The Use of Checkpoint Inhibitors in Classical Hodgkin’s Lymphoma during the COVID-19 Pandemic (Pirogov Medical Center’s Experience)

VO Sarzhevskii, EA Demina, NE Mochkin, AA Spornik, AA Mamedova, EG Smirnova, AE Bannikova, AA Samoilova, VS Bogatyrev, OYu Bronov, YuA Abovich, VYa Melnichenko

NI Pirogov Russian National Medical Center of Surgery, 70 Nizhnyaya Pervomaiskaya str., Moscow, Russian Federation, 105203

For correspondence: Vladislav Olegovich Sarzhevskii, MD, PhD, 70 Nizhnyaya Pervomaiskaya str., Moscow, Russian Federation, 105203; Tel.: +7(495)603-72-17; e-mail:

For citation: Sarzhevskii VO, Demina EA, Mochkin NE, et al. The Use of Checkpoint Inhibitors in Classical Hodgkin’s Lymphoma during the COVID-19 Pandemic (Pirogov Medical Center’s Experience). Clinical oncohematology. 2020;13(3):307–15 (In Russ).

DOI: 10.21320/2500-2139-2020-13-3-307-315


Background. Currently, there are neither systematic data nor clinical guidelines for checkpoint inhibitor immunotherapy in cancer patients in the context of the COVID-19 pandemic. In this respect classical Hodgkin’s lymphoma (cHL) is no exception. The article deals with the experience of Pirogov Medical Center (NI Pirogov Russian National Medical Center of Surgery) in PD-1-inhibitor immunotherapy in relapsed/refractory cHL in the context of the COVID-19 pandemic. The authors endeavour to cover matters of current interest concerning immunotherapy and differential diagnosis of pulmonary adverse events emerging in the context of new realities in providing medical care to cancer patients.

Aim. To assess feasibility and safety of checkpoint inhibitor immunotherapy in relapsed/refractory cHL in the context of the COVID-19 pandemic.

Materials & Methods. This is a retrospective analysis of adverse events of therapy and COVID-19 mortality, and incidence in 50 cHL patients who received immunotherapy at the Pirogov Medical Center in the period of spring COVID-19 pandemic in 2020.

Results. During the reported period (from March 11, 2020, when the COVID-19 pandemic was declared, to May 25, 2020) the group of 50 cHL patients showed relatively low overall incidence rate of newly diagnosed immune-mediated adverse events (14 %; n = 7). Severe adverse events were identified in 2 (4 %) patients. Bacterial infection incidence was 6 % (n = 3). Clinical signs of corona virus confirmed by subsequent laboratory COVID-19 tests were observed in 2 (4 %) patients. One patient died due to the non-COVID-19-associated reason. The main issue the center’s staff was faced with was the need for differential diagnosis between drug-induced (as well as immune-mediated) pulmonitis and COVID-19-associated pneumonia.

Conclusion. The retrospective analysis reveals that PD-1-inhibitor immunotherapy in cHL patients during the COVID-19 pandemic is a feasible method of therapy, but it requires high awareness. Special focus should be given to clinical and radiological similarities of COVID-19-associated pneumonia and pulmonitis as a complication of immunotherapy.

Keywords: classical Hodgkin’s lymphoma, immunotherapy, PD-1-inhibitors, COVID-19 pandemic.

Received: May 29, 2020

Accepted: June 28, 2020

Read in PDF


  1. Coronavirus W.H.O. WHO; 2020. COVID-19. [Internet] Available from: (accessed 28.05.2020).

  2. Стопкороновирус.рф. [электронный документ] Доступно по: https://стопкоронавирус.рф. Ссылка активна на 28.05.2020.[Stopcoronavirus.rf. [Internet] Available from: https://стопкоронавирус.рф (accessed 28.05.2020) (In Russ)]

  3. Liang W, Guan W, Chen R, et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol. 2020;21(3):335–7. doi: 10.1016/S1470-2045(20)30096-6.

  4. Zhang L, Zhu F, Xie L, et al. Clinical characteristics of COVID-19-infected cancer patients: a retrospective case study in three hospitals within Wuhan, China. Ann Oncol. 2000 (in press). doi: 10.1016/j.annonc.2020.03.296.

  5. Petrelli F, Ardito R, Borgonovo K, et al. Haematological toxicities with immunotherapy in patients with cancer: a systematic review and meta-analysis. Eur J Cancer. 2018;103:7–16. doi: 10.1016/j.ejca.2018.07.129.

  6. Finkel I, Sternschuss M, Wollner M, et al. Immune-related neutropenia following treatment with immune checkpoint inhibitors. J Immunother. 2020;43(2):67–74. doi: 10.1097/CJI.0000000000000293.

  7. Choi J, Lee SY. Clinical characteristics and treatment of immune-related adverse events of immune checkpoint inhibitors. Immune Netw. 2020;20(1):e9. doi: 10.4110/in.2020.20.e9.

  8. Stroud CR, Hegde A, Cherry C, et al. Tocilizumab for the management of immune mediated adverse events secondary to PD-1 blockade. J Oncol Pharm Pract. 2019;25(3):551–7. doi: 10.1177/1078155217745144.

  9. Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Nat Acad Sci. 2020;117(20):10970–5. doi: 10.1073/pnas.2005615117.

  10. Ansell S, Lesokhin A, Borrello I, et al. PD-1 Blockade With Nivolumab in Relapsed or Refractory Hodgkin’s Lymphoma. N Engl J Med. 2015;372(4):311–9. doi: 10.1056/NEJMoa1411087.

  11. Armand P, Engert A, Younes A, et al. Nivolumab for Relapsed/Refractory Classic Hodgkin Lymphoma After Failure of Autologous Hematopoietic Cell Transplantation: Extended Follow-Up of the Multicohort Single-Arm Phase II CheckMate 205 Trial. J Clin Oncol. 2018;36(14):1428–39. doi: 10.1200/JCO.2017.76.0793.

  12. Chen R, Zinzani P, Fanale M, et al. Phase II Study of the Efficacy and Safety of Pembrolizumab for Relapsed/Refractory Classic Hodgkin Lymphoma. J Clin Oncol. 2017;35(19):2125–32. doi: 10.1200/JCO.2016.72.1316.

  13. D’Souza A, Jaiyesimi I, Trainor L, et al. Granulocyte Colony-Stimulating Factor Administration: Adverse Events. Transfus Med Rev. 2008;22(4):280–90. doi: 10.1016/j.tmrv.2008.05.005.

  14. Rochefoucauld J, Noel N, Lambotte O. Management of Immune-Related Adverse Events Associated With Immune Checkpoint Inhibitors in Cancer Patients: A Patient-Centred Approach. Intern Emerg Med. 2020. doi: 10.1007/s11739-020-02295-2.

