Primary Bone Lymphomas: 18F-FDG PET and PET-CT as Methods of Diagnosis and Efficacy Estimation of Antitumor Treatment

AK Smol’yaninova1, ER Moskalets2, GA Yatsyk1, IE Kostina1, AS Bogolyubskaya3, NG Gabeeva1, EG Gemdzhian1, SA Tatarnikova1, DS Badmadzhapova1, EE Zvonkov1

1 National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

2 European Medical Center, 35 Shchepkina str., Moscow, Russian Federation, 129090

3 NI Pirogov Russian National Research Medical University, 1 Ostrovityanova str., Moscow, Russian Federation, 117997

For correspondence: Anna Konstantinovna Smol’yaninova, MD, PhD, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(926)912-31-16; e-mail: annmo8@mail.ru

For citation: Smol’yaninova AK, Moskalets ER, Yatsyk GA, et al. Primary Bone Lymphomas: 18F-FDG PET and PET-CT as Methods of Diagnosis and Efficacy Estimation of Antitumor Treatment. Clinical oncohematology. 2020;13(1):33–49 (In Russ).

DOI: 10.21320/2500-2139-2020-13-1-33-49


ABSTRACT

Background. Primary bone lymphoma (PBL) is a rare malignant tumor. Initial examination aimed at detecting all primary lesions is an indispensable prerequisite for the choice of optimal antitumor treatment. Standard methods of diagnosis (X-ray, CT, and MRI) are not always adequate to measure the real tumor mass. Another well-known characteristic feature of PBL is a challenge in evaluating the effect of its treatment because of residual changes in the bones of most patients. However, the data on using 18F-FDG PET, another method of metabolic imaging, in PBL are rather rare in accessible literature.

Aim. To study the specific use of PET with 18F-FDG at initial examination and efficacy estimation of PBL treatment.

Materials & Methods. The trial included 21 PBL patients who received PET with 18F-FDG at initial examination and a month after the end of treatment. The results of 18F-FDG PET imaging were compared with the data obtained by means of structural diagnostic methods (CT and MRI) and the analysis of biopsy samples with pathologic lesions.

Results. Intensive uptake of 18F-FDG (SUVmax 8.6–40.1, mean SUVmax 23.5), according to PET data, was reported in all patients in those tumor lesions which were identified by the structural diagnostic methods and confirmed by biopsies. Besides, each of 21 cases showed pathologic infiltration of adjacent soft tissues with high metabolic activity. In PET-CT with 18F-FDG 13 further tumor localizations were revealed in 8 (38 %) patients. On completing the therapy, according to CT and MRI data, residual changes were observed in all (n = 21, 100 %) patients. The residual metabolic activity in the involved bones was identified in 13 (62 %) patients (SUVmax 2.91–8.7, mean SUVmax 4.2). In 4 of them the residual lesions were subjected to biopsy. None of 4 cases was reported to show tumors. Only in 1 out of 13 patients with residual metabolic changes a tumor relapse was detected. Overall 10-year survival in the groups of patients with and without FDG+ residual changes was 91 % and 100 %, respectively, with insignificant differences (= 0.39).

Conclusion. PET-CT with 18F-FDG is a highly sensitive technique for evaluating the primary lesion volumes in PBL patients. In 100 % of bone and soft tissue lesions an intensive uptake of 18F-FDG was observed. At the same time our study showed persistent metabolic activity on completing antitumor treatment in more than a half of patients, and in most of them it was not caused by tumor. Therefore, in our view, ongoing residual metabolic activity in PBL cannot always be regarded as an indication for continued treatment or consolidation radiotherapy.

Keywords: primary bone lymphoma, survival, positron emission tomography, diagnosis, efficacy estimation of antitumor treatment.

Received: August 2, 2019

Accepted: December 5, 2019

Read in PDF


REFERENCES

  1. Matikas A, Briasoulis A, Tzannou I, et al. Primary bone lymphoma: a retrospective analysis of 22 patients treated in a single tertiary center. Acta Haematol. 2013;130(4):291–6. doi: 10.1159/000351051.

  2. Bacci G, Jaffe N, Emiliani E, et al. Therapy for primary non-Hodgkin’s lymphoma of bone and a comparison of results with Ewing’s sarcoma. Ten year’s experience at the Istituto Ortopedico Rizzoli. Cancer. 1986;57(8):1468–72. doi: 10.1002/1097-0142(19860415)57:8<1468::aid-cncr2820570806>3.0.co;2-0.

  3. Fidias P, Spiro I, Scobczak ML, et al. Long-term results of combined modality therapy in primary bone lymphomas. Int J Radiat Oncol Biol Phys. 1999;45(5):1213–38. doi: 10.1016/s0360-3016(99)00305-3.

