, especially with a low IPI score, suggests the need for new prognostic parameters associated with the course of DLBCL.

Keywords: diffuse large B-cell lymphoma, prognosis, induction therapy, survival.

Received: June 5, 2018

Accepted: December 3, 2018

Read in PDF 


REFERENCES

  1. Teras LR, DeSantis CE, Cerhan JR, et al. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA: Cancer J Clin. 2016;66(6):443–59. doi: 10.3322/caac.21357.

  2. Tilly H, Vitolo U, Walewski J, et al. Diffuse large B-cell lymphoma (DLBCL): ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23(Suppl 7):vii78–82. doi: 10.1093/annonc/mds273.

  3. Friedberg JW. Relapsed/refractory diffuse large B-cell lymphoma. Hematology. 2011;2011(1):498–505. doi: 10.1182/asheducation-2011.1.498.

  4. Coiffier B, Sarkozy C. Diffuse large B-cell lymphoma: R-CHOP failure-what to do? Hematology. 2016;2016(1):366–78. doi: 10.1182/asheducation-2016.1.366.

  5. Sant M, Minicozzi P, Mounier M, et al. Survival for haematological malignancies in Europe between 1997 and 2008 by region and age: results of EUROCARE-5, a population-based study. Lancet Oncol. 2014;15(9):931–42. doi: 10.1016/S1470-2045(14)70282-7.

  6. Menard G, Dulong J, Nguyen TT, et al. Lenalidomide treatment restores in vivo T сell activity in relapsed/refractory FL and DLBCL. Blood. 2017;130(Suppl 1):729.

  7. Westin JR, Oki Y, Nastoupil L, et al. Lenalidomide and obinutuzumab with CHOP for newly diagnosed diffuse large B-cell lymphoma: final phase I/II results. Blood. 2017;130(Suppl 1):189.

  8. Петухов А.В., Маркова В.А., Моторин Д.В. и др. Получение CAR T-лимфоцитов, специфичных к CD19, и оценка их функциональной активности in vitro. Клиническая онкогематология. 2018;11(1):1–9. doi: 10.21320/2500-2139-2018-11-1-1-9.

    [Petukhov AV, Markova VA, Motorin DV, et al. Manufacturing of CD19 Specific CAR T-Cells and Evaluation of their Functional Activity in Vitro. Clinical oncohematology. 2018;11(1):1–9. doi: 10.21320/2500-2139-2018-11-1-1-9. (In Russ)]

  9. Sehn LH, Berry B, Chhanabhai M, et al. The revised International Prognostic Index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B-cell lymphoma treated with R-CHOP. Blood. 2007;109(5):1857–61. doi: 10.1182/blood-2006-08-038257.

  10. International Non-Hodgkin’s Lymphoma Prognostic Factors Project. A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med. 1993;329(14):987–94. doi: 10.1056/nejm199309303291402.

  11. Cheson BD, Horning SJ, Coiffier B, et al. Report of an international workshop to standardize response criteria for non Hodgkin’s lymphomas. NCI Sponsored International Working Group. J Clin Oncol. 1999;17(4):1244. doi: 10.1200/jco.1999.17.4.1244.

  12. Cheson BD, Pfistner B, Juweid ME, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007;25(5):579–86. doi: 10.1200/jco.2006.09.2403.

  13. Kurtz D, Scherer F, Jin M, et al. Development of a dynamic model for personalized risk assessment in large B-cell lymphoma. Blood. 2017;130(Suppl 1):826.

  14. Hamadani M, Hari PN, Zhang Y, et al. Early failure of frontline rituximab-containing chemoimmunotherapy in diffuse large B cell lymphoma does not predict futility of autologous hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2014;20(11):1729–36.

  15. Crump M, Kuruvilla J, Couban S, et al. Randomized comparison of gemcitabine, dexamethasone, and cisplatin versus dexamethasone, cytarabine, and cisplatin chemotherapy before autologous stem-cell transplantation for relapsed and refractory aggressive lymphomas: NCIC-CTG LY.12. J Clin Oncol. 2014;32(31):3490–6. doi: 10.1200/jco.2013.53.9593.

  16. Van Den Neste E, Schmitz N, Mounier N, et al. Outcome of patients with relapsed diffuse large B-cell lymphoma who fail second-line salvage regimens in the International CORAL study. Bone Marrow Transplant. 2016;51(1):51–7. doi: 10.1038/bmt.2015.213.