  15. Diamantopoulos P, Gaggadi M, Kassi E, et al. Late-onset Nivolumab-Mediated Pneumonitis in a Patient With Melanoma and Multiple Immune-Related Adverse Events. Melanoma Res. 2017;27(4):391–5. doi: 10.1097/CMR.0000000000000355.

Immune Checkpoint Inhibitors in the Treatment of Lymphomas

KV Lepik

RM Gorbacheva Scientific Research Institute of Pediatric Oncology, Hematology and Transplantation; IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

For correspondence: Kirill Viktorovich Lepik, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022; e-mail:

For citation: Lepik KV. Immune Checkpoint Inhibitors in the Treatment of Lymphomas. Clinical oncohematology. 2018;11(4):303–12.

DOI: 10.21320/2500-2139-2018-11-4-303-312


Programmed death receptors and ligands (PD-1 and PD-L1) are the best studied immune checkpoints (ICP) and are considered to be key factors of immune response control. The ability of tumor cells to affect the ICP receptors is one of the principal mechanisms of suppressing antitumor immunity. The development of ICP inhibitors creates an opportunity to control and activate immune response and opens new perspectives for immunotherapy of cancers, including lymphomas. The paper reviews the biological background for the use of ICP inhibitors in the treatment of classical Hodgkin’s and non-Hodgkin’s lymphomas and summarizes the clinical experience of their use. The new approaches for the creation of combination regimens with ICP are also highlighted.

Keywords: immune checkpoints (ICP), PD-1, PD-L1, classical Hodgkin’s lymphoma, non-Hodgkin’s lymphoma, ICP inhibitors.

Received: March 25, 2018

Accepted: July 23, 2018

Read in PDF 


  1. Walunas TL, Bakker CY, Bluestone JA. CTLA 4 ligation blocks CD28 dependent T cell activation. J Exp Med. 1996;183(6):2541–50.

  2. Freeman GJ, Long AJ, Iwai Y. Engagement of the Pd-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192(7):1027–34. doi: 1084/jem.192.7.1027.

  3. Greaves P, Gribben JG. The role of B7 family molecules in hematologic malignancy. Blood. 2013;121(5):734–44. doi: 1182/blood-2012-10-385591.

  4. Ansell SM, Lesokhin AM, Borrello I, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372(4):311–9. doi: 1056/NEJMoa1411087.

  5. Keir ME, Butte MJ, Freeman GJ, et al. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26(1):677–704. doi: 1146/annurev.immunol.26.021607.090331.

  6. Lee SJ, Jang BC, Lee SW, et al. Interferon regulatory factor-1 is prerequisite to the constitutive expression and IFN-gamma-induced upregulation of B7-H1 (CD274). FEBS Lett. 2006;580(3):755–62. doi: 1016/j.febslet.2005.12.093.

  7. Liu J, Hamrouni A, Wolowiec D, et al. Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-gamma and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood. 2007;110(1):296–304. doi: 1182/blood-2006-10-051482.

  8. Fife BT, Pauken KE, Eagar TN, et al. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat Immunol. 2009;10(11):1185–92. doi: 1038/ni.1790.

  9. Yokosuka T, Takamatsu M, Kobayashi-Imanishiet W, et al. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med. 2012;209(6):1201–17. doi: 1084/jem.20112741.

  10. Chemnitz JM, Parry RV, Nicholset KE, et al. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol. 2004;173(2):945–54. doi: 4049/jimmunol.173.2.945.

  11. Nurieva R, Thomas S, Nguyen T, et al. T-cell tolerance or function is determined by combinatorial costimulatory signals. EMBO J. 2006;25(11):2623–33. doi: 1038/sj.emboj.7601146.

  12. Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7 H1 promotes T cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8(8):793–800. doi: 1038/nm730.

  13. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23. doi: 1056/NEJMoa1003466.

  14. Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–30. doi: 10.1056/NEJMoa1412082.

  15. Weber JS, D’Angelo SP, Minor D, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA 4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015;16(4):375–84. doi: 1016/S1470-2045(15)70076-8.

  16. Topalian SL, Sznol M, McDermott DF, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol. 2014;32(10):1020–30. doi: 1200/JCO.2013.53.0105.

  17. Roemer MG, Advani RH, Ligon AH, et al. PD-L1 and PD-L2 genetic alterations define classical Hodgkin lymphoma and predict outcome. J Clin Oncol. 2016;34(23):2690–7. doi: 10.1200/jco.2016.66.4482.

  18. Carey CD, Gusenleitner D, Lipschitz M, et al. Topological analysis reveals a PD-L1-associated microenvironmental niche for Reed-Sternberg cells in Hodgkin lymphoma. Blood. 2017;130(22):2420–30. doi: 10.1182/blood-2017-03-770719.

  19. Kuppers R. The biology of Hodgkin’s lymphoma. Nat Rev Cancer. 2009;9(1):15–27. doi: 10.1038/nrc2542.

  20. Green MR, Monti S, Rodig SJ, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116(17):3268–77. doi: 10.1182/blood-2010-05-282780.

  21. Chen BJ, Chapuy B, Ouyang J, et al. PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin Cancer Res. 2013;19(13):3462–73. doi: 10.1158/1078-0432.CCR-13-0855.

  22. Steidl C, Lee T, Shah SP, et al. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med. 2010;362(10):875–85. doi: 10.1056/NEJMoa0905680.

  23. Gordon SR, Maute RL, Dulken BW, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545(7655):495–9. doi: 10.1038/nature22396.

  24. Paydas S, Bagir E, Seydaoglu G, et al. Programmed death-1 (PD-1), programmed death-ligand 1 (PD-L1), and EBV-encoded RNA (EBER) expression in Hodgkin lymphoma. Ann Hematol. 2015;94(9):1545–52. doi: 10.1007/s00277-015-2403-2.

  25. Hollander P, Kamper P, Smedby KE, et al. High proportions of PD-1+ and PD-L1+ leukocytes in classical Hodgkin lymphoma microenvironment are associated with inferior outcome. Blood Adv. 2017;1(18):1427–39. doi: 10.1182/bloodadvances.2017006346.

  26. Younes A, Santoro A, Shipp M, et al. Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol. 2016;17(9):1283–94. doi: 10.1016/S1470-2045(16)30167-X.

  27. Armand P, Shipp MA, Ribrag V, et al. Pembrolizumab in Patients with Classical Hodgkin Lymphoma after Brentuximab Vedotin Failure: Long-Term Efficacy from the Phase 1b Keynote-013 Study. Blood. 2016;128:1108, abstract.

  28. Armand P, Engert A, Younes A, et al. Nivolumab for Relapsed/Refractory Classic Hodgkin Lymphoma After Failure of Autologous Hematopoietic Cell Transplantation: Extended Follow-Up of the Multicohort Single-Arm Phase II CheckMate 205 Trial. J Clin Oncol. 2018;36(14):1428–39. doi: 10.1200/JCO.2017.76.0793.