  4. Messina C, Ferreri AJ, Govi S, et al. Clinical features, management and prognosis of multifocal primary bone lymphoma: a retrospective study of the international Extranodal Lymphoma Study Group (the IELSG 14 study). Br J Haematol. 2014;164(6):834–40. doi: 10.1111/bjh.12714.

  5. Морозова А.К., Звонков Е.Е., Мамонов В.Е. и др. Первичные лимфатические опухоли костей и мягких тканей: сравнительная оценка результатов лечения. Терапевтический архив. 2012;84(7):42–9.

    [Morozova AK, Zvonkov EE, Mamonov VE, et al. Primary lymphomas of bones and soft tissues: comparative assessment of treatment results. Terapevticheskii arkhiv. 2012;84(7):42–9. (In Russ)]

  6. Gabeeva NG, Zvonkov EE, Morozova AK, et al. Long-term follow-up of primary bone diffuse large B-cell lymphoma treated with m NHL-BFM-90. Blood. 2016;128(22):3025.

  7. Смольянинова А.К., Габеева Н.Г., Мамонов В.Е. и др. Первичная лимфома костей: 10-летние результаты проспективного исследования в одной клинике. Гематология и трансфузиология. 2018;63(S1):181.

    [Smol’yaninova AK, Gabeeva NG, Mamonov VE, et al. Primary bone lymphoma: 10-year results of a prospective single-center trial. Gematologiya i transfuziologiya. 2018;63(S1):181. (In Russ)]

  8. Lewis VO, Primus G, Anastasi J, et al. Oncologic outcomes of primary lymphomas of bone in adults. Clin Orthop Rel Res. 2003;415:90–7. doi: 10.1097/01.blo.0000093901.12372.ad.

  9. Ostrowski ML, Unni KK, Banks PM, et al. Malignant Lymphoma of Bone. Cancer. 1986;58(12):2646–55. doi: 10.1002/1097-0142(19861215)58:12<2646::aid-cncr2820581217>3.0.co;2-u.

  10. Смольянинова А.К., Габеева Н.Г., Мамонов В.Е. и др. Первичные лимфомы костей: долгосрочные результаты проспективного одноцентрового исследования. Клиническая онкогематология. 2019;12(3):247–62. doi: 10.21320/2500-2139-2019-12-3-247-262.

    [Smol’yaninova AK, Gabeeva NG, Mamonov VE, et al. Primary Bone Lymphomas: Long-Term Results of a Prospective Single-Center Trial. Clinical oncohematology. 2019;12(3):247–62. doi: 10.21320/2500-2139-2019-12-3-247-262. (In Russ)]

  11. Ueda T, Aozasa K, Ohsawa M, et al. Malignant lymphomas of bone in Japan. Cancer. 1989;64(11):2387–92. doi: 10.1002/1097-0142(19891201)64:11<2387::aid-cncr2820641132>3.0.co;2-1

  12. Meignan M, Barrington S, Itti E, et al. Report on the 4th international workshop on positron emission tomography in lymphoma held in Menton, France, 3–5 October 2012. Leuk Lymphoma. 2013;55(1):31–7. doi: 10.3109/10428194.2013.802784.

  13. Егорова Е.К., Габеева Н.Г., Мамонов В.Е. и др. Первичные лимфатические опухоли костей: описание двух случаев и обзор литературы. Онкогематология. 2008;3(4):5–10.

    [Egorova EK, Gabeeva NG, Mamonov VE, et al. Primary lymphatic tumors of bones: two case reports and a review of l Onkogematologiya. 2008;3(4):5–10. (In Russ)]

  14. Christie DR, Dear K, Le T, et al. Limited chemotherapy and shrinking field radiotherapy for osteolymphoma (primary bone lymphoma): results from the trans-Tasman Radiation Oncology Group 99.04 and Australasian Leukaemia and Lymphoma Group LY02 prospective trial. Int J Radiat Oncol Biol Phys. 2011;80(4):1164–70. doi: 10.1016/j.ijrobp.2010.03.036.

  15. Iwaya Y, Tekenaka K, Akamatsu T. Primary Gastric Diffuse Large B-cell Lymphoma with Orbital Involvement: Diagnostic Usefulness of 18-fluorodeoxyglucose Positron Emission Tomography. Intern Med. 2011;50(18):1953–6. doi: 10.2169/internalmedicine.50.5524.

  16. Demircay E, Hornicek J, Mankin HJ, at al. Malignant Lymphoma of Bone: A Review of 119 Patients. Clin Orthop Relat Res. 2013;471(8):2684–90. doi: 10.1007/s11999-013-2991-x.

  17. Fletcher CDM, Unni KK, Mertens F. (eds) Pathology and genetics of tumours of soft tissue and bone. World Health Organization Classification of Tumours. 3rd Edition. Lyon: IARC Press; 2002.