  17. Crump M, Neelapu SS, Farooq U, et al. Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood. 2017;130(16):1800–8. doi: 10.1182/blood-2017-03-769620.

  18. Fang X, Xiu B, Yang Z, et al. The expression and clinical relevance of PD-1, PD-L1, and TP63 in patients with diffuse large B-cell lymphoma. Medicine (Baltimore). 2017;96(15):e6398. doi: 10.1097/MD.0000000000006398.

  19. Ключагина Ю.И., Соколова З.А., Барышникова М.А. Роль рецептора PD1 и его лигандов PDL1 и PDL2 в иммунотерапии опухолей. Онкопедиатрия. 2017;4(1):49–55. doi: 10.15690/onco.v4i1.1684.

    [Klyuchagina YuI, Sokolova ZA, Baryshnikova MA. Role of PD-1 Receptor and Its Ligands PD-L1 and PD-L2 in Cancer Immunotherapy. Onkopediatria. 2017;4(1):49–55. doi: 10.15690/onco.v4i1.1684. (In Russ)]

  20. Hayano A, Komohara Y, Takashima Y, et al. Programmed cell death ligand 1 expression in primary central nervous system lymphomas: a clinicopathological study. Anticancer Res. 2017;37(10):5655–66. doi: 10.21873/anticanres.12001.

  21. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11. doi: 10.1038/35000501.

  22. Alizadeh AA, Gentles AJ, Alencar AJ, et al. Prediction of survival in diffuse large B-cell lymphoma based on the expression of 2 genes reflecting tumor and microenvironment. Blood. 2011;118(5):1350–8. doi: 10.1182/blood-2011-03-345272.

  23. Amin AD, Peters TL, Li L, et al. Diffuse large B-cell lymphoma: can genomics improve treatment options for a curable cancer? Mol Case Stud. 2017;3(3):a001719. doi: 10.1101/mcs.a001719.

Factors Affecting Course and Outcome of Chronic Lymphocytic Leukemia: Data from Hematological Hospitals of Krasnoyarsk Region

VI Bakhtina1,2, IV Demko2, AN Narkevich2, DS Gushchin3

1 Regional Clinical Hospital, 3а Partizana Zheleznyaka Str., Krasnoyarsk, Russian Federation, 660022

2 Professor VF Voyno-Yasenetsky Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka Str., Krasnoyarsk, Russian Federation, 660022

3 Norilsk Inter-District Hospital No. 1, Solnechnyi pr-d, 7a Norilsk, Russian Federation, 663300

For correspondence: Varvara Ivanovna Bakhtina, 1 Partizana Zheleznyaka Str., Krasnoyarsk, Russian Federation, 660022; Tel: +7(923)357-57-77; е-mail: doctor.gem@mail.ru

For citation: Bakhtina VI, Demko IV, Narkevich AN, Gushchin DS. Factors Affecting Course and Outcome of Chronic Lymphocytic Leukemia: Data from Hematological Hospitals of Krasnoyarsk Region. Clinical oncohematology. 2016;9(4):413–419 (In Russ).

DOI: 10.21320/2500-2139-2016-9-4-413-419


ABSTRACT

Background & Aims. B-cellular chronic lymphocytic leukemia (CLL) is a disease with heterogeneous clinical manifestations and biological characteristics. The age of 70 % of patients is more than 65 years by the date of the diagnosis; most of them have several comorbidities. The aim of the study is to identify factors affecting the survival, as well as to determine causes of mortality in CLL patients (according to data from hematological hospitals of Krasnoyarsk Region).

Methods. In order to identify the most significant factors affecting the course and the outcome of CLL, a retrospective analysis of data on patients who died in hematological hospitals was carried out. 45 cases with the lethal outcome were registered within six years. All patients were under hematologist’s supervision after diagnosing the disease, and they were followed throughout the treatment period up to the lethal outcome.

Results. Тhe overall and progression-free survival depended, first of all, on the type of the first line therapy and its efficacy. The progression of the underlying disease and infectious complications became the main reason of the lethal outcome in CLL patients.

Conclusion. Most patients received ineffective treatment as first line therapy. The analysis of the comorbidities showed that a more effective chemotherapy could be performed with achievement of longer complete remissions.