  29. Engert A, Fanale M, Santoro A, et al. Nivolumab for relapsed/refractory classical Hodgkin lymphoma after autologous transplant: full results after extended follow-up of the multicohort multicenter phase 2 CheckMate 205 trial. EHA conference 2017. Abstract S412.

  30. Armand P, Shipp MA, Ribrag V, et al. Programmed Death-1 blockade with pembrolizumab in patients with classical Hodgkin lymphoma after brentuximab vedotin failure. J Clin Oncol. 2016; 34(31):3733–9. doi: 10.1200/JCO.2016.67.3467.

  31. Chen R, Zinzani PL, Fanale MA, et al. Phase II Study of the Efficacy and Safety of Pembrolizumab for Relapsed/Refractory Classic Hodgkin Lymphoma. J Clin Oncol. 2017;35(19):2125–32. doi: 10.1200/JCO.2016.72.1316.

  32. Tsimberidou AM, Braiteh F, Stewart DJ, Kurzrock R. Ultimate fate of oncology drugs approved by the US Food and Drug Administration without a randomized trial. J Clin Oncol. 2009;27(36):6243–50. doi: 10.1200/JCO.2009.23.6018.

  33. Nishijima TF, Shachar SS, Nyrop KA, Muss HB. Safety and tolerability of PD-1/PD-L1 inhibitors compared with chemotherapy in patients with advanced cancer: a meta-analysis. Oncologist. 2017;22(4):470–9. doi: 10.1634/theoncologist.2016-0419.

  34. Shi M, Roemer MGM, Chapuy B, et al. Expression of programmed cell death 1 ligand 2 (PD-L2) is a distinguishing feature of primary mediastinal (thymic) large B-cell lymphoma and associated with PDCD1LG2 copy gain. Am J Surg Pathol. 2014;38(12):1715–23. doi: 10.1097/PAS.0000000000000297.

  35. Twa DDW, Chan FC, Ben-Neriah S, et al. Genomic rearrangements involving programmed death ligands are recurrent in primary mediastinal large B-cell lymphoma. Blood. 2014;123(13):2062–5. doi: 10.1182/blood-2013-10-535443.

  36. Van Roosbroeck K, Ferreiro JF, Tousseyn T, et al. Genomic alterations of the JAK2 and PDL loci occur in a broad spectrum of lymphoid malignancies. Genes Chromos Cancer. 2016;55(5):428–41. doi: 10.1002/gcc.22345.

  37. Zinzani PL, Ribrag V, Moskowitz CH, et al. Safety and tolerability of pembrolizumab in patients with relapsed/refractory primary mediastinal large B-cell lymphoma. Blood. 2017;130(3):267–70. doi: 10.1182/blood-2016-12-758383.

  38. Zinzani PL, Thieblemont C, Melnichenko V, et al. Efficacy and Safety of Pembrolizumab in Relapsed/Refractory Primary Mediastinal Large B-Cell Lymphoma (rrPMBCL): Updated Analysis of the Keynote-170 Phase 2 Trial. ASH conference 2017. Abstract 2833B.

  39. Chapuy B, Roemer MGM, Stewart C, et al. Targetable genetic features of primary testicular and primary central nervous system lymphomas. Blood. 2016;127(7):869–81. doi: 10.1182/blood-2015-10-673236.

  40. Nayak L, Iwamoto FM, LaCasce A, et al. PD-1 blockade with nivolumab in relapsed/refractory primary central nervous system and testicular lymphoma. Blood. 2017;129(23):3071–3. doi: 10.1182/blood-2017-01-764209.

  41. Eberle FC, Salaverria I, Steidl C, et al. Gray zone lymphoma: chromosomal aberrations with immunophenotypic and clinical correlations. Mod Pathol. 2011;24(12):1586–97. doi: 10.1038/modpathol.2011.116.

  42. Melani C, Major A, Schowinsky J, et al. PD-1 blockade in mediastinal gray-zone lymphoma. N Engl J Med. 2017;377(1):89–91. doi: 10.1056/NEJMc1704767.

  43. Georgiou K, Chen L, Berglund M, et al. Genetic basis of PD-L1 overexpression in diffuse large B-cell lymphomas. Blood. 2016;127(24):3026–34. doi: 10.1182/blood-2015-12-686550.

  44. Kiyasu J, Miyoshi H, Hirata A, et al. Expression of programmed cell death ligand 1 is associated with poor overall survival in patients with diffuse large B-cell lymphoma. Blood. 2015;126(19):2193–201. doi: 10.1182/blood-2015-02-629600.

  45. Chen M, Andreozzi M, Pockaj B, et al. Development and validation of a novel clinical fluorescence in situ hybridization assay to detect JAK2 and PD-L1 amplification. Mod Pathol. 2017;30(11):1516–26. doi: 10.1038/modpathol.2017.86.

  46. Gupta M, Han JJ, Stenson M, et al. Elevated serum IL-10 levels in diffuse large B-cell lymphoma: a mechanism of aberrant JAK2 activation. Blood. 2012;119(12):2844–53. doi: 10.1182/blood-2011-10-388538.

  47. Choi JW, Kim Y, Lee JH, et al. MYD88 expression and L265P mutation in diffuse large B-cell lymphoma. Hum Pathol. 2013;44(7):1375–81. doi: 10.1016/j.humpath.2012.10.026.

  48. Bellucci R, Martin A, Bommarito D, et al. Interferon-γ-induced activation of JAK1 and JAK2 suppresses tumor cell susceptibility to NK cells through upregulation of PD-L1 expression. OncoImmunology. 2015;4(6):e1008824. doi: 10.1080/2162402X.2015.1008824.

  49. Laurent C, Charmpi K, Gravelle P, et al. Several immune escape patterns in non-Hodgkin’s lymphomas. OncoImmunology. 2015;4(8):e1026530. doi: 10.1080/2162402X.2015.1026530.

  50. Andorsky DJ, Yamada RE, Said J, et al. Programmed death ligand 1 is expressed by non-Hodgkin lymphomas and inhibits the activity of tumor-associated T cells. Clin Cancer Res. 2011;17(13):4232–44. doi: 10.1158/1078-0432.CCR-10-2660.

  51. Jo JC, Kim M, Choi Y, et al. Expression of programmed cell death 1 and programmed cell death ligand 1 in extranodal NK/T-cell lymphoma, nasal type. Ann Hematol. 2017;96(1):25–31. doi: 10.1007/s00277-016-2818-4.

  52. Muenst S, Hoeller S, Willi N, et al. Diagnostic and prognostic utility of PD-1 in B cell lymphomas. Dis Markers. 2010;29(1):47–53. doi: 10.1155/2010/404069.