  18. Fletcher CDM. The evolving classification of soft tissue tumours: an update based on the new WHO classification. Histopathology. 2006;48(1):3–12. doi: 10.1111/j.1365-2559.2005.02284.x.

  19. Fletcher CDM, Bridge JA, Hogendoorn P, Mertens F. World health organization classification of tumours of soft tissue and bone. 4th edition. Lyon: IARC Press; 2013. 468 p.

  20. Krishnan А, Shirkhoda А, Tehranzadeh Т, et al. Primary Bone Lymphoma: Radiographic–MR Imaging Correlation. RadioGraph. 2003;23(6):1371–87. doi: 10.1148/rg.236025056.

  21. Mulligani ME, Kransdorf MJ. Sequestra in Primary Lymphoma of Bone: Prevalence and Radiologic Features. Am J Roentgenol. 1993;160(6):1245–8. doi: 10.2214/ajr.160.6.8498226.

  22. Canete AN, Bloem HL, Kroon HM. Primary bone tumors of the spine. Radiologia. 2016;58(Suppl 1):68–80. doi: 10.1016/j.rx.2016.01.001.

  23. Mikhaeel NG. Primary bone lymphoma. Clin Oncol. 2012;24(5):366–70. doi: 10.1016/j.clon.2012.02.006.

  24. Hicks DC, Gokan T, O’Keefe RJ, et al. Primary lymphoma of bone: correlation of magnetic resonance imaging features with cytokine production by tumor cells. Cancer. 1995;75(4):973–80. doi: 10.1002/1097-0142(19950215)75:4<973::aid-cncr2820750412>3.0.co;2-8.

  25. Messina C, Christie D, Zucca E, et al. Primary and secondary bone lymphomas. Cancer Treat Rev. 2015;41(3):235–46. doi: 10.1016/j.ctrv.2015.02.001.

  26. Remier RR, Bruce AC, Yong RC, et al. Lymphoma Presenting in Bone. Results of Histopathology, Staging, and Therapy. Ann Inter Med. 1977;87(1):50–5. doi: 10.7326/0003-4819-87-1-50.

  27. Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–67. doi: 10.1200/JCO.2013.54.8800.

  28. Jawad MU, Schneiderbauer MM, Min ES, et al. Primary Lymphoma of Bone in Adult Patients. Cancer. 2010;116(4):871–9. doi: 10.1002/cncr.24828.

  29. Schaefer NG, Strobel K, Taverna C, et al. Bone involvement in patients with lymphoma: the role of FDG-PET/CT. Eur J Nucl Med Mol Imag. 2007;34(1):60–7. doi: 10.1007/s00259-006-0238-8.

  30. Ramadan KM, Shenkier T, Sehn LH, et al. 131 patients with primary bone lymphoma: a population-based study of successively treated cohorts from the British Columbia Cancer Agency. Ann Oncol. 2007;18(1):129–35. doi: 10.1093/annonc/mdl329.

  31. Park YH, Kim S, Choi SJ, et al. Clinical impact of whole-body FDG-PET for evaluation of response and therapeutic decision-making of primary lymphoma of bone. Ann Oncol. 2005;16(8):1401–2. doi: 10.1093/annonc/mdi234.

  32. Park YH, Choi SJ, Ryoo BY, et al. PET imaging with F-18 fluorodeoxyglucose for primary lymphoma of bone. Clin Nucl Med. 2005;30(2):131–4. doi: 10.1097/00003072-200502000-00020.

  33. Singh Т, Satheesh С, Lakshmaiah С, et al. Primary bone lymphoma: A report of two cases and review of the literature. J Cancer Res Ther. 2010;6(3):296–8. doi: 10.4103/0973-1482.73366.

  34. Wang LJ, Wu HB, Wang M, et al. Utility of F-18 FDG PET/CT on the evaluation of primary bone lymphoma. Eur J Radiol. 2015;84(11):2275–9. doi: 10.1016/j.ejrad.2015.09.011.

  35. Baar J, Burkes RL, Gospodarowicz M. Primary non-Hodgkin’s lymphoma of bone. Semin Oncol. 1999;26(3):270–5.

  36. Liu Y. The role of 18F-FDG PET/CT in staging and restaging primary bone lymphoma. Nucl Med Commun. 2017;38(4):319–24. doi: 10.1097/MNM.0000000000000652.

  37. Kim SY, Shin DY, Lee SS. Clinical characteristics and outcomes of primary bone lymphoma in Korea. Korean J Hematol. 2012;47(3):213–8. doi: 10.5045/kjh.2012.47.3.213.

  38. Milks KS, McLean TW, Anthony EY. Imaging of primary pediatric lymphoma of bone. Pediatr Radiol. 2016;46(8):1150–7. doi: 10.1007/s00247-016-3597-8.

  39. Zinzani PL, Carrillo G, Ascani S, et al. Primary bone lymphoma: experience with 52 patients. Haematologica. 2003;88(3):280–5.

