Early Response and Long-Term Outcomes of Ruxolitinib Therapy in Myelofibrosis: Multicenter Retrospective Study in 10 Centers of the Russian Federation

EG Lomaia1, NT Siordiya1, OM Senderova2, OE Ochirova3, EB Zhalsanova3, AYu Furtovskaya1, GP Dimov4, MG Pozina4, OYu Li5, KB Trizna6, MA Mikhalev7, EV Sokurova8, AA Otmorskaya9, AS Khazieva10, VV Ust’yantseva11, YuD Rogovaya1, AYu Zaritskey1

1 VA Almazov National Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

2 Irkutsk Regional Clinical Hospital, 100 Yubileinyi microdistrict, Irkutsk, Russian Federation, 664049

3 NA Semashko Republican Clinical Hospital, 12 Pavlova str., Ulan-Ude, Russian Federation, 670031

4 Municipal Clinical Hospital No. 1, 16 Vorovskogo str., Chelyabinsk, Russian Federation, 454048

5 Sakhalin Regional Clinical Hospital, 430 Mira pr-t, Yuzhno-Sakhalinsk, Russian Federation, 693004

6 Tomsk Regional Clinical Hospital, 96 Ivana Chernykh str., Tomsk, Russian Federation, 634063

7 Krasnoyarsk Interdistrict Clinical Hospital No. 7, 4 Akademika Pavlova str., Krasnoyarsk, Russian Federation, 660003

8 Vladivostok Polyclinic No. 4, 5 Voropaeva str., Vladivostok, Russian Federation, 690000

9 Regional Clinical Hospital, 1 Lyapidevskogo str., Barnaul, Russian Federation, 656024

10 Krasnoyarsk Regional Clinical Hospital, 3A Partizana Zheleznyaka str., Krasnoyarsk, Russian Federation, 660022

11 Railway Clinical Hospital, the Chelyabinsk Railway Station, 41 Tsvillinga str., Chelyabinsk, Russian Federation, 454000

For correspondence: Nadiya Tamazovna Siordiya, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341; e-mail: siordian@list.ru

For citation: Lomaia EG, Siordiya NT, Senderova OM, et al. Early Response and Long-Term Outcomes of Ruxolitinib Therapy in Myelofibrosis: Multicenter Retrospective Study in 10 Centers of the Russian Federation. Clinical oncohematology. 2020;13(3):335–45 (In Russ).

DOI: 10.21320/2500-2139-2020-13-3-335-345


Aim. To assess the efficacy of targeted therapy with ruxolitinib in patients with myelofibrosis in real clinical practice in Russia. To determine the prognostic value of spleen reduction in the early stages of ruxolitinib treatment and its effect on overall survival.

Materials & Methods. The present retrospective study was based on the data of 10 centers of Russia. It included 56 myelofibrosis (primary or post-polycythemic and post-thrombocythemic) patients who received ruxolitinib. The median age of patients was 56 years (range 26–76 years). Most of them (59 %) were considered intermediate-1 risk according to DIPSS and had massive splenomegaly (80 %), and constitutional symptoms (86 %). The initial drug dose was 30 mg per day in 64 % of cases, and the level of thrombocytes was ≥ 200 × 109/L in 61 % of patients. The spleen size was evaluated by palpation.

Results. By the start of data collection most of patients (79 %) had been treated with ruxolitinib. In no case therapy was withdrawn for the reason of drug toxicity. On ruxolitinib constitutional symptoms were reversed in 70 %, 87 %, and 98 % of patients by months 1, 3 and 6, respectively. In 36 % and 46 % of patients by months 3 and 6, respectively, ≥ 50 % decrease in spleen size was observed. Overall, in 31 % and 27 % of cases the size of the spleen decreased by less than 25 % by months 3 and 6, respectively. The factors affecting the changes in spleen size have not been identified. The probability of overall survival by years 2 and 5 of follow-up was 97 % and almost 70 %, respectively. This parameter was significantly affected by the extent of spleen size reduction by month 3 of follow-up as well as by its initial size.

Conclusion. Ruxolitinib shows high efficacy for both decrease of general myelofibrosis symptoms and reduction in spleen size. The extent of spleen reduction is an important prognostic factor. In patients with insufficient spleen reduction an increase in drug dose is advisable. If it is not possible, alternative methods of treatment should be sought.

Keywords: myelofibrosis, ruxolitinib, spleen size changes, constitutional symptoms, overall survival.

Received: January 31, 2020

Accepted: May 15, 2020

Read in PDF


  1. Tefferi A, Lasho TL, Jimma T, et al. One Thousand Patients With Primary Myelofibrosis: The Mayo Clinic Experience. Mayo Clin Proc. 2012;87(1):25–33. doi: 10.1016/j.mayocp.2011.11.001.

  2. Patriarca F, Bacigalupo A, Sperotto A, et al. Allogeneic hematopoietic stem cell transplantation in myelofibrosis: the 20-year experience of the Gruppo Italiano Trapianto di Midollo Osseo (GITMO). Haematologica. 2008;93(10):1514–22. doi: 10.3324/haematol.12828.

  3. Harrison CN, Mesa RA, Kiladjian JJ, et al. Health-related quality of life and symptoms in patients with myelofibrosis treated with ruxolitinib versus best available therapy. Br J Haematol. 2013;162(2):229–39. doi: 10.1111/bjh.12375.

  4. Verstovsek S, Mesa RA, Gotlib I, et al. A Double-Blind, Placebo-Controlled Trial of Ruxolitinib for Myelofibrosis. N Engl J Med. 2012;366(9):799–807. doi: 10.1056/NEJMoa1110557.

  5. Verstovsek S, Mesa RA, Gotlib I, et al. Long-term treatment with ruxolitinib for patients with myelofibrosis: 5-year update from the randomized, double-blind, placebo-controlled, phase 3 COMFORT-I trial. J Hematol Oncol. 2017;10(1):55. doi: 10.1186/s13045-017-0417-z.

  6. Miller CB, Komrokji RS, Mesa RA, et al. Practical Measures of Clinical Benefit With Ruxolitinib Therapy: An Exploratory Analysis of COMFORT-I. Clin Lymphoma Myel Leuk. 2017;17(8):479–87. doi: 10.1016/j.clml.2017.05.015.