  53. Hu L-Y, Xu X-L, Rao H-L, et al. Expression and clinical value of programmed cell death-ligand 1 (PD-L1) in diffuse large B cell lymphoma: a retrospective study. Chin J Cancer. 2017;36(1):94. doi: 10.1186/s40880-017-0262-z.

  54. Ansell SM, Hurvitz SA, Koenig PA, et al. Phase I study of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with relapsed and refractory B-cell non-Hodgkin lymphoma. Clin Cancer Res. 2009;15(20):6446–53. doi: 10.1158/1078-0432.CCR-09-1339.

  55. Lesokhin AM, Ansell SM, Armand P, et al. Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J Clin Oncol. 2016;34(23):2698–704. doi: 10.1200/JCO.2015.65.9789.

  56. Armand P, Nagler A, Weller EA, et al. Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: results of an international phase II trial. J Clin Oncol. 2013;31(33):4199–206. doi: 10.1200/JCO.2012.48.3685.

  57. Palomba ML, Till BG, Park SI, et al. A phase IB study evaluating the safety and clinical activity of atezolizumab combined with obinutuzumab in patients with relapsed or refractory non-Hodgkin lymphoma (NHL). Hematol Oncol. 2017;35(Suppl 2):137–8. doi: 10.1002/hon.2437_126.

  58. Ansell S, Gutierrez ME, Shipp MA, et al. A phase 1 study of nivolumab in combination with ipilimumab for relapsed or refractory hematologic malignancies (CheckMate 039). Blood. 2016;128;22, abstract 183.

  59. Brusa D, Serra S, Coscia M, et al. The PD-1/PD-L1 axis contributes to T-cell dysfunction in chronic lymphocytic leukemia. Haematologica. 2013;98(6):953–63. doi: 10.3324/haematol.2012.077537.

  60. Soma LA, Craig FE, Swerdlow SH. The proliferation center microenvironment and prognostic markers in chronic lymphocytic leukemia/small lymphocytic lymphoma. Hum Pathol. 2006;37(2):152–9. doi: 10.1016/j.humpath.2005.09.029.

  61. Nunes C, Wong R, Mason M, et al. Expansion of a CD8(+)PD-1(+) replicative senescence phenotype in early stage CLL patients is associated with inverted CD4:CD8 ratios and disease progression. Clin Cancer Res. 2012;18(3):678–87. doi: 10.1158/1078-0432.CCR-11-2630.

  62. Ramsay AG, Johnson AJ, Lee AM, et al. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest. 2008;118(7):2427–37. doi: 10.1172/JCI35017.

  63. Berger R, Rotem-Yehudar R, Slama G, et al. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res. 2008;14(10):3044–51. doi: 10.1158/1078-0432.ccr-07-4079.

  64. Ding W, LaPlant BR, Call TG, et al. Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL. Blood. 2017;129(26):3419–27. doi: 10.1182/blood-2017-02-765685.

  65. Panjwani P, Charu V, DeLisser M, et al. Programmed death-1 ligands PD-L1 and PD-L2 show distinctive and restricted patterns of expression in lymphoma subtypes. Hum Pathol. 2018;71:91–9. doi: 10.1016/j.humpath.2017.10.029.

  66. Menter T, Bodmer-Haecki A, Dirnhoferet S, et al. Evaluation of the diagnostic and prognostic value of PDL1 expression in Hodgkin and B-cell lymphomas. Hum Pathol. 2016;54:17–24. doi: 10.1016/j.humpath.2016.03.005.

  67. Wherry EJ. T cell exhaustion. Nat Immunol. 2011;131(6):492–9. doi: 10.1038/ni.2035.

  68. Wahlin BE, Aggarwal M, Montes-Moreno S, et al. A unifying microenvironment model in follicular lymphoma: outcome is predicted by programmed death-1—positive, regulatory, cytotoxic, and helper T cells and macrophages. Clin Cancer Res. 2010;16(2):637–50. doi: 10.1158/1078-0432.CCR-09-2487.

  69. Myklebust JH, Irish JM, Brody J, et al. High PD-1 expression and suppressed cytokine signaling distinguish T cells infiltrating follicular lymphoma tumors from peripheral T cells. Blood. 2013;121(8):1367–76. doi: 10.1182/blood-2012-04-421826.

  70. Smeltzer JP, Jones JM, Ziesmer SC, et al. Pattern of CD14+ follicular dendritic cells and PD1+ T cells independently predicts time to transformation in follicular lymphoma. Clin Cancer Res. 2014;20(11):2862–72. doi: 10.1158/1078-0432.CCR-13-2367.

  71. Carreras J, Lopez-Guillermo A, Roncador G, et al. High numbers of tumor-infiltrating programmed cell death 1-positive regulatory lymphocytes are associated with improved overall survival in follicular lymphoma. J Clin Oncol. 2009;27(9):1470–6. doi: 10.1200/JCO.2008.18.0513.

  72. Richendollar BG, Pohlman B, Elson P, et al. Follicular programmed death 1-positive lymphocytes in the tumor microenvironment are an independent prognostic factor in follicular lymphoma. Hum Pathol. 2011;42(4):552–7. doi: 10.1016/j.humpath.2010.08.015.

  73. Yang ZZ, Grote DM, Ziesmer SC, et al. PD-1 expression defines two distinct T-cell sub-populations in follicular lymphoma that differentially impact patient survival. Blood Cancer J. 2015;5:e281. doi: 10.1038/bcj.2015.1.

  74. Horning SJ, Rosenberg SA. The natural history of initially untreated low-grade non-Hodgkin’s lymphomas. N Engl J Med. 1984;311(23):1471–5. doi: 10.1056/NEJM198412063112303.

  75. Berger R, Rotem-Yehudar R, Slama G, et al. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res. 2008;14(10):3044–51. doi: 10.1158/1078-0432.CCR-07-4079.

  76. Westin JR, Chu F, Zhang M, et al. Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial. Lancet Oncol. 2014;15(1):69–77. doi: 10.1016/S1470-2045(13)70551-5.

  77. Cheson BD, Leonard JP. Monoclonal antibody therapy for B-cell non-Hodgkin’s lymphoma. N Engl J Med. 2008;359(6):613–26. doi: 10.1056/NEJMra0708875.

  78. Nastoupil LJ, Westin J, Fowler N, et al. High response rates with pembrolizumab in combination with rituximab in patients with relapsed follicular lymphoma: interim results of an on open-label, phase II study. Hematol Oncol. 2017;35(Suppl 2):120–1. doi: 10.1002/hon.2437_108.

  79. Zaja F, Tabanelli V, Agostinelli C. CD38, BCL-2, PD-1, and PD-1L expression in nodal peripheral T-cell lymphoma: Possible biomarkers for novel targeted therapies? Am J Hematol. 2017;92(1):E1–E2. doi: 10.1002/ajh.24571.