  40. Baar J, Burkes R, Bell R. Primary Non-Hodgkin’s Lymphoma of Bone. A clinicopathologic study. Cancer. 1994;73(4):1194–9. doi: 10.1002/1097-0142(19940215)73:4<1194::aid-cncr2820730412>3.0.co;2-r.

  41. Choi J, Raghavan M. Diagnostic imaging and Image-Guided Therapy of Skeletal Metastases. Cancer Control. 2012;19(2):102–12. doi: 10.1177/107327481201900204.

  42. Hwang S. Imaging of lymphoma of musculoskeletal system. Magn Reson Imag Clin N Am. 2010;18(1):75–93. doi: 10.1016/j.mric.2009.09.006.

  43. Rapoport AP, Constine LS, Packman CH, et al. Treatment of Multifocal Lymphoma of Bone With Intensified Promace-Cytabom Chemotherapy and Involved Field Radiotherapy. Am J Hematol. 1998;58(1):1–7. doi: 10.1002/(SICI)1096-8652(199805)58:1<1::AID-AJH1>3.0.CO;2-X.

  44. Seymour JF. Extra-nodal lymphoma in rare localisations: bone, breast and testes. Hematol Oncol. 2013;31(Suppl 1):60–3. doi: 10.1002/hon.2081.

  45. Ng AP, Wirth A, Seymour JF, et al. Early therapeutic response assessment by (18)FDG-positron emission tomography during chemotherapy in patients with diffuse large B-cell lymphoma: Isolated residual positivity involving bone is not usually a predictor of subsequent treatment failure. Leuk Lymphoma. 2007;48(3):596–600. doi: 10.1080/10428190601099965.

  46. Rigacci L, Kovalchuk S, Berti V, et al. The use of Deauville 5-point score could reduce the risk of false-positive fluorodeoxyglucose-positron emission tomography in the posttherapy evaluation of patients with primary bone lymphomas. World J Nucl Med. 2018;17(3):157–65. doi: 10.4103/wjnm.WJNM_42_17.

  47. Juweid ME, Wiseman GA, Vose JM, et al. Response assessment of aggressive non-Hodgkin’s lymphoma by integrated International Workshop Criteria and fluorine-18-fluorodeoxyglucose positron emission tomography. J Clin Oncol. 2005;23(21):4652–61. doi: 10.1200/JCO.2005.01.891.

  48. Cheson BD, Pfistner B, Juweid ME, et al. International Harmonization Project for malignant lymphoma. J Clin Oncol. 2007;25(5):579–86. doi: 10.1200/JCO.2006.09.2403.

  49. Juweid ME, Stroobants S, Hoekstra OS, et al. Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol. 2007;25(5):571–8. doi: 10.1200/JCO.2006.08.2305.

  50. Albano D, Agnello F, Patti C, et al. Whole-body magnetic resonance imaging and FDG-PET/CT for lymphoma staging: Assessment of patient experience. Egypt J Radiol Nucl Med. 2017;48(4):1043–7. doi: 1016/j.ejrnm.2017.06.002.

  51. Wang D, Huo Y, Chen S et al. Whole-body MRI versus 18F-FDG PET/CT for pretherapeutic assessment and staging of lymphoma: a meta-analysis. OncoTarg Ther. 2018;11:3597–608. doi: 10.2147/OTT.S148189.

  52. Galia M, Albano D, Tarella C, et al. Whole body magnetic resonance in indolent lymphomas under watchful waiting: the time is now. Eur Radiol. 2017;28(3):1187–93. doi: 10.1007/s00330-017-5071-x.

  53. Toledano-Massiah S, Luciani A, Itti E, et al. Whole-Body Diffusion-weighted Imaging in Hodgkin Lymphoma and Diffuse Large B-Cell Lymphoma. RadioGraph. 2015;35(3):747–64. doi: 10.1148/rg.2015140145.

  54. Koh D, Collins DJ. Diffusion-Weighted MRI in the Body: Applications and Challenges in Oncology. Am J Roentgenol. 2007;188(6):1622–35. doi: 10.2214/AJR.06.1403.

Effectiveness of the Initial Escalation of Immunochemotherapy in Patients with High Risk MALT-Lymphoma: Pilot Study Results

AK Smol’yaninova, NG Gabeeva, SA Tatarnikova, AV Belyaeva, AM Kovrigina, EG Gemdzhyan, EE Zvonkov

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Anna Konstantinovna Smol’yaninova, MD, PhD, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(495)612-48-10; e-mail: annmo8@mail.ru.

For citation: Smol’yaninova AK, Gabeeva NG, Tatarnikova SA, et al. Effectiveness of the Initial Escalation of Immunochemotherapy in Patients with High Risk MALT-Lymphoma: Pilot Study Results. Clinical oncohematology. 2018;11(4):338–48.