  7. Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937–51. doi: 10.1182/blood-2009-03-209262.

  8. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. doi: 10.1182/blood-2016-03-643544.

  9. Tefferi A, Cervantes F, Mesa R, et al. Revised response criteria for myelofibrosis: International Working Group-Myeloproliferative Neoplasms Research and Treatment (IWG-MRT) and European LeukemiaNet (ELN) consensus report. 2013;122(8):1395–8. doi: 10.1182/blood-2013-03-488098.

  10. Джакави® (инструкция по медицинскому применению). Novartis Pharma, AG (Швейцария). Доступно по: https://www.vidal.ru/drugs/jakavi Ссылка активна на 15.05.2020.[Jakavi® (package insert). Novartis Pharma, AG, Switzerland. Available from: https://www.vidal.ru/drugs/jakavi__38878. (accessed 15.05.2020) (In Russ)]

  11. Verstovsek S, Kantarjian HM, Estrov Z, et al. Long-term outcomes of 107 patients with myelofibrosis receiving JAK1/JAK2 inhibitor ruxolitinib: survival advantage in comparison to matched historical controls. Blood. 2012;120(6):1202–9. doi: 10.1182/blood-2012-02-414631.

  12. Vannucchi AM, Kantajian HM, Kiladjian JJ, et al. A pooled analysis of overall survival in COMFORT-I and COMFORT-II, 2 randomized phase III trials of ruxolitinib for the treatment of myelofibrosis. Haematologica. 2015;100(9):1139–45. doi: 10.3324/haematol.2014.119545.

  13. Mesa RA, Verstovsek S, Gupta V, et al. Effects of ruxolitinib treatment on metabolic and nutritional parameters in patients with myelofibrosis from COMFORT-I. Clin Lymphoma Myel Leuk. 2015;15(4):214–21.e1. doi: 10.1016/j.clml.2014.12.008.

  14. Palandri F, Palumbo GA, Bonifacio M, et al. Baseline factors associated with response to ruxolitinib: an independent study on 408 patients with myelofibrosis. Oncotarget. 2017;8(45):79073–86. doi: 10.18632/oncotarget.18674.

  15. Palandri F, Tiribelli M, Benevolo G, et al. Efficacy and safety of ruxolitinib in intermediate-1 IPSS risk myelofibrosis patients: Results from an independent study. Hematol Oncol. 2018;36(1):285–90. doi: 10.1002/hon.2429.

  16. Palandri F, Catani L, Bonifacio M, et al. Ruxolitinib in elderly patients with myelofibrosis: impact of age and genotype. A multicentre study on 291 elderly patients. Br J Haematol. 2018;183(1):35–46. doi: 10.1111/bjh.15497.

  17. Harrison CN, Schaap N, Vannucchi A, et al. Fedratinib (FEDR) in myelofibrosis (MF) patients previously treated with ruxolitinib (RUX): A reanalysis of the JAKARTA-2 study. HemaSphere. 2019;3:671–72. doi: 10.1097/01.hs9.0000564100.83392.c9.

  18. Al-Ali HK, Griesshammer M, le Coutre P, et al. Safety and efficacy of ruxolitinib in an open-label, multicenter, single-arm phase 3b expanded-access study in patients with myelofibrosis: a snapshot of 1144 patients in the JUMP trial. 2016;101(9):1065–73. doi: 10.3324/haematol.2016.143677.

WT1 Gene Overexpression in Differential Diagnosis of Ph-negative Myeloproliferative Disorders

EG Lomaia1, NT Siordiya1, EG Lisina2, OM Senderova3, AA Silyutina1, AYu Zaritskey1

1 VA Almazov National Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

2 Municipal Clinical Hospital No. 52, 3 Pekhotnaya str., Moscow, Russian Federation, 123182

3 Irkutsk Regional Clinical Hospital, 100 Yubileinyi microdistrict, Irkutsk, Russian Federation, 664049

For correspondence: Nadiya Tamazovna Siordiya, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341; Tel.: +7(921)358-31-32; e-mail: siordian@list.ru

For citation: Lomaia EG, Siordiya NT, Lisina EG, et al. WT1 Gene Overexpression in Differential Diagnosis of Ph-Negative Myeloproliferative Disorders. Clinical oncohematology. 2019;12(3):297–302 (In Russ).

doi: 10.21320/2500-2139-2019-12-3-297-302


Aim. To assess the rate of WT1 gene overexpression and its clinical value in Ph-negative myeloproliferative disorders (MPD).

Materials & Methods. The trial included 72 patents with Ph-negative MPD. Among them there were patients with primary myelofibrosis (MF; n = 32), post-polycythemia vera MF (n = 7), polycythemia vera (PV; n = 17), and essential thrombocythemia (ET; n = 16) with median age of 57 years (range 19–78 years). Median (range) time from diagnosis to the date of evaluating WT1 expression in PV, ET, and MF was 9.4 (0–309), 14.4 (0–55), and 21.4 months (0–271 months), respectively. WT1 expression in terms of WT1 copies/104 ABL copies was measured by quantitative PCR.

Results. WT1 gene overexpression is revealed solely in patients with MF (in 34/39; 87 %). In PV/ET no WT1 gene overexpression was observed. Median WT1 expression in MF was 230/104 ABL copies (range 42.2–9,316.45/104 ABL copies). Sensitivity and specificity of WT1 gene overexpression in MF with respect to PV/ET were 87 % and 100 %, respectively. A distinct correlation was identified between WT1 gene expression level and spleen size, duration of the disease, blast cell count, and DIPSS risk group. WT1 gene expression level could be correlated neither with age and sex, nor with MF mutation status and leucocyte, thrombocyte, and haemoglobin levels.

Conclusion It appears that due to a high specificity and sensitivity of WT1 gene expression in MF it can be used as a marker for differential diagnosis of Ph-negative MPD. A correlation between WT1 gene expression and tumor mass in MF cannot be excluded. It is advisable to analyze the dynamics of WT1 expression level to predict the efficacy of current targeted therapy.

Keywords: WT1 gene, Ph-negative myeloproliferative disorders, myelofibrosis, polycythemia vera, essential thrombocythemia.