  80. Xerri L, Chetaille B, Serriari N. Programmed death 1 is a marker of angioimmunoblastic T-cell lymphoma and B-cell small lymphocytic lymphoma/chronic lymphocytic leukemia. Hum Pathol. 2008;39(7):1050–8. doi: 10.1016/j.humpath.2007.11.012.

  81. Wilcox RA, Feldman AL, Wada DA, et al. B7-H1 (PD-L1, CD274) suppresses host immunity in T-cell lymphoproliferative disorders. Blood. 2009;114(10):2149–58. doi: 10.1182/blood-2009-04-216671.

  82. Vranic S, Ghosh N, Kimbrough J. PD-L1 Status in Refractory Lymphomas. PLoS One. 2016;11(11):e0166266. doi: 10.1371/journal.pone.0166266.

  83. Merryman RW, Armand P, Wright KT, Rodig SJ. Checkpoint blockade in Hodgkin and non-Hodgkin lymphoma. Blood Adv. 2017;1(26):2643–54. doi: 10.1182/bloodadvances.2017012534.

  84. Marzec M, Zhang Q, Goradia A, et al. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1). Proc Natl Acad Sci USA. 2008;105(52):20852–7. doi: 10.1073/pnas.0810958105.

  85. Brown JA, Dorfman DM, Ma FR, et al. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol. 2003;170(3):1257–66. doi: 10.4049/jimmunol.170.3.1257.

  86. Hebart H, Lang P, Woessmann W. Nivolumab for Refractory Anaplastic Large Cell Lymphoma: A Case Report. Ann Intern Med. 2016;165(8):607–8. doi: 10.7326/116-0037.

  87. Cetinozman F, Jansen PM, Willemze R. Expression of programmed death-1 in primary cutaneous CD4-positive small/medium-sized pleomorphic T-cell lymphoma, cutaneous pseudo-T-cell lymphoma, and other types of cutaneous T-cell lymphoma. Am J Surg Pathol. 2012;36(1):109–16. doi: 10.1097/PAS.0b013e318230df87.

  88. Xia Y, Medeiros JL, Young KH. Signaling pathway and dysregulation of PD1 and its ligands in lymphoid malignancies. Biochim Biophys Acta. 2016;1865(1):58–71. doi: 10.1016/j.bbcan.2015.09.002.

  89. Cetinozman F, Jansen PM, Vermeer MH, et al. Differential expression of programmed death-1 (PD-1) in Sezary syndrome and mycosis fungoides. Arch Dermatol. 2012;148(12):1379. doi: 10.1001/archdermatol.2012.2089.

  90. Khodadoust M, Rook AH, Porcu P, et al. Pembrolizumab for treatment of relapsed/refractory mycosis fungoides and Sezary syndrome: clinical efficacy in a Citn multicenter phase 2 study. Blood. 2016;128:22, abstract 181.

  91. Kwong YL, Chan TSY, Tan D, et al. PD1 blockade with pembrolizumab is highly effective in relapsed or refractory NK/T-cell lymphoma failing l-asparaginase. Blood. 2017;129(17):2437–42. doi: 10.1182/blood-2016-12-756841.

  92. Chan TSY, Li J, Loong F, et al. PD1 blockade with low-dose nivolumab in NK/T cell lymphoma failing L-asparaginase: efficacy and safety. Ann Hematol. 2018;97(1):193–6. doi: 10.1007/s00277-017-3127-2.

  93. Four M, Cacheux V, Tempier A, et al. PD1 and PDL1 expression in primary central nervous system diffuse large B-cell lymphoma are frequent and expression of PD1 predicts poor survival. Hematol Oncol. 2017;35(4):487–96. doi: 10.1002/hon.2375.

  94. Pelland K, Mathews S, Kamath A, et al. Dendritic Cell Markers and PD-L1 are Expressed in Mediastinal Gray Zone Lymphoma. Appl Immunohistochem Mol Morphol. 2017. doi: 10.1097/PAI.0000000000000615. [Epub ahead of print]

  95. Park JH, Han JH, Kanget HY, et al. Expression of follicular helper T-cell markers in primary cutaneous T-cell lymphoma. Am J Dermatopathol. 201;36(6):465–70. doi: 10.1097/DAD.0b013e3182a72f8c.

Outcome of Classical Hodgkin’s Lymphoma Treatment Based on High-Dose Chemotherapy and Autologous Hematopoietic Stem Cell Transplantation: The Experience in the NI Pirogov Russian National Medical Center of Surgery

NE Mochkin, VO Sarzhevskii, YuN Dubinina, EG Smirnova, DA Fedorenko, AE Bannikova, DS Kolesnikova, VS Bogatyrev, NM Faddeev, VYa Mel’nichenko

NI Pirogov Russian National Medical Center of Surgery, 70 Nizhnyaya Pervomaiskaya str., Moscow, Russian Federation, 105203

For correspondence: Nikita Evgen’evich Mochkin, MD, PhD, 70 Nizhnyaya Pervomaiskaya str., Moscow, Russian Federation, 105203; Tel.: 8(495)603-72-17; e-mail:

For citation: Mochkin NE, Sarzhevskii VO, Dubinina YuN, et. al. Outcome of Classical Hodgkin’s Lymphoma Treatment Based on High-Dose Chemotherapy and Autologous Hematopoietic Stem Cell Transplantation: The Experience in the NI Pirogov Russian National Medical Center of Surgery. Clinical oncohematology. 2018;11(3):234–40.

DOI: 10.21320/2500-2139-2018-11-3-234-240


Aim. To estimate the long-term outcome of the programmed treatment of classical Hodgkin’s lymphoma (cHL) including high-dose chemotherapy (HDCT) and autologous hematopoietic stem cell transplantation (auto-HSCT) as well as the effect of various factors on the achieved results in a single-center study.

Materials & Methods. In the A.A. Maksimov Clinical Center of Hematology and Cellular Therapy of the NI Pirogov Russian National Medical Center of Surgery 260 cHL patients received HDCT combined with auto-HSCT within the period from December 2006 to March 2017. The median age was 29 years (range 17–62). The study included 40 % men (n = 104), and 60 % women (n = 156). The median pretransplantation chemotherapy line was 3 (range 2–9). At this stage, prior to auto-HSCT, complete remission (CR) rate was 26.5 %, partial remission (PR) rate was 52.3 %, disease stabilisation rate was 13.5 %. HDCT with auto-HSCT was applied beyond progression as a salvage therapy in 7.7 % of patients. In 79.6 % of patients the standard BEAM and CBV conditioning regimens were used.

Results. After HDCT combined with auto-HSCT overall 5-year survival (OS) of 260 cHL patients was 74 %, and 5-year progression-free survival (PFS) was 48 %, which corresponds to the results of some international studies. 5-year OS rates were significantly higher after HDCT and auto-HSCT performed during the first CR or PR (85 %) vs the second and subsequent CR and PR (71 %). Neither gender (= 0.4) nor ECOG status (= 0.2) effects on OS and PFS were revealed. 5-year OS rates were significantly higher after HDCT and auto-HSCT performed during CR or PR (82 %) vs disease stabilisation and progression (54 %) as well as upon achieving CR (93 %) vs PR (77 %).