DOI: 10.21320/2500-2139-2018-11-4-338-348


ABSTRACT

Background. MALT-lymphoma is usually characterized with an indolent course. The factors underlying the effectiveness of the standard chemotherapy in patients with MALT-lymphomas include MALT-IPI risk group and a high SUVmax according to the results of positron emission tomography (PET). All well-known MALT-lymphoma risk factors indirectly indicate a high risk of transformation to large cell lymphoma. The search for an effective chemotherapy continues.

Aim. To evaluate the effectiveness of the R-EPOCH/R-BAC escalated immunochemotherapy for MALT-lymphoma patients with poor prognosis factors.

Materials & Methods. In the period of 2016–2017 the study included 5 female MALT-lymphoma patients (the mean age of 41 years), of which 1 patient had an early relapse after surgery and 4 patients were newly diagnosed. Prior to therapy 4 patients were evaluated with PET. The mean SUVmax was 10.04. According to MALT-IPI 2 patients belonged to a high-risk group and 3 belonged to a middle-risk group. All the patients received R-EPOCH/R-BAC regimen therapy. A month after completing the treatment all the patients were again evaluated with PET.

Results. In 4 patients with 10–24 months follow-up complete remission was reported, which was confirmed by the results of histology and PET. The treatment of 1 patient was not completed. The immunotherapy was well tolerated by the patients. Hematological toxicity grade 3–4 occurred only after completing R-BAC treatment regimens. No severe infectious complications were reported.

Conclusion. MALT-lymphoma patients need to be evaluated in terms of all prognostic factors to identify the high-risk patients for whom escalated therapy is to be used already in the first line treatment. This pilot study of the use of R-EPOCH/R-BAC for treatment of MALT-lymphoma patients with poor prognosis factors yielded positive results and showed its acceptable tolerance.

Keywords: MALT-lymphoma, immunochemotherapy, positron emission tomography, prognosis factors, rituximab, ribomustin, cytarabine.

Received: April 10, 2018

Accepted: August 3, 2018

Read in PDF 


REFERENCES

  1. Rosand СB, Valla K, Flowers CR, et al. Effective management strategies for patients with marginal zone lymphoma. Fut Oncol. 2018;14(12):1213–22. doi: 10.2217/fon-2017-0480.

  2. Salar A, Domingo-Domenech E, Panizo C, et al. First-line response-adapted treatment with the combination of bendamustine and rituximab in patients with mucosa-associated lymphoid tissue lymphoma (MALT2008-01): a multi-centre, single-arm, phase 2 trial. Lancet Haematol. 2014;1(3):e104–е11. doi: 10.1016/s2352-3026(14)00021-0.

  3. Морозова А.К., Звонков Е.Е., Кравченко С.К. Лечение взрослых больных диффузной B-крупноклеточной лимфомой с первичным поражением костей по модифицированной программе NHL-BFM-90. В кн.: Программное лечение заболеваний системы крови. Под ред. В.Г. Савченко. М.: Практика, 2012. Т. 2. С. 679–99.

    [Morozova AK, Zvonkov EE, Kravchenko SK. Treatment of adult patients with diffuse large B-cell lymphoma and primary bone lesions using the modified NHL-BFM-90 program. In: Savchenko VG, ed. Programmnoe lechenie zabolevanii sistemy krovi. (Programmed treatment of blood diseases.) Moscow: Praktika Publ.; 2012. Vol. 2. pp. 679–99. (In Russ)]

  4. Cheson BD, Horning SJ, Coiffier B, et al. Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. NCI sponsored International Working Group. J Clin Oncol. 1999;17(4):1244. doi: 10.1200/jco.1999.17.4.1244.

  5. Common Terminology Criteria for Adverse Events, version 3.0 (CTCAE). Published August 9, 2006. Available from: http://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/ctcaev3.pdf. (accessed05.2018).

  6. Thieblemont C, Cascione L, Conconi A, et al. A MALT lymphoma prognostic index. 2017;130(12):1409–17. doi: 10.1182/blood-2017-03-771915.

  7. Ekstrom SK, Vajdic CM, Falster M, et al. Autoimmune disorders and risk of non-Hodgkin lymphoma subtypes: a pooled analysis within the InterLymph Consortium. Blood. 2008;111(8):4029–38. doi: 0.1182/blood-2007-10-119974.

  8. Thieblemont C, Berger F, Dumontet C, et al. Mucosa-associated lymphoid tissue lymphoma is a disseminated disease in one third of 158 patients analyzed. Blood. 2000;95(3):802–6.

  9. Yoon RG, Kim MY, Songb JW, et al. Primary Endobronchial Marginal Zone B-Cell Lymphoma of Bronchus-Associated Lymphoid Tissue: CT Findings in 7 Patients. Korean J Radiol. 2013;14(2):366–74. doi: 10.3348/kjr.2013.14.2.366.