Keywords: chronic lymphocytic leukemia, oncohematological diseases, comorbidities, survival, treatment.

Received: May 16, 2016

Accepted: June 17, 2016

Read in PDF (RUS)pdficon

REFERENCES

  1. Gribben JG. How I treat CLL up front. Blood. 2010;115(2):187– doi: 10.1182/blood-2009-08-207126.
  2. Lee JS, Dixon DO, Kantarjian H, et al. Prognosis of chronic lymphocytic leukemia: a multivariate regression analysis of 325 untreated patients. Blood. 1987;69(3):929–36.
  3. Molica S. Infections in chronic lymphocytic leukemia: risks factors and impact on survival and treatment. Leuk Lymphoma. 1994;13(3–4):203–14. doi: 10.3109/10428199409056283.
  4. Albertsen PC, Moore DF, Shih W, et al. Impact of comorbidity on survival among men with localized prostate cancer. J Clin Oncol. 2011;29(10):1335–41. doi: 10.1200/jco.2010.31.2330.
  5. Etienne A, Esterni B, Charbonnier A, et al. Comorbidity is an independent predictor of complete remission in elderly patients receiving induction chemotherapy for acute myeloid leukemia. Cancer. 2007;109(7):1376– doi: 10.1002/cncr.22537.
  6. Kos FT, Yazici O, Civelek B, et al. Evaluation of the effect of comorbidity on survival in pancreatic cancer by using “Charlson Comorbidity Index” and “Cumulative Illness Rating Scale”. Wien Klin Wochenschr. 2014;126(1–2):36– doi: 10.1007/s00508-013-0453-9.
  7. Della Porta MG, Malcovati L. Clinical relevance of extra-hematologic comorbidity in the management of patients with myelodysplastic syndrome. Haematologica. 2009;94(5):602– doi: 10.3324/haematol.2009.005702.
  8. Wang S, Wong ML, Hamilton N, et al. Impact of age and comorbidity on non-small-cell lung cancer treatment in older veterans. J Clin Oncol. 2012;30(13):1447–55. doi: 11200/jco.2011.39.5269.
  9. Strati P, Chaffe K, Achenbach S, et al. Comorbidity and cause of death in patients with chronic lymphocytic leukemia (CLL). Cancer Res. 2015;75(15): Abstract 5267. doi: 10.1158/1538-7445.am2015-5267.
  10. Goede V, Paula Cramer P, Busch R, et al. Interactions between comorbidity and treatment of chronic lymphocytic leukemia: results of German Chronic Lymphocytic Leukemia Study Group trials. 2014;99(6):1095–100. doi: 10.3324/haematol.2013.096792.
  11. Thurmes P, Call T, Slager S, et al. Comorbid conditions and survival in unselected, newly diagnosed patients with chronic lymphocyticleukemia. Leuk Lymphoma. 2008;49(1):49–56. doi: 10.1080/10428190701724785.
  12. Linn BS, Linn MW, Gurel L. Cumulative illness rating scale. J Am Geriatr Soc. 1968;16(5):622–6. doi: 10.1111/j.1532-5415.1968.tbx.
  13. Hallek M, Fischer K, Fingerle-Rowson G, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. 2010;376(9747):1164–74. doi: 10.1016/S0140-6736.
  14. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373–83. doi: 10.1016/0021-9681(87)90171-8.
  15. Anaissie EJ, Kontoyiannis DP, O’Brien S, et al. Infections in patients with chronic lymphocytic leukemia treated with fludarabine. Ann Intern Med. 1998;129(7):559– doi: 10.7326/0003-4819-129-7-199810010-00010.
  16. Badoux XC, Keating MJ, Wang X, et al. Fludarabine, cyclophosphamide, and rituximab chemoimmunotherapy is highly effective treatment for relapsed patients with CLL. 2011;117(11):3016–24. doi: 10.1182/blood-2010-08-304683.
  17. Catovsky D, Richards S, Matutes E, et al. Assessment of fludarabine plus cyclophosphamide for patients with chronic lymphocytic leukaemia (the LRF CLL4 Trial): a randomised controlled trial. Lancet. 2007;370(9583):230–9. doi: 10.1016/s0140-6736(07)61125-8.
  18. Bouvet E, Borel C, Oberic L, et al. Impact of dose intensity on outcome of fludarabine, cyclophosphamide, and rituximab regimen given in the first-line therapy for chronic lymphocytic leukemia. 2013;98(1):65–70. doi: 10.3324/haematol.2012.070755.
  19. Miller MD, Paradis CF, Houck PR, et al. Rating chronic medical illness burden in geropsychiatric practice and research: application of the Cumulative Illness Rating Scale. Psychiatry Res. 1992;41(3):237–48. doi: 10.1016/0165-1781(92)90005-n.
  20. Parmlee PA, Thuras PD, Katz IR, et al. Validation of Cumulative Index Rating Scale in a geriatric residential population. J Am Geriatr Soc. 1995;43(2):130–7. doi: 10.1111/j.1532-5415.1995.tb06377.x.
  21. Charlson ME, Pompei P, Ales KL, et al. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J Chronic Dis. 1987;40(5):373–83. doi: 1016/0021-9681(87)90171-8.