Conclusion. In cHL tumor sensitivity to chemotherapy is the essential indication for HDCT combined with auto-HSCT. The optimal time for HDCT and auto-HSCT in cHL is the first CR/PR, and the best treatment outcome is achieved in patients with complete response prior to HDCT and auto-HSCT.

Keywords: classical Hodgkin’s lymphoma, high-dose chemotherapy, autologous hematopoietic stem cell transplantation.

Received: February 9, 2018

Accepted: May 3, 2018

Read in PDF 


  1. Российские клинические рекомендации по диагностике и лечению лимфопролиферативных заболеваний. Под ред. И.В. Поддубной, В.Г. Савченко. М.: Буки Веди, 2016.[Poddubnaya IV, Savchenko VG, eds. Rossiiskie klinicheskie rekomendatsii po diagnostike i lecheniyu limfoproliferativnykh zabolevanii. (Russian clinical guidelines in diagnosis and treatment of lymphoproliferative disorders). Moscow: Buki Vedi Publ.; 2016. (In Russ)]
  2. Skoetz N, Trelle S, Rancea M, et al. Effect of initial treatment strategy on survival of patients with advanced-stage Hodgkin’s lymphoma: a systematic review and network meta-analysis. Lancet Oncol. 2013;14(10):943–52. doi: 10.1016/S1470-2045(13)70341-3.
  3. Kuruvilla J, Keating A, Crump M. How I treat relapsed and refractory Hodgkin lymphoma. Blood. 2011;117(16):4208–17. doi: 10.1182/blood-2010-09-288373.
  4. Thomas RK, Re D, Zander T, et al. Epidemiology and etiology of Hodgkin’s lymphoma. Ann Oncol. 2002;13(Suppl. 4):147–52. doi: 10.1093/annonc/mdf652.
  5. Linch D, Winfield D, Goldstone A, et al. Dose intensification with autologous bone marrow transplantation in relapsed and resistant Hodgkin disease: results of a BNLI randomized trial. Lancet. 1993;341(8852):1051–4. doi: 10.1016/0140-6736(93)92411-L.
  6. Schmitz N, Pfistner B, Sextro M, et al. Aggressive conventional chemotherapy compared with high-dose chemotherapy with autologous haemopoietic stem-cell transplantation for relapsed chemosensitive Hodgkin disease: a randomized trial. Lancet. 2002;359(9323):2065–71. doi: 10.1016/S0140-6736(02)08938-9.
  7. Josting A, Franklin J, May M, et al. New prognostic score based on treatment outcome of patients with relapsed Hodgkin’s lymphoma registered in the database of the German Hodgkin’s lymphoma study group. J Clin Oncol. 2002;20(1):221–30. doi: 10.1200/JCO.2002.20.1.221
  8. Ljungman P, Bregni M, Brune M, et al. Allogenic and autologous transplantation for haematological disease, solid tumors and immune disorders: current practice in Europe 2009. Bone Marrow Transplant. 2010;45(2):219–34. doi: 10.1038/bmt.2009.141.
  9. Perales M-A, Ceberio I, Armand Ph, et al. Role of cytotoxic therapy with hematopoietic cell transplantation in the treatment of Hodgkin lymphoma: guidelines from the American Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2015;21(6):971–983. doi: 10.1016/j.bbmt.2015.02.022.
  10. Hoppe RT, Advani RH, Ai WZ, et al. NCCN Clinical Practice Guidelines in Oncology. Hodgkin Lymphoma. Version 1.2018. Available from: (accessed 05.03.2018).
  11. Moscowitz CH, Kewalramani T, Nimer SD, et al. Effectiveness of high-dose chemoradiotherapy and autologous stem cell transplantation for patients with biopsy-proven primary refractory Hodgkin’s disease. Br J Haematol. 2004;124(5):645–52. doi: 1111/j.1365-2141.2003.04828.x.
  12. Sirohi B, Cunningham D, Powles R, et al. Long-term outcome of autologous stem-cell transplantation in relapsed or refractory Hodgkin’s lymphoma. Ann Oncol. 2008;19(7):1312–9. doi: 10.1093/annonc/mdn052.
  13. Moskowitz CH, Nimer SD, Zelenets AD, et al. A 2-step comprehensive high-dose chemoradiotherapy second-line program for relapsed and refractory Hodgkin disease: analysis by intent to treat and development of a prognostic model. Blood. 2001;97(3):616–23. doi: 10.1182/blood.V97.3.616.
  14. Phillips JK, Spearing RL, Davies JM, et al. VIM-D salvage chemotherapy in Hodgkin’s disease. Cancer Chemother Pharmacol. 1990;27(2):161–3. doi: 10.1007/bf00689103.
  15. The International ChlVPP Treatment Group. ChlVPP therapy for Hodgkin’s disease: experience of 960 patients. Ann Oncol 1995;6(2):167–72.
  16. Colwill R, Crump M, Couture F, et al. Mini-BEAM as salvage therapy for relapsed or refractory Hodgkin’s disease before intensive therapy and autologous bone marrow transplantation. J Clin Oncol. 1995;13(2):396–402. doi: 10.1200/JCO.1995.13.2.396.
  17. Rodriguez MA, Cabanillas FC, Hagemeister FB, et al. A phase II trial of mesna/ifosfamide, mitoxantrone and etoposide for refractory lymphomas. Ann Oncol. 1995;6(6):609–12. doi: 10.1093/oxfordjournals.annonc.a059252.
  18. Aparicio J, Segura A, Garcera S, et al. ESHAP is an active regimen for relapsing Hodgkin’s disease. Ann Oncol. 1999;10(5):593–5. doi: 10.1023/a:1026454831340.
  19. Martin A, Femandez-Jimenez MC, Caballero MD, et al. Long-term follow-up in patients treated with Mini-BEAM as salvage therapy for relapsed or refractory Hodgkin’s disease. Br J Haematol. 2001;113(1):161–71. doi:1046/j.1365-2141.2001.02714.x.
  20. Josting A, Rudolph C, Reiser M, et al. Time-intensified dexamethasone/cisplatin/cytarabine: an effective salvage therapy with low toxicity in patients with relapsed and refractory Hodgkin’s disease. Ann Oncol. 2002;13(10):1628–35. doi: 10.1093/annonc/mdf221.
  21. Abali H, Urun Y, Oksuzoglu B, et al. Comparison of ICE (ifosfamide-carboplatin-etoposide) versus DHAP (cytosine arabinoside-cisplatin-dexamethasone) as salvage chemotherapy in patients with relapsed or refractory lymphoma. Cancer Invest. 2008;26(4):401–6. doi: 10.1080/07357900701788098.
  22. European Society for Blood and Marrow Transplantation Annual Report 2016. Available from: (accessed 28.03.2018).
  23. Passweg JR, Baldomero H, Bregni M, et al. Hematopoietic SCT in Europe: data and trends in 2011. Bone Marrow Transplant. 2013;48(9):1161–7. doi: 10.1038/bmt.2013.51.
  24. Жуков Н.В., Усс А.Л., Миланович Н.Ф. и др. Оптимальные сроки проведения аутологичной трансплантации клеток предшественников гемопоэза при неблагоприятном течении лимфомы Ходжкина. Зарубежные рекомендации и отечественная практика. Онкогематология. 2014;2:37–44.[Zhukov NV, Uss AL, Milanovich NF, et al. The optimal time for autologous hematopoietic progenitor cell transplantation during treatment of Hodgkin’s lymphoma. Foreign recommendations and Russian experience. Onkogematologiya. 2014;2:37–44. (In Russ)]
  25. Мочкин Н.Е., Саржевский В.О., Дубинина Ю.Н. и др. Высокодозная химиотерапия с трансплантацией аутологичных кроветворных стволовых клеток при лимфоме Ходжкина. Десятилетний опыт ФГБУ «НМХЦ им. Н.И. Пирогова» Минздрава России. Российский журнал детской гематологии и онкологии. 2017;4(2):85–90. doi: 10.17650/2311-1267-2017-4-2-85-90.[Mochkin NE, Sarzhevskii VO, Dubinina YuN, et al. High-dose chemotherapy with autologous hematopoietic stem cell transplantation in patients with Hodgkin’s lymphoma. 10-year experience of the NI Pirogov Russian National Medical Center of Surgery. Rossiiskii zhurnal detskoi gematologii i onkologii. 2017;4(2):85–90. doi: 17650/2311-1267-2017-4-2-85-90. (In Russ)]
  26. Sasse S, Alram M, Muller H, et al. Prognostic relevance of DHAP dose-density in relapsed Hodgkin lymphoma: an analysis of the German Hodgkin-Study Group.Leuk Lymphoma.2016;57(5):1067–73. doi: 10.3109/10428194.2015.1083561.
  27. Moskowitz AJ, Hamlin PA, Perales M-A, et al. Phase II study of bendamustine in relapsed and refractory Hodgkin lymphoma. J Clin Oncol. 2013;31(4):456–60. doi: 10.1200/JCO.2012.45.3308.
  28. Visani G, Malerba L, Stefani PM, et al. BeEAM (bendamustine, etoposide, cytarabine, melphalan) before autologous stem cell transplantation is safe and effective for resistant/relapsed lymphoma patients. Blood. 2011;118(12):3419–25. doi: 10.1182/blood-2011-04-351924.
  29. Caballero MD, Rubio V, Rifon J, et al. BEAM chemotherapy followed by autologous stem cell support in lymphoma patient: analysis of efficacy, toxicity and prognostic factors. Bone Marrow Transplant. 1997;20(6):451–8. doi: 10.1038/sj.bmt.1700913.
  30. Jagannath S, Armitage JO, Dicke KA, et al. Prognostic factors for response and survival after high-dose cyclophosphamide, carmustine, and etoposide with autologous bone marrow transplantation for relapsed Hodgkin’s disease. J Clin Oncol. 1989;7(2):179–85. doi: 10.1200/jco.1989.7.2.179.
  31. Provencio M, Sanchez A, Sanchez-Beato M. New drugs and targeted treatments in Hodgkin’s lymphoma. Cancer Treat Rev. 2014;40(3):457–64. doi. 10.1016/j.ctrv.2013.09.005.