  10. Zinzani PL, Pellegrini C, Gandolfi L, et al. Extranodal marginal zone B-cell lymphoma of the lung: experience with fludarabine and mitoxantrone-containing regimens. Hematol Oncol. 2012;31(4):183–8. doi: 10.1002/hon.2039.

  11. Borie R, Wislez M, Thabut G, et al. Clinical characteristics and prognostic factors of pulmonary MALT lymphoma. Eur Respir J. 2009;34(6):1408–16. doi: 10.1183/09031936.00039309.

  12. Rummel MJ, Kaiser U, Balser C. Bendamustine Plus Rituximab Versus Fludarabine Plus Rituximab In Patients with Relapsed Follicular, Indolent and Mantle Cell Lymphomas – Final Results of the Randomized Phase III Study NHL 2-2003 on Behalf of the StiL (Study Group Indolent Lymphomas, Germany). ASH Annual Meeting Abstracts. 2010;116:856.

  13. Rummel MJ, Niederle N, Maschmeyer G, et al. Bendamustine plus rituximab versus CHOP plus rituximab as first-line treatment for patients with indolent and mantle-cell lymphomas: an open-label, multicentre, randomised, phase 3 non-inferiority trial. Lancet. 2013;381(9873):1203–10. doi: 10.1016/S0140-6736(12)61763-2.

  14. Zucca E, Conconi A, Martinelli G, et al. Final Results of the IELSG-19 Randomized Trial of Mucosa-Associated Lymphoid Tissue Lymphoma: Improved Event-Free and Progression-Free Survival With Rituximab Plus Chlorambucil Versus Either Chlorambucil or Rituximab Monotherapy. J Clin Oncol. 2017;35(17):1905–12. doi: 10.1200/jco.2016.70.6994.

  15. Zinzani PL, Stefoni V, Musuraca G, et al. Fludarabine-Containing Chemotherapy as Frontline Treatment of Nongastrointestinal Mucosa-Associated Lymphoid Tissue Lymphoma. Cancer. 2004;100(10):2190–4. doi: 10.1002/cncr.20237.

  16. Brown JR, Friedberg JW, Feng Y, et al. A phase 2 study of concurrent fludarabine and rituximab for the treatment of marginal zone lymphomas. Br J Haematol. 2009;145(6):741–8. doi: 10.1111/j.1365-2141.2009.07677.x.

  17. Prabhash K, Vikram GS, Nair R, et al. Fludarabine in lymphoproliferative malignancies: a single-centre experience. Natl Med J India. 2008;21(4):171–4.

  18. Cencini E, Fabbri A, Lauria F, et al. Long-term efficacy and toxicity of rituximab plus fludarabine and mitoxantrone (R-FM) for gastric marginal zone lymphoma: a single-center experience and literature review. Ann Hematol. 2018;97(5):821–9. doi: 10.1007/s00277-018-3243-7.

  19. Salar A, Domingo-Domenech E, Panizo C, et al. Long-term results of a phase II study of rituximab and bendamustine for mucosa-associated lymphoid tissue lymphoma. Blood. 2017;130(15):1772–4. doi: 10.1182/blood-2017-07-795302.

  20. Flinn I, van der Jagt R, Chang J, et al. First-line treatment of iNHL or MCL patients with BR or R-CHOP/R-CVP: results of the BRIGHT 5-year follow-up study. Hematol Oncol. 2017;35:140–1. doi: 10.1002/hon.2437_130.

  21. Treglia G, Zucca E, Sadeghi R, et al. Detection rate of fluorine-18-fluorodeoxyglucose positron emission tomography in patients with marginal zone lymphoma of MALT type: a meta-analysis. Hematol Oncol. 2015;33(3):113–24. doi: 10.1002/hon.2152.

  22. Carrillo-Cruz E, Marin-Oyaga V, de la Cruz VF, et al. Role of 18F-FDG-PET/CT in the management of marginal zone B cell lymphoma. Hematol Oncol. 2015;33(4):151–8. doi: 10.1002/hon.2181.

  23. Hwang JP, Lim I, Byun BH, et al. Prognostic value of SUVmax measured by pretreatment 18F-FDG PET/CT in patients with primary gastric lymphoma. Nucl Med Commun. 2016;37(12):1267–72. doi: 10.1097/mnm.0000000000000579.

  24. Noy A, Schoder H, Gonen M, et al. The majority of transformed lymphomas have high standardized uptake values (SUVs) on positron emission tomography (PET) scanning similar to diffuse large B-cell lymphoma (DLBCL). Ann Oncol.2009;20(3):508–12. doi: 10.1093/annonc/mdn657.