Received: December 27, 2018

Accepted: June 2, 2019

Read in PDF 


  1. Han Y, San-Marina S, Liu J, et al. Transcriptional activation of c-myc proto-oncogene by WT1 protein. Oncogene. 2004;23(41):6933–41. doi: 10.1038/sj.onc.1207609.

  2. Hewitt SM, Hamada S, McDonnell TJ, et al. Regulation of the proto-oncogenes bcl-2 and c-myc by the Wilms’ tumor suppressor gene WT1. Cancer Res. 1995;55(22):5386–9.

  3. Jin DK, Kang SJ, Kim SJ, et al. Transcriptional regulation of PDGF-A and TGF-beta by +KTS WT1 deletion mutants and a mutant mimicking Denys-Drash syndrome. Ren Fail. 1999;21(6):685–94.

  4. Harrington MA, Konicek B, Song A, et al. Inhibition of colony-stimulating factor-1 promoter activity by the product of the Wilms’ tumor locus. J Biol Chem. 1993;268(28):21271–5.

  5. Hu Q, Gao F, Tian W, et al. Wt1 ablation and Igf2 upregulation in mice result in Wilms tumors with elevated ERK1/2 phosphorylation. J Clin Invest. 2011;121(1):174–83. doi: 10.1172/JCI43772

  6. Maurer U, Brieger J, Weidmann E, et al. The Wilms’ tumor gene is expressed in a subset of CD34+ progenitors and downregulated early in the course of differentiation in vitro. Exp Hematol. 1997;25(9):945–50.

  7. Baird PN, Simmons PJ. Expression of the Wilms’ tumor gene (WT1) in normal hemopoiesis. Exp Hematol. 1997;25(4):312–20.

  8. King-Underwood L, Renshaw J, Pritchard-Jones K. Mutations in the Wilms’ tumor gene WT1 in leukemias. Blood. 1996;87(6):2171–9.

  9. Ho PA, Zeng R, Alonzo TA, et al. Prevalence and prognostic implications of WT1 mutations in pediatric acute myeloid leukemia (AML): a report from the Children’s Oncology Group. Blood. 2010;116(5):702–10. doi: 10.1182/blood-2010-02-268953.

  10. Tamaki H, Ogawa H, Ohyashiki K, et al. The Wilms’ tumor gene WT1 is a good marker for diagnosis of disease progression of myelodysplastic syndromes. Leukemia. 1999;13(3):393–9. doi: 10.1038/sj.leu.2401341.

  11. Miwa H, Beran M, Saunders GF. Expression of the Wilms’ tumor gene (WT1) in human leukemias. 1992;6(5):405–9.

  12. Alberta JA, Springett GM, Rayburn H, et al. Role of the WT1 tumor suppressor in murine hematopoiesis. Blood. 2003;101(7):2570–4. doi: 10.1182/blood-2002-06-1656.

  13. Гиршова Л.Л., Будаева И.Г., Овсянникова Е.Г. и др. Прогностическое значение и корреляция динамики гиперэкспрессии гена WT1 и мутации гена NPM1 у пациентов с острым миелобластным лейкозом. Клиническая онкогематология. 2017;10(4):485–93. doi: 10.21320/2500-2139-2017-10-4-485-493.

    [Girshova LL, Budaeva IG, Ovsyannikova EG, et al. Prognostic Value and Correlation Between WT1 Overexpression and NPM1 Mutation in Patients with Acute Myeloblastic Leukemia. Clinical oncohematology. 2017;10(4):485–93. doi: 10.21320/2500-2139-2017-10-4-485-493. (In Russ)]

  14. Мамаев Н.Н., Гудожникова Я.В., Горбунова А.В. Гиперэкспрессия гена WT1при злокачественных опухолях системы крови: теоретические и клинические аспекты (обзор литературы). Клиническая онкогематология. 2016;9(3):257–64. doi: 10.21320/2500-2139-2016-9-3-257-264.

    [Mamaev NN, Gudozhnikova YaV, Gorbunova AV. WT1 Gene Overexpression in Oncohematological Disorders: Theoretical and Clinical Aspects (Literature Review). Clinical oncohematology. 2016;9(3):257–64. doi: 10.21320/2500-2139-2016-9-3-257-264. (In Russ)]

  15. Будаева И.Г., Гиршова Л.Л., Кузин С.О. и др. Прогностическое значение уровня гена WT1 у больных острыми миелоидными лейкозами с изолированной мутацией NPM1 и мутацией NPM1 c дополнительными молекулярными маркерами. Клиническая онкогематология. 2017;10(4):530–1.

    [Budaeva IG, Girshova LL, Kuzin SO, et al. Prognostic Value of WT1 Gene Level in Patients with Acute Myeloid Leukemia with Isolated NPM1 and NPM1 Mutation with Additional Molecular Markers. Clinical oncohematology. 2017;10(4):530–1. (In Russ)]

  16. Tamura H, Dan K, Yokose N, et al. Prognostic significance of WT1 mRNA and anti-WT1 antibody levels in peripheral blood in patients with myelodysplastic syndromes. Leuk Res. 2010;34(8):986–90. doi: 10.1016/j.leukres.2009.11.029.

  17. Gallo D, Nicoli P, Calabrese C, et al. The Wilms’ tumor (WT1) gene expression correlates with the International Prognostic Scoring System (IPSS) score in patients with myelofibrosis and it is a marker of response to therapy. Cancer Medicine. 2016;5(7):1650–3. doi: 10.1002/cam4.735.

  18. Siordiya N, Lisina E, Butylin P, et al. Incidence of Elevated Expression of wt1 in Primary Myelofibrosis (pmf) and Postpv-, Postet Myelofibrosis and Its Dynamics during Ruxolitinib Treatment. 2016;128:5498.

  19. Сиордия Н.Т., Булычева Е.Н., Холопова И.В. Частота встречаемости гиперэкспрессии WT1 у пациентов с миелоидными неоплазиями. Бюллетень Федерального Центра сердца, крови и эндокринологии им. В.А. Алмазова. 2012;6(17):116–20.