Epstein-Barr Virus in Patients with Classical Hodgkin’s Lymphoma

VE Gurtsevitch, EA Demina, NB Senyuta, IV Botezatu, KV Smirnova, TE Dushen’kina, DM Maksimovich, UV Paramonova, IS Monin, AV Lichtenshtein

NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Prof. Vladimir Eduardovich Gurtsevitch, MD, PhD, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: 8(499)324-25-64; e-mail:

For citation: Gurtsevitch VE, Demina EA, Senyuta NB, et al. Epstein-Barr Virus in Patients with Classical Hodgkin’s Lymphoma. Clinical oncohematology. 2018;11(2):160–6.

DOI: 10.21320/2500-2139-2018-11-2-160-166


Background. A close relationship between Epstein-Barr virus (EBV) and classical Hodgkin’s lymphoma (cHL) has been established in approximately 1/3 patients. EBV-positive lymphomas are characterized by increased level of EBV specific antibodies emerging long before tumor symptoms, аs well as a high plasma EBV DNA concentration. These viral markers normally correlate with clinical manifestations and the outcome of treatment performed. In patients with EBV-negative lymphomas, however, there has been no attempt to assess the clinical significance of either humoral response to EBV or EBV DNA concentration in plasma.

Aim. To evaluate diagnostic and prognostic significance of EBV markers in patients with EBV-negative lymphomas.

Methods. The clinical trial included 13 cHL-patients admitted at the Department of chemotherapy of hemoblastoses of NN Blokhin National Medical Cancer Research Center. The male to female ratio was 1:1.3, the median age was 26.4 years. Leukocyte and lymphocyte counts were evaluated in all the patients before, during, and after treatment as well as throughout the follow-up period. The same indicators were analysed in the control group which contained 40 healthy persons (with the median age of 41.1 years, male to female ratio 1.5:1). The study was based on serologic test for EBV antibodies and quantitative analysis of the viral DNA copy number in plasma.

Results. The obtained data show a low immunie response to EBV and its diminishment after several polychemotherapy treatment cycles, correlating with decreased leukocyte and lymphocyte levels. As opposed to levels of virus-specific antibodies which do not reflect the efficacy of anticancer therapy, plasma EBV DNA concentration in 2 patients decreased to 0 after remission had been achieved.

Conclusion. Although the number of observations is limited, one could suggest that viral load values in plasma of patients with EBV-negative lymphomas can prove to be a useful marker of anticancer therapeutic effect. Additional studies of these markers are required.

Keywords: Epstein-Barr virus (EBV), classical Hodgkin’s lymphoma, EBV DNA, EBV-negative classical Hodgkin’s lymphoma, level of virus-specific antibodies.