  25. Castegnaro S, Visco C, Chieregato K, et al. Cytosine arabinoside potentiates the apoptotic effect of bendamustine on several B- and T-cell leukemia/lymphoma cells and cell lines. Leuk Lymphoma. 2012;53(11):2262–8. doi: 10.3109/10428194.2012.688200.

  26. Visco C, Chiappella A, Nassi L, et al. Rituximab, bendamustine, and low-dose cytarabine as induction therapy in elderly patients with mantle cell lymphoma: a multicentre, phase 2 trial from Fondazione Italiana Linfomi. Lancet Haematol. 2017;4(1):e15–e23. doi: 10.1016/S2352-3026(16)30185-5.

 

Radiotherapy in combined treatment of patients with diffuse large B-cell lymphoma

Yu.N. Vinogradova, N.V. Ilin, D.V. Larionov, M.M. Khodzhibekova, N.A. Kostenikov, and L.I. Korytova

Russian Research Centre for Radiology and Surgical Technologies, RF Ministry of Health, Saint Petersburg, Russian Federation


ABSTRACT

The study included 86 primary patients (age: 18–83) with diffuse large B-cell lymphoma, I to IV stages, who received (R)-CHOP regimen and radiotherapy at the CRIRR (at present RRCRST) over the period 2000–2012. The follow-up period median was 42 months (5–120 months). Positron emission tomography (PET) with 18F-FDG was performed in 45 patients at the various follow-up time-points. In all patients, the changes of hematologic indices were observed using baseline, pre-, and postradiation measurements. After combined treatment completed, remission was achieved in 80 out of 86 (93.0 %) patients, including complete or uncertain complete remission and partial remission in 86.0 % and 7.0 %, respectively. During the initial therapy, disease progression occurred in 6 (7.0 %) patients. After the chemotherapy stage, complete remission was noted in 56 (65.1 %) patients only. Additional radiotherapy promoted the increase in the rate of complete and uncertain complete response by 21.9 %. Disseminated disease relapses developed in 2 out of 80 (2.5 %) patients. The complete response rate in the patients who received radiotherapy using the various fractionation regimens was similar. 5-year overall, relapse-free, and progressionfree survival were 89.7 ± 3.9 %, 96.6 ± 2.4 %, and 85.4 ± 4.8 %, respectively. In 20.6 % of the patients examined after chemotherapy, PET gave positive results, while after the radiotherapy stage, all the patients examined at this time-point were PET-negative. Radiotherapy was accompanied by mainly I–II grade hematologic toxicity, and in 16–58 % of patients, no interruption of treatment were required. Neutropenia and thrombocytopenia occurred more frequently at the twice-a-day irradiation.


Keywords: diffuse large B-cell lymphoma, radiotherapy, positron emission tomography, hematologic toxicity.