    [Siordiya NT, Bulycheva EN, Kholopova IV. WT1 overexpression rate in patents with myeloid neoplasm. Byulleten’ Federal’nogo Tsentra serdtsa, krovi i endokrinologii im. A. Almazova. 2012;6(17):116–20. (In Russ)]

  20. Cilloni D, Renneville A, Hermitte F, et al. Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: A European Leukemia Net study. J Clin Oncol. 2009;27(31):5195–201. doi: 10.1200/jco.2009.22.4865.

  21. Vizmanos JL, Ormazabal C, Larrayoz MJ, et al. JAK2 V617F mutation in classic chronic myeloproliferative diseases: a report on a series of 349 patients. Leukemia. 2006;20(3):534–5. doi: 10.1038/sj.leu.2404086.

  22. Nangalia J, Massie CE, Baxter EJ, et al. Somatic CALR Mutations in Myeloproliferative Neoplasms with Nonmutated JAK2 N Engl J Med. 2013;369(25):2391–405. doi: 10.1056/NEJMoa1312542.

  23. Beer PA, Campbell PJ, Scott LM, et al. MPL mutations in myeloproliferative disorders: analysis of the PT-1 cohort. 2008;112(1):141–9. doi: 10.1182/blood-2008-01-131664.

  24. Меликян А.Л., Суборцева И.Н., Судариков А.Б. и др. Клинические особенности эссенциальной тромбоцитемии и первичного миелофиброза в зависимости от молекулярных характеристик заболевания. Терапевтический архив. 2017;89(7):4–9. doi: 10.17116/terarkh20178974-9.

    [Melikyan AL, Subortseva IN, Sudarikov AB, et al. Clinical features of essential thrombocythemia and primary myelofibrosis, depending on the molecular characteristics of disease. Terapevticheskii arkhiv. 2017;89(7):4–9. doi: 10.17116/terarkh20178974-9. (In Russ)]

  25. Жернякова А.А., Мартынкевич И.С., Шуваев В.А. и др. Молекулярно-генетические маркеры и особенности течения эссенциальной тромбоцитемии. Клиническая онкогематология. 2017;10(3):402–8. doi: 10.21320/2500-2139-2017-10-3-402-408.

    [Zhernyakova AA, Martynkevich IS, Shuvaev VA, et al. Molecular Genetic Markers and Clinical Characteristics of Essential Thrombocythemia. Clinical oncohematology. 2017;10(3):402–8. doi: 10.21320/2500-2139-2017-10-3-402-408. (In Russ)]

  26. Лисина Е.Г., Сиордия Н.Т., Бутылин П.А. и др. Клинико-лабораторные особенности эссенциального тромбоцитоза и первичного миелофиброза в зависимости от мутационного статуса генов JAK2 и CALR1. Онкогематология. 2017;12(3):8–16.

    [Lisina EG, Siordiya NT, Butylin PA, et al. Clinical and laboratory features of essential thrombocytosis and primary myelofibrosis depending on JAK2 and CALR1 mutation status. 2017;12(3):8–16. (In Russ)]

  27. Delic S, Rose D, Kern W, et al. Application of an NGS-based 28-gene panel in myeloproliferative neoplasms reveals distinct mutation patterns in essential thrombocythaemia, primary myelofibrosis and polycythaemia vera. Br J Haematol. 2016;175(3):419–26. doi: 10.1111/bjh.14269.

  28. Tefferi A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia. 2010;24(6):1128–38. doi: 10.1038/leu2010.69.

  29. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. doi: 10.1182/blood-2016-03-643544.

  30. Меликян А.Л., Туркина А.Г., Ковригина А.М. и др. Клинические рекомендации по диагностике и терапии Ph-негативных миелопролиферативных заболеваний (истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз) (редакция 2016 г.). Гематология и трансфузиология. 2017;62(1, прил. 1):25–60.

    [Melikyan AL, Turkina AG, Kovrigina AM, et al. Clinical recommendations for diagnosis and therapy of Ph-negative myeloproliferative disorders (polycythemia vera, essential thrombocythemia, primary myelofibrosis) (edition 2016). Gematologiya i transfuziologiya. 2017;62(1, Suppl 1):25–60. (In Russ)]

  31. Bain BJ. Bone marrow biopsy morbidity: review of 2003. J Clin Pathol. 2005;58(4):406–8. doi: 10.1136/jcp.2004.022178.

  32. Arora B, Sirhan S, Hoyer JD, et al. Peripheral blood CD34 count in myelofibrosis with myeloid metaplasia: a prospective evaluation of prognostic value in 94 patients. Br J Haematol. 2005;128(1):42–8. doi: 10.1111/j.1365-2141.2004.05290.x.

  33. Barosi G, Viarengo G, Pecci A, et al. Diagnostic and clinical relevance of the number of circulating CD34+ cells in myelofibrosis with myeloidmetaplasia. Blood. 2001;98(12):3249–55. doi: 10.1182/blood.V98.12.3249.

  34. Xu M, Bruno E, Chao J, et al. Constitutive mobilization of CD34+ cells into the peripheral blood in idiopathic myelofibrosis may be due to the action of a number of proteases. Blood. 2005;105(11):4508–15. doi: 10.1182/blood-2004-08-3238.

  35. Забелина Т.С., Постриганева Т.И., Сайдали М.А. и др. Колониеобразующая способность клеток костного мозга и крови больных с различными формами лейкозов. Терапевтический архив. 1977;6:53–9.

    [Zabelina TS, Postriganeva TI, Saidali MA, et al. Bone marrow and blood cell colony-forming ability in patients with different leukemia types. Terapevticheskii arkhiv. 1977;6:53–9. (In Russ)]

  36. Harrison CN, Vannucchi AM, Kiladjian JJ, et al. Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib vs best available therapy for myelofibrosis. Leukemia. 2016;30(8):1701–7. doi: 10.1038/leu.2016.148.

  37. Verstovsek S, Gupta V, Jason R, et al. A Pooled Overall Survival (OS) Analysis of 5-Year Data from the COMFORT-I and COMFORT-II Trials of Ruxolitinib for the Treatment of Myelofibrosis (MF). 2016;128(22):3110.