Factors Affecting Course and Outcome of Chronic Lymphocytic Leukemia: Data from Hematological Hospitals of Krasnoyarsk Region

VI Bakhtina1,2, IV Demko2, AN Narkevich2, DS Gushchin3

1 Regional Clinical Hospital, 3а Partizana Zheleznyaka Str., Krasnoyarsk, Russian Federation, 660022

2 Professor VF Voyno-Yasenetsky Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka Str., Krasnoyarsk, Russian Federation, 660022

3 Norilsk Inter-District Hospital No. 1, Solnechnyi pr-d, 7a Norilsk, Russian Federation, 663300

For correspondence: Varvara Ivanovna Bakhtina, 1 Partizana Zheleznyaka Str., Krasnoyarsk, Russian Federation, 660022; Tel: +7(923)357-57-77; е-mail: doctor.gem@mail.ru

For citation: Bakhtina VI, Demko IV, Narkevich AN, Gushchin DS. Factors Affecting Course and Outcome of Chronic Lymphocytic Leukemia: Data from Hematological Hospitals of Krasnoyarsk Region. Clinical oncohematology. 2016;9(4):413–419 (In Russ).

DOI: http://dx.doi.org/10.21320/2500-2139-2016-9-4-413-419


ABSTRACT

Background & Aims. B-cellular chronic lymphocytic leukemia (CLL) is a disease with heterogeneous clinical manifestations and biological characteristics. The age of 70 % of patients is more than 65 years by the date of the diagnosis; most of them have several comorbidities. The aim of the study is to identify factors affecting the survival, as well as to determine causes of mortality in CLL patients (according to data from hematological hospitals of Krasnoyarsk Region).

Methods. In order to identify the most significant factors affecting the course and the outcome of CLL, a retrospective analysis of data on patients who died in hematological hospitals was carried out. 45 cases with the lethal outcome were registered within six years. All patients were under hematologist’s supervision after diagnosing the disease, and they were followed throughout the treatment period up to the lethal outcome.

Results. Тhe overall and progression-free survival depended, first of all, on the type of the first line therapy and its efficacy. The progression of the underlying disease and infectious complications became the main reason of the lethal outcome in CLL patients.

Conclusion. Most patients received ineffective treatment as first line therapy. The analysis of the comorbidities showed that a more effective chemotherapy could be performed with achievement of longer complete remissions.

Keywords: chronic lymphocytic leukemia, oncohematological diseases, comorbidities, survival, treatment.