Read in PDF (RUS)pdficon


References

  1. Friedberg J.W. Pros — R-CHOP is the current standard therapy for patients with advanced stage DLBCL. Hematol. Oncol. Special Issue: 12th International Conference on Malignant Lymphoma, Palazzo dei Congressi, Lugano, Switzerland, June 19–22, 2013; 31: Abstract 004.
  2. Miller T.P., Dahlberg S., Cassady J.R. et al. Chemotherapy alone compared with chemotherapy plus radiotherapy for localized intermediate and high grade non Hodgkin’s lymphoma. N. Engl. J. Med. 1998; 339: 21–6.
  3. Ng A.K., Mauch P.M. Role of radiation therapy in localized aggressive lymphoma. J. Clin. Oncol. 2007; 25: 757–9. 4. Gospodarowicz M.K. Radiotherapy in non-Hodgkin lymphomas. Ann. Oncol. 2008; 19(4): 47–50.
  4. Illidge T.X. When should radiotherapy be used in lymphoma? Ann. Oncol. 2011; 22(4): 57–60.
  5. Tilly H., Vitolo U., Walewski J. et al. Diffuse large B-cell lymphoma (DLBCL): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2012; 23(7): 78–82.
  6. Асланиди И.П., Мухортова О.В., Шурупова И.В. и др. Позитронно- эмиссионная томография: уточнение стадии болезни при злокачественных лимфомах. Клин. онкогематол. 2010; 3(2): 119–29.[Aslanidi I.P., Mukhortova O.V., Shurupova I.V. i dr. Pozitronnoemissionnaya tomografiya: utochneniye stadii bolezni pri zlokachestvennykh limfomakh (Positron emission tomography: ascertaining disease stage in malignant lymphomas. In: Clin. oncohematol.). Klin. onkogematol. 2010; 3(2): 119–29.]
  7. Yahalom J., Mauch P. The involved field is back: issues in delineating the radiation field in Hodgkin’s disease. Ann. Oncol. 2002; 13(1): 79–83.
  8. Cheson B., Horning S., Coiffer B. et al. Report of an International Workshop to standardize Response Criteria for Non-Hodgkin’s Lymphomas. J. Clin. Oncol. 1999; 17(4): 1244–53.
  9. Cheson B., Pfistner B., Juweid M. et al. Revised response criteria for malignant lymphoma. J. Clin. Oncol. 2007; 25: 579–86.
  10. Cox J., Stetz J., Pajak T. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and European Organization for Research and Treatment of Cancer (EORTC). Intern. J. Radiat. Oncol. Biol. Phys. 1995; 31: 1341–6.
  11. Morschhauser F. R-CHOP is not the standard for high-risk DLBCL. Hematological Oncology. Special Issue: 12th International Conference on Malignant Lymphoma, Palazzo dei Congressi, Lugano, Switzerland, June 19–22, 2013; 31: Abstrфсе 005.
  12. Zelenetz А.О., Abramson J.S., Advani R.H. et al. NCCN Clinical Practice Guidelines in Oncology non Hodgkin’s lymphomas. J. Natl. Compr. Canc. Netw. 2010; 8: 288–334.
  13. Phan J., Mazloom A., Jeffrey Medeiros L. et al. Benefit of consolidative radiation therapy in patients with diffuse large В cell lymphoma treated with RCHOP chemotherapy. J. Clin. Oncol. 2010; 28: 4170–6.
  14. Bonnet С., Fillet G., Mournier N. et al. CHOP alone compared with CHOP plus radiotherapy for localised aggressive lymphoma in elderly patients a study by the Groupe d Etude des Lymphomes de l’ Adulte. J. Clin. Oncol. 2007; 25: 787–92.
  15. Dabaja B., Vanderplas A., Abel G. et al. Pole of radiation in patients with diffuse large B-cell lymphoma (DLBCL) in the rituximab era: a comprehensive analysis from the National Comprehensive Cancer Network (NCCN) lymphoma outcomes project. Hematol. Oncol. 2013; 31(1): 136.
  16. Zwick C., Held G., Ziepert M. et al. The role of radiotherapy to bulky disease in elderly patients with aggressive B-cell lymphoma. Results from two prospective trials of the DSHNHL. Hematol. Oncol. 2013; 31(1): 137.
  17. Sehn L.H., Klasa R., Shenkier T. et al. Long-term experience with PETguided consolidative radiation therapy (XRT) in patients with advanced stage diffuse large B-cell lymphoma (DLBCL) treated with R-CHOP. Hematol. Oncol. 2013; 31(1): 137.
  18. Gang A. O., Strom C., Pedersen M. et al. R-CHOEP-14 improves overall survival in young high-risk patients with diffuse large B-cell lymphoma compared with R-CHOP-14. A population-based investigation from the Danish Lymphoma Group. Ann. Oncol. 2012; 23(1): 147–53.
  19. Bosly A., Bron D., Van Hoof A. et al. Achievement of optimal average relative dose intensity and correlation with survival in diffuse large B-cell lymphoma patients treated with CHOP. Ann. Hematol. 2008; 87: 277–83.
  20. Pfreundschuh M., Schubert J., Ziepert M. et al. Six versus eight cycles of bi-weekly CHOP-14 with or without rituximab in elderly patients with aggressive CD20+ B-cell lymphomas: a randomized controlled trial (RICOVER-60). Lancet Oncol. 2008; 9(2): 105–16.
  21. Persky D.O., Unger J.M., Speir C.M. et al. Phase II study of rituximab plus 3 cycles of CHOP and involved field radiotherapy for patients with limited stage aggressive B cell lymphoma: Southwest Oncology Group Study 0014. J. Clin. Oncol. 2008; 26: 2258–63.
  22. Linch D. Today’s treatment of diffuse large B-cell lymphomas in adults. Hematol. Educ. (The education program for the annual congress of the EHA) 2011; 5: 210–6. 24. Jaeger U., TrnenyM., Melzer H. et al. Rituximab maintenance treatment versus observation in patients with aggressive B-cell lymphoma: results of the AGMT NHL13 trial. Hematol. Oncol. 2013; 31(1): 136.
  23. Swinnen L.J., Li H., Quon A. et al. Response-adapted therapy and predictive value of mid-treatment PET scanning for diffuse large B-cell lymphoma. ECOG study E3404. Hematol. Oncol. 2013; 31(1): 101.
  24. Mamot C., Klingbiel D., Renner C. Final results of a prospective evaluation of the predictive value of interim PET in patients with DLBCL under R-CHOP-14 (SAKK 38/07). Hematol. Oncol. 2013; 31(1): 100.
  25. Moskowitz C.H., Schoder H., Hamlin P.A. et al. Evaluation of dual tracer (FLT and FDG) PET imaging as part of risk-adapted therapy for patients (PTS) with advanced stage diffuse large B-cell lymphoma (DLBCL). Hematol. Oncol. 2013; 31(1): 101.