  38. Ионова Т.И., Анчукова Л.В., Виноградова О.Ю. и др. Качество жизни и спектр симптомов у больных миелофиброзом на фоне терапии: данные клинической практики. Гематология и трансфузиология. 2016;61(1):17–25.

    [Ionova TI, Anchukova LV, Vinogradova OYu, et al. Quality of life and symptoms in patients with myelofibrosis during the treatment: Data of clinical practice. Gematologiya i transfuziologiya. 2016;61(1):17–25. (In Russ)]

  39. Foltz L, Palumbo GA, Martino B, et al. Safety and Efficacy of Ruxolitinib for the Final Enrollment of JUMP: An Open-Label, Multicenter, Single-Arm, Expanded-Access Study in Patients with Myelofibrosis (n=2233). Blood. 2016;128(22):3107.

Expression of the BCR-ABL1 Gene in Patients with Chronic Myeloproliferative Diseases with Signs of Progression

LA Kesaeva1, EN Misyurina2, DS Mar’in2, EI Zhelnova2, AYu Bulanov2, AE Misyurina3, AA Krutov4, IN Soldatova4, SS Zborovskii4, VA Misyurin1,4, VV Tikhonova1, YuP Finashutina1, ON Solopova1, NA Lyzhko1, AE Bespalova1, NN Kasatkina1, AV Ponomarev1, MA Lysenko2, AV Misyurin1,4

1 NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

2 Municipal Clinical Hospital No. 52, 3 Pekhotnaya str., Moscow, Russian Federation, 123182

3 National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

4 GenoTekhnologiya, 104 Profsoyuznaya str., Moscow, Russian Federation, 117485

For correspondence: Andrei Vital’evich Misyurin, PhD in Biology, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(499)612-80-38; e-mail: and@genetechnology.ru

For citation: Kesaeva LA, Misyurina EN, Mar’in DS, et al. Expression of the BCR-ABL1 Gene in Patients with Chronic Myeloproliferative Diseases with Signs of Progression. Clinical oncohematology. 2018;11(4):354–9.

DOI: 10.21320/2500-2139-2018-11-4-354-359


Background. The V617F mutation of JAK2 is known to manifest in Ph-negative chronic myeloproliferative diseases (cMPD), such as polycythemia vera, thrombocythemia, and myelofibrosis. These diseases not infrequently advance into more aggressive forms up to acute leukemia. As the progression mechanism is still unknown, its study retains a high priority. JAK2 carrying the V617F mutation is believed to cause constant activation of V(D)J recombinase in myeloid tumor cells in cMPD patients. Aberrant activation of V(D)J recombinase in tumor cells in cMPD patients can lead to t(9;22)(q34;q11) chromosomal rearrangement.

Aim. To study the expression of BCR-ABL1 resulting from translocation t(9;22)(q34;q11) in cMPD patients at the progression stage in order to test the suggested hypothesis.

Materials & Methods. The BCRABL1 expression was assessed in peripheral blood granulocytes in cMPD patients by real-time PCR. The JAK2 V617F mutation was identified by quantitative allele-specific PCR. The JAK2 exon 12 mutations were determined using Sanger direct sequencing of PCR products.

Results. The BCR-ABL1 expression was discovered in 29 % of patients with cMPD progression. The BCR-ABL1 expression in these patients correlated with hepatosplenomegaly and hyperleukocytosis.

Conclusion. In a significant proportion of cMPD patients the disease progression can be associated with activation of the BCR-ABL expression.

Keywords: JAK2 V617F, BCR-ABL1, V(D)J recombinase, t(9;22)(q34;q11), polycythemia vera, essential thrombocythemia, myelofibrosis, chronic myeloid leukemia.

Received: April 2, 2018

Accepted: August 5, 2018

Read in PDF 


  1. Dameshek W. Some speculations on the myeloproliferative syndromes. Blood. 1951;6(4):372–5.

  2. Nowell P, Hungerford D. A minute chromosome in human chronic granulocytic leukemia. Science. 1960;132:1497, abstract.

  3. Rowley JD. Letter: A new consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243(5405):290–3. doi: 10.1038/243290a0.

  4. Davis R, Konopka J, Witte O. Activation of the c-abl оncogene by viral transduction or chromosomal translocation generates altered c-abl proteins with similar in vitro kinase properties. Mol Cell Biol. 1985;5(1):204–13. doi: 10.1128/mcb.5.1.204.

  5. Muller AJ, Young JC, Pendergast AM, et al. BCR first exon sequences specifically activate the BCR/ABL thyrosine kinase oncogene of Philadelphia chromosome-positive human leukemias. Mol Cell Biol. 1991;11(4):1785–92. doi: 10.1128/mcb.11.4.1785.

  6. James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signaling causes polycythaemia vera. Nature. 2005;434(7037):1144–8. doi: 10.1038/nature03546.

  7. Scott LM, Tong W, Levine RL, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007;356(5):459–68. doi: 10.1056/NEJMoa065202.

  8. Pikman Y, Lee BH, Mercher T, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3(7):e270. doi: 10.1371/journal.pmed.0030270.

  9. Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379–90. doi: 10.1056/NEJMoa1311347.

  10. Nangalia J, Massie CE, Baxter EJ, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369(25):2391–405. doi: 10.1056/NEJMoa1312542.

  11. Tutaeva V, Misurin AV, Rozenberg JM, et al. Application of PRV-1 mRNA expression level and JAK2V617F mutation for the differentiating between polycytemia vera and secondary erythrocytosis and assessment of treatment by interferon or hydroxyurea. Hematology. 2007;12(6):473–9. doi: 10.1080/10245330701384005.

  12. Мисюрин А.В. Молекулярный патогенез миелопролиферативных заболеваний. Клиническая онкогематология. 2009;2(3):211–9.

    [Misyurin AV. Molecular pathogenesis of myeloproliferative disorders. Klinicheskaya onkogematologiya. 2009;2(3):211–9. (In Russ)]

  13. Vainchenker W, Delhommeau F, Constantinescu SN, Bernard OA. New mutations and pathogenesis of myeloproliferative neoplasms. Blood. 2011;118(7):1723–35. doi: 10.1182/blood-2011-02-292102.

  14. Mirza I, Frantz C, Clarce G, et al. Transformation of polycythemia vera to chronic myelogenous leukemia. Arch Pathol Lab Med. 2007;131(11):1719–24.