Received: May 16, 2016

Accepted: June 17, 2016

Read in PDF (RUS) pdficon

REFERENCES

  1. Gribben JG. How I treat CLL up front. Blood. 2010;115(2):187– doi: 10.1182/blood-2009-08-207126.
  2. Lee JS, Dixon DO, Kantarjian H, et al. Prognosis of chronic lymphocytic leukemia: a multivariate regression analysis of 325 untreated patients. Blood. 1987;69(3):929–36.
  3. Molica S. Infections in chronic lymphocytic leukemia: risks factors and impact on survival and treatment. Leuk Lymphoma. 1994;13(3–4):203–14. doi: 10.3109/10428199409056283.
  4. Albertsen PC, Moore DF, Shih W, et al. Impact of comorbidity on survival among men with localized prostate cancer. J Clin Oncol. 2011;29(10):1335–41. doi: 10.1200/jco.2010.31.2330.
  5. Etienne A, Esterni B, Charbonnier A, et al. Comorbidity is an independent predictor of complete remission in elderly patients receiving induction chemotherapy for acute myeloid leukemia. Cancer. 2007;109(7):1376– doi: 10.1002/cncr.22537.
  6. Kos FT, Yazici O, Civelek B, et al. Evaluation of the effect of comorbidity on survival in pancreatic cancer by using “Charlson Comorbidity Index” and “Cumulative Illness Rating Scale”. Wien Klin Wochenschr. 2014;126(1–2):36– doi: 10.1007/s00508-013-0453-9.
  7. Della Porta MG, Malcovati L. Clinical relevance of extra-hematologic comorbidity in the management of patients with myelodysplastic syndrome. Haematologica. 2009;94(5):602– doi: 10.3324/haematol.2009.005702.
  8. Wang S, Wong ML, Hamilton N, et al. Impact of age and comorbidity on non-small-cell lung cancer treatment in older veterans. J Clin Oncol. 2012;30(13):1447–55. doi: 11200/jco.2011.39.5269.
  9. Strati P, Chaffe K, Achenbach S, et al. Comorbidity and cause of death in patients with chronic lymphocytic leukemia (CLL). Cancer Res. 2015;75(15): Abstract 5267. doi: 10.1158/1538-7445.am2015-5267.
  10. Goede V, Paula Cramer P, Busch R, et al. Interactions between comorbidity and treatment of chronic lymphocytic leukemia: results of German Chronic Lymphocytic Leukemia Study Group trials. 2014;99(6):1095–100. doi: 10.3324/haematol.2013.096792.
  11. Thurmes P, Call T, Slager S, et al. Comorbid conditions and survival in unselected, newly diagnosed patients with chronic lymphocyticleukemia. Leuk Lymphoma. 2008;49(1):49–56. doi: 10.1080/10428190701724785.
  12. Linn BS, Linn MW, Gurel L. Cumulative illness rating scale. J Am Geriatr Soc. 1968;16(5):622–6. doi: 10.1111/j.1532-5415.1968.tbx.
  13. Hallek M, Fischer K, Fingerle-Rowson G, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. 2010;376(9747):1164–74. doi: 10.1016/S0140-6736.
  14. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373–83. doi: 10.1016/0021-9681(87)90171-8.
  15. Anaissie EJ, Kontoyiannis DP, O’Brien S, et al. Infections in patients with chronic lymphocytic leukemia treated with fludarabine. Ann Intern Med. 1998;129(7):559– doi: 10.7326/0003-4819-129-7-199810010-00010.
  16. Badoux XC, Keating MJ, Wang X, et al. Fludarabine, cyclophosphamide, and rituximab chemoimmunotherapy is highly effective treatment for relapsed patients with CLL. 2011;117(11):3016–24. doi: 10.1182/blood-2010-08-304683.
  17. Catovsky D, Richards S, Matutes E, et al. Assessment of fludarabine plus cyclophosphamide for patients with chronic lymphocytic leukaemia (the LRF CLL4 Trial): a randomised controlled trial. Lancet. 2007;370(9583):230–9. doi: 10.1016/s0140-6736(07)61125-8.
  18. Bouvet E, Borel C, Oberic L, et al. Impact of dose intensity on outcome of fludarabine, cyclophosphamide, and rituximab regimen given in the first-line therapy for chronic lymphocytic leukemia. 2013;98(1):65–70. doi: 10.3324/haematol.2012.070755.
  19. Miller MD, Paradis CF, Houck PR, et al. Rating chronic medical illness burden in geropsychiatric practice and research: application of the Cumulative Illness Rating Scale. Psychiatry Res. 1992;41(3):237–48. doi: 10.1016/0165-1781(92)90005-n.
  20. Parmlee PA, Thuras PD, Katz IR, et al. Validation of Cumulative Index Rating Scale in a geriatric residential population. J Am Geriatr Soc. 1995;43(2):130–7. doi: 10.1111/j.1532-5415.1995.tb06377.x.
  21. Charlson ME, Pompei P, Ales KL, et al. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J Chronic Dis. 1987;40(5):373–83. doi: 1016/0021-9681(87)90171-8.