  15. Toogeh G, Ferdowsi S, Naadali F, et al. Concomitant presence of JAK2 V617F mutation and BCR-ABL translocation in a pregnant woman with polycythemia vera. Med Oncol. 2011;28(4):1555–8. doi: 10.1007/s12032-010-9570-8.

  16. Bee PC, Gan GG, Nadarajan VS, et al. A man with concomitant polycythaemia vera and chronic myeloid leukemia: the dynamics of the two disorders. Int J Hematol. 2010;91(1):136–9. doi: 10.1007/s12185-009-0471-6.

  17. Kemp NH, Stafford JL, Tanner R. Chromosome studies during early and terminal chronic myeloid leukemia. Br Med J. 1964;1(5389):1010–4. doi: 10.1136/bmj.1.5389.1010.

  18. Hoppin EC, Lewis JP. Polycythemia Rubra Vera Progressing to Ph-Positive Chronic Myelogenous Leukemia. Ann Intern Med. 1975;83(6):820–3. doi: 10.7326/0003-4819-83-6-820.

  19. Saviola A, Claudia Fiorani C, Ferrara L. Transition of polycythemia vera to chronic myeloid leukaemia. Eur J Haematol. 2005;75(3):264–6. doi: 10.1111/j.1600-0609.2005.00488.x.

  20. Мисюрин А.В., Сурин В.Л., Тагиев А.Ф. Новые точки разрыва транслокации t(9;22) при хроническом миелолейкозе. Биоорганическая химия. 1999;25(3):234–6.

    [Misyurin AV, Surin VL, Tagiev AF. New breakpoints of translocation t(9;22) in chronic myeloid leukemia. Bioorganicheskaya khimiya. 1999;25(3):234–6. (In Russ)]

  21. Score J, Calasanz MJ, Ottman O, et al. Analysis of genomic breakpoints in p190 and p210 BCR-ABL indicate distinct mechanisms of formation. Leukemia. 2010;24(10):1742–50. doi: 10.1038/leu.2010.174.

  22. Bassing CH, Swat W, Alt FW. The mechanism and regulation of chromosomal V(D)J recombination. Cell. 2002;109(2):S45–S55. doi: 10.1016/S0092-8674(02)00675-X.

Allogeneic Hematopoietic Stem Cell Transplantation in Myelofibrosis

MV Barabanshchikova, EV Morozova, VV Baikov, IM Barkhatov, NN Mamaev, SN Bondarenko, AL Alyanskii, LS Zubarovskaya, BV Afanas’ev

R.M. Gorbacheva Scientific Research Institute of Pediatric Hematology and Transplantation; Academician I.P. Pavlov First St. Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

For correspondence: Lyudmila Stepanovna Zubarovskaya, DSci, Professor, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022; Tel.: +7(812)338-62-64; e-mail: zubarovskaya_ls@mail.ru

For citation: Barabanshchikova MV, Morozova EV, Baikov VV, et al. Allogeneic Hematopoietic Stem Cell Transplantation in Myelofibrosis. Clinical oncohematology. 2016;9(3):279-86 (In Russ).

DOI: 10.21320/2500-2139-2016-9-3-279-286


Background & Aims. At present, the allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only treatment option with curative potential in patients with myelofibrosis (MF), especially in intermediate and high risk categories. The aim of the study is to perform a retrospective analysis of allo-HSCT outcomes in MF patients.

Materials & Methods. Outcomes of allo-HSCT in 11 intermediate-2 (= 3) and high (= 6) risk patients (based on Dynamic International Prognostic Scoring Scale, DIPSSplus) performed in the R.M. Gorbacheva Scientific Research Institute of Pediatric Hematology and Transplantation over the period from 2005 till 2015 were analyzed in the study. Two more patients underwent allo-HSCT in MF blast phase. Two patients received ruxolitinib before allo-HSCT and 1 patient before and after allo-HSCT. Reduced intensity conditioning regimen was used in all cases.

Results. Primary engraftment was documented in 8 patients. 72 % of patients achieved complete hematological remission. Molecular remission and myelofibrosis regression were confirmed in 5 patients. 5 of 11 patients were still with remission and followed-up by the date of the paper submission. The overall two-year survival was 46 %.

Conclusion. Allo-HSCT is an effective treatment option for MF patients. Further trials are required to evaluate an optimal timing for allo-HSCT in MF patients and efficacy of Janus kinase (JAK) inhibitors as pre- and posttransplant therapy in MF.

Keywords: myelofibrosis, allo-HSCT, reduced intensity conditioning regimen, ruxolitinib.

Received: January 28, 2016

Accepted: March 22, 2016

Read in  PDF (RUS)pdficon


  1. Cervantes F, Dupriez B, Pereira A, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009;113(13):2895–901. doi: 10.1182/blood-2008-07-170449.
  2. Passamonti F, Rumi E, Caramella M, et al. A dynamic prognostic model to predict survival in post-polycythemia vera myelofibrosis. Blood. 2008;111(7):3383–7. doi: 10.1182/blood-2007-11-121434.
  3. Passamonti F, Rumi E, Arcaini L, et al. Prognostic factors for thrombosis, myelofibrosis, and leukemia in essential thrombocythemia: a study of 605 patients. Haematologica. 2008;93(11):1645–51. doi: 10.3324/haematol.13346.
  4. Dupriez BB, Morel P, Demory JL, et al. Prognostic factors in agnogenic myeloid metaplasia: a report on 195 cases with a new scoring system. Blood. 1996;88(3):1013–8.
  5. Passamonti F, Cervantes F, Vannucchi AM, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood. 2009;115(9):1703–8. doi: 10.1182/blood-2009-09-245837.
  6. Gangat N, Caramazza D, Vaidya R, et al. DIPSS Plus: A Refined Dynamic International Prognostic Scoring System for Primary Myelofibrosis That Incorporates Prognostic Information From Karyotype, Platelet Count, and Transfusion Status. J Clin Oncol. 2011;29(4):392–7. doi: 10.1200/jco.2010.32.2446.
  7. Vannucchi AM, Guglielmelli P, Rotunno G, et al. Mutation-Enhanced International Prognostic Scoring System (MIPSS) for Primary Myelofibrosis: An AGIMM & IWG-MRT Project. ASH; 2014. Abstract 405.
  8. Verstovsek S, Mesa R, Gotlib J, et al. Efficacy, safety, and survival with ruxolitinib in patients with myelofibrosis: results of a median 3-year follow-up of COMFORT-I. Haematologica. 2015;100(4):479–88. doi: 10.3324/haematol.2014.115840.
  9. Kvasnicka HM, Thiele J, Bueso-Ramos CE, et al. Long-Term Effects of Ruxolitinib on Bone Marrow Morphology in Patients With Myelofibrosis and Comparison to Best Available Therapy. Haematologica. 2014;14: Abstract S155. doi:10.1016/j.clml.2014.06.098.
  10. Giorgino T, Scott BL, Ditschkowski M, et al. CME Article Impact of allogeneic stem cell transplantation on survival of patients less than 65 years of age with primary myelofibrosis. Blood. 2015;125(21):3347–51. doi: 10.1182/blood-2014-10-608315.
  11. Kroger N, Holler E, Kobbe G, et al. Allogeneic stem cell transplantation after reduced-intensity conditioning in patients with myelofibrosis: a prospective, multicenter study of the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Blood. 2009;114(26):5264–70. doi: 10.1182/blood-2009-07-234880.
  12. Thiele J, Kvasnica HM, Facchetti F, et al. European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica. 2005;90(8):1128–32.
  13. Jagasia MH, Greinix HT, Arora M, et al. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: I. The 2014 Diagnosis and Staging Working Group report. Biol Blood Marrow Transplant. 2015;21(3):389–401. doi: 10.1016/j.bbmt.2014.12.001.
  14. Kroger N, Zabelina T, Alchalby H, et al. Dynamic of bone marrow fibrosis regression predicts survival after allogeneic stem cell transplantation for myelofibrosis. Biol Blood Marrow Transplant. 2014;20(6):812–5. doi: 10.1016/j.bbmt.2014.02.019.
  15. Slot S, Smits K, van de Donk NW, et al. Effect of conditioning regimens on graft failure in myelofibrosis: a retrospective analysis. Bone Marrow Transplant. 2015;11;1424–31. doi: 10.1038/bmt.2015.172.
  16. Shanavas M, Popat U, Michaelis LC, et al. Outcomes of Allogeneic Hematopoietic Cell Transplantation in Patients with Myelofibrosis with Prior Exposure to Janus Kinase 1/2 Inhibitors. Biol Blood Marrow Transplant. 2016;22(3):432–40. doi: 10.1016/j.bbmt.2015.10.005.
  17. Verstovsek S, Kantarjian H, Mesa RA, et al. Safety and Efficacy of INCB018424, a JAK1 and JAK2 Inhibitor, in Myelofibrosis. N Engl J Med. 2010;363(12):1117–27. doi: 10.1056/nejmoa1002028.
  18. Stubig T, Alchalby H, Ditschkowski M, et al. JAK inhibition with ruxolitinib as pretreatment for allogeneic stem cell transplantation in primary or post-ET/PV myelofibrosis. Leukemia. 2014;28(8):1736–8. doi: 10.1038/leu.2014.86.
  19. Jaekel N, Behre G, Behning A, et al. Allogeneic hematopoietic cell transplantation for myelofibrosis in patients pretreated with the JAK1 and JAK2 inhibitor ruxolitinib. Bone Marrow Transplant. 2014;49(2):179–84. doi: 10.1038/bmt.2013.173.

Extensive Combined Surgeries in Patients with Blood Diseases and Gastric Cancer

S.R. Karagyulyan, K.I. Danishyan, A.V. Grzhimolovskii, V.S. Shavlokhov, S.A. Shutov, M.A. Silaev, L.G. Kovaleva, O.M. Sorkina, A.Yu. Bulanov

Hematology Research Center of RF MH, Moscow, Russian Federation

For citation: Karagyulyan S.R., Danishyan K.I., Grzhimolovskii A.V., Shavlokhov V.S., Shutov S.A., Silaev M.A., Kovalyova L.G., Sorkina O.M., Bulanov A.Yu. Extensive Combined Surgeries in Patients with Blood Diseases and Gastric Cancer. Klin. onkogematol. 2014; 7(3): 335–42 (In Russ.).


The second tumor in patients with myelo- or lymphproliferative diseases is not rare. However, the state of patients’ hemostasis and severely enlarged spleen can become a contraindication for a surgical intervention in a general surgery unit. Four cases of a successful gastrectomy with expanded lymphodissection are presented in a 53 year old woman with subleukemic myelosis (primary myelofibrosis according to WHO classification) and giant splenomegaly (38 ´ 21 ´ 13 cm, spleen weight: 4500 g) and in a 68 year old man with diffuse large В-cell lymphoma and massive splenomegaly (22 ´ 12 ´ 8 cm, spleen weight: 2850 g). Intraoperative compensated blood loss in both cases was 3800 ml and 3740 ml, respectively. Two patients had mild hemophilia A. Specially designed transfusional and anaesthetic strategy was required in all cases because of hemostatic disorders.

Keywords: stomach cancer, surgical treatment, hemophilia, myelofibrosis, lymphoma.

Address correspondence to: max-blood@mail.ru

Accepted: May 28, 2014

Read in PDF (RUS)pdficon


  1. Климанский В.А., Бекназаров Я.Б. Опасности и осложнения спле- нэктомии у больных с заболеваниями системы крови. Хирургия 1986; 1: 88–92. [Klimanskii V.A., Beknazarov Ya.B. Hazards and complications of splenectomy in patients with blood diseases. Khirurgiya 1986; 1: 88–92. (In Russ.)].
  2. Климанский В.А. Хирургические аспекты лечения заболевания си- стемы крови. Клин. мед. 1989; 8: 3–8.  [Klimanskii V.A. Surgical aspects of treatment of blood diseases. Klin. med. 1989; 8: 3–8. (In Russ.)].
  3. Arnoletti J.P., Karam J., Brodsky J. Early Postoperative Complications of Splenectomy for Hematologic Disease. Am. J. Clin. Oncol. 1999; 22(2): 114–8.
  4. Nicholson I.A., Falk G.L., Mulligan S.C. Laparoscopically assisted massive splenectomy. A preliminary report of the technique of early hilar devascularization. Surg. Endoscopy 1998; 12: 73–5.
  5. Petroianu A. Subtotal splenectomy for the treatment of chronic lymphocytic leukemia. Ann. Hematol. 2003; 82(11): 708–9. Epub 2003 Aug 2.
  6. Smith L., Luna G., Merg A.R. et al. Laparoscopic splenectomy for treatment of splenomegaly. Am. J. Surg. 2004; 187(5): 618–20.
  7. Мещерякова Л.М., Ковалева Л.Г., Карагюлян С.Р. Патофизиологиче- ские основы лечения сублейкемического миелоза. В кн.: Патофизиология крови. Экстремальные состояния (сборник работ). Под ред. А.И. Воро- бьева, Н.А. Горбуновой. М., 2004: 122–34. [Meshcheryakova L.M., Kovaleva L.G., Karagyulyan S.R. Pathophysiological principles of treatment of subleukemic myelosis. In: Vorob’ev A.I., Gorbunova N.A., eds. Patofiziologiya krovi. Ekstremal’nye sostoyaniya (sbornik rabot). (Blood pathophysiology. Urgent conditions (collection of papers)). Moscow, 2004. pp. 122–34].
  8. Ковалева Л.Г., Карагюлян С.Р., Колосова Л.Ю. и др. Спленэктомия при сублейкемическом миелозе. Гематол. и трансфузиол. 2004; 49(5): 14–21. [Kovaleva L.G., Karagyulyan S.R., Kolosova L.Yu. et al. Splenectomy in subleukemic myelosis. Gematol. i transfuziol. 2004; 49(5): 14–21. (In Russ.)].
  9. Демидова А.В., Хорошко Н.Д. Сублейкемический миелоз. В кн.: Руко- водство по гематологии. Под ред. А.И. Воробьева. М.: Ньюдиамед, 2003; 2: 16–20. [Demidova A.V., Khoroshko N.D. Subleukemic myelosis. In: Vorob’ev A.I., ed. Rukovodstvo po gematologii. (Handbook in hematology). Moscow: N’yudiamed Publ., 2003. Т. 2. рр. 16–20.].
  10. Ковалева Л.Г., Карагюлян С.Р., Колосова Л.Ю. и др. Спленэктомия при сублейкемическом миелозе. Гематол. и трансфузиол. 2004; 5: 14–21. [Kovaleva L.G., Karagyulyan S.R., Kolosova L.Yu. et al. Splenectomy in subleukemic myelosis. Gematol. i transfuziol. 2004; 5: 14–21. (In Russ.)].
  11. Вуд М.Э., Бан П.А. Секреты гематологии и онкологии: Пер. с англ. Под ред. Ю.Н. Токарева, А.Е. Бухны. М.: Бином, 1997. [Wood M.E., Bun P.A. Hematology/Oncology Secrets (Russ. Ed. Yu.N. Tokarev, A.E. Bukhny, eds. Wood M.E., Bun P.A. Sekrety gematologii i onkologii. Moscow: Binom Publ., 1997].
  12. Давыдов М.И., Тер-Ованесов М.Д., Полоцкий Б.Е., Туркин И.Н. Рак желудка. В кн.: Энциклопедия клинической онкологии. Под ред. М.И. Давыдова. М.: РЛС, 2004: 223–7. [Davydov M.I., Ter-Ovanesov M.D., Polotskii B.E., Turkin I.N. Gastric cancer. In: Davydov M.I. Entsiklopediya klinicheskoi onkologii. (Encyclopedia of clinical oncology). Moscow: RLS Publ., 2004. рр. 223–7.]. Горобец Е.С. Принципы анестезии при абдоминальных онкологиче- ских операциях. Регион. анест. и леч. боли 2009; 3(2): 32. [Gorobets E.S. Principles of anesthesia in abdominal oncological surgeries. Region. anest. i lech. boli 2009; 3(2): 32. (In Russ.)].
  13. Щербакова О.В., Шулутко Е.М., Буланов А.Ю. и др. Лапароскопи- ческая спленэктомия в условиях эндотрахеальной анестезии: динамика показателей гемостаза. Эндоскоп. хир. 2004; 1: 192–3. [Shcherbakova O.V., Shulutko E.M., Bulanov A.Yu. et al. Laparoscopic splenectomy with endotracheal anesthesia: changes in hemostatic parameters. Endoskop. khir. 2004; 1: 192–3. (In Russ.)].
  14. Chappell D., Heindl B., Jacob M. et al. Sevoflurane reduces leukocyte and platelet adhesion after ischemia-reperfusion by protecting the endothelial glycocalyx. Anesthesiology 2011; 115(3): 483–91.
  15. Буланов А.Ю., Городецкий В.М., Щербакова О.В. и др. Тромбо- эластографическая оценка системы гемостаза и эффективность ее коррекции перед оперативными вмешательствами у больных с заболеваниями системы крови. Гематол. и трансфузиол. 2012; 57(5): 36–42. [Bulanov A.Yu., Gorodetskii V.M., Shcherbakova O.V. et al. Thromboelastographic evaluation of the hemostatic system and the efficacy of its correction before surgical intervention in patients with blood diseases. Gematol. i transfuziol. 2012; 57(5): 36–42. (In Russ.)].
  16. Буланов А.Ю., Аграчева Н.С., Шулутко Е.М. и др. Т-клеточная лим- фома и рак желудка у пожилого пациента. Трансфузионная терапия при хирургическом вмешательстве. Клин. геронтол. 2009; 15(3): 47–50. [Bulanov A.Yu., Agracheva N.S., Shulutko E.M. et al. T-cell lymphoma and gastric in an elderly patient. Transfusion therapy in surgical intervention. Klin. gerontol. 2009; 15(3): 47–50. (In Russ).]
  17. Mendez D., De La Cruz, Arrebola M.M. et al. The effect of propofol on interaction of platelets with leukocytes and erythrocytes in surgical patients. Anesth. Analg. 2003; 96: 713–9.