Received: November 13, 2017

Accepted: February 8, 2018

Read in PDF 


  1. Alexander FE, Jarrett RF, Lawrence D, et al. Risk factors for Hodgkin’s disease by Epstein-Barr virus (EBV) status: prior infection by EBV and other agents. Br J Cancer. 2000;82(5):1117–21.
  2. Mueller N, Evans A, Harris NL, et al. Hodgkin’s disease and Epstein-Barr virus. Altered antibody pattern before diagnosis. N Engl J Med. 1989;320(11):689–95. doi: 10.1056/nejm198903163201103.
  3. Anagnostopoulos I, Herbst H, Niedobitek G, et al. Demonstration of monoclonal EBV genomes in Hodgkin’s disease and Ki-1-positive anaplastic large cell lymphoma by combined Southern blot and in situ hybridization. Blood. 1989;74(2):810–6.
  4. Tanyildiz HG, Yildiz I, Bassullu N, et al. The Role of Epstein-Barr Virus LMP-1 Immunohistochemical Staining in Childhood Hodgkin Lymphoma. Iran J Pediatr. 2015;25(6):e2359. doi: 10.5812/ijp.2359.
  5. Iwakiri D, Takada K. Role of EBERs in the pathogenesis of EBV infection. Adv Cancer Res. 2010;107:119–36. doi: 10.1016/s0065-230x(10)07004-1.
  6. Glaser SL, Lin RJ, Stewart SL, et al. Epstein-Barr virus-associated Hodgkin’s disease: epidemiologic characteristics in international data. Int J Cancer. 1997;70(4):375–82. doi: 10.1002/(sici)1097-0215(19970207)70:4<375::aid-ijc1>;2-l.
  7. Jarrett AF, Armstrong AA, Alexander E. Epidemiology of EBV and Hodgkin’s lymphoma. Ann Oncol. 1996;7(Suppl 4):s5–s10. doi: 10.1093/annonc/7.suppl_4.s5.
  8. Ambinder RF. Gammaherpesviruses and “Hit-and-Run” oncogenesis. Am J Pathol. 2000;156(1):1–3. doi: 10.1016/s0002-9440(10)64697-4.
  9. Meij P, Vervoort MB, Bloemena E, et al. Antibody responses to Epstein-Barr virus-encoded latent membrane protein-1 (LMP1) and expression of LMP1 in juvenile Hodgkin’s disease. J Med Virol. 2002;68(3):370–7. doi: 10.1002/jmv.10213.
  10. Chang ET, Zheng T, Lennette ET, et al. Heterogeneity of risk factors and antibody profiles in Epstein-Barr virus genome-positive and -negative Hodgkin lymphoma. J Infect Dis. 2004;189(12):2271–81. doi: 10.1086/420886.
  11. Gallagher A, Perry J, Freeland J, et al. Hodgkin lymphoma and Epstein-Barr virus (EBV): no evidence to support hit-and-run mechanism in cases classified as non-EBV-associated. Int J Cancer. 2003;104(5):624–30. doi: 10.1002/ijc.10979.
  12. Staratschek-Jox A, Kotkowski S, Belge G, et al. Detection of Epstein-Barr virus in Hodgkin-Reed-Sternberg cells: no evidence for the persistence of integrated viral fragments in Latent membrane protein-1 (LMP-1)-negative classical Hodgkin’s disease. Am J Pathol. 2000;156(1):209–16. doi: 10.1016/s0002-9440(10)64721-9.
  13. zur Hausen H, de Villiers EM. Virus target cell conditioning model to explain some epidemiologic characteristics of childhood leukemias and lymphomas. Int J Cancer. 2005;115(1):1–5. doi: 10.1002/ijc.20905.
  14. Jelcic I, Hotz-Wagenblatt A, Hunziker A, et al. Isolation of multiple TT virus genotypes from spleen biopsy tissue from a Hodgkin’s disease patient: genome reorganization and diversity in the hypervariable region. J Virol. 2004;78(14):7498–507. doi: 10.1128/jvi.78.14.7498-7507.2004.
  15. Feng H, Shuda M, Chang Y, et al. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science. 2008;319(5866):1096–100. doi: 10.1126/science.1152586.
  16. Volter C, Hausen H, Alber D, et al. Screening human tumor samples with a broad-spectrum polymerase chain reaction method for the detection of polyomaviruses. Virology. 1997;237(2):389–96. doi: 10.1006/viro.1997.8772.
  17. Lo YM, Leung SF, Chan LY, et al. Kinetics of plasma Epstein-Barr virus DNA during radiation therapy for nasopharyngeal carcinoma. Cancer Res. 2000;60(9):2351–5.
  18. Wang WY, Twu CW, Chen HH, et al. Plasma EBV DNA clearance rate as a novel prognostic marker for metastatic/recurrent nasopharyngeal carcinoma. Clin Cancer Res. 2010;16(3):1016–24. doi: 10.1158/1078-0432.ccr-09-2796.
  19. Au WY. Quantification of circulating Epstein-Barr virus (EBV) DNA in the diagnosis and monitoring of natural killer cell and EBV-positive lymphomas in immunocompetent patients. Blood. 2004;104(1):243–9. doi: 10.1182/blood-2003-12-4197.
  20. Hohaus S, Santangelo R, Giachelia M, et al. The viral load of Epstein-Barr virus (EBV) DNA in peripheral blood predicts for biological and clinical characteristics in Hodgkin lymphoma. Clin Cancer Res. 2011;17(9):2885–92. doi: 10.1158/1078-0432.ccr-10-3327.
  21. Kasamon YL, Jacene HA, Gocke CD, et al. Phase 2 study of rituximab-ABVD in classical Hodgkin lymphoma. Blood. 2012;119(18):4129–32. doi: 10.1182/blood-2012-01-402792.
  22. Kanakry JA, Li H, Gellert LL, et al. Plasma Epstein-Barr virus DNA predicts outcome in advanced Hodgkin lymphoma: correlative analysis from a large North American cooperative group trial. Blood. 2013;121(18):3547–53. doi: 10.1182/blood-2012-09-454694.
  23. Dinand V, Sachdeva A, Datta S, et al. Plasma Epstein Barr Virus (EBV) DNA as a Biomarker for EBV associated Hodgkin lymphoma. Indian Pediatr. 2015;52(8):681–5. doi: 10.1007/s13312-015-0696-9.
  24. Stein H, Delsol G, Pileri SA, et al. Classical Hodgkin lymphoma, introduction. In: Swerdlow SH, Campo E, Harris NL, et al. (eds) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008.
  25. Lo YM, Chan LY, Chan AT, et al. Quantitative and temporal correlation between circulating cell-free Epstein-Barr virus DNA and tumor recurrence in nasopharyngeal carcinoma. Cancer Res. 1999;59(21):5452–5.
  26. Botezatu IV, Kondratova VN, Shelepov VP, et al. DNA melting analysis: application of the “open tube” format for detection of mutant KRAS. Anal Biochem. 2011;419(2):302–8. doi: 10.1016/j.ab.2011.08.015.
  27. Srinivas SK, Sample JT, Sixbey JW. Spontaneous loss of viral episomes accompanying Epstein-Barr virus reactivation in a Burkitt’s lymphoma cell line. J Infect Dis. 1998;177(6):1705–9. doi: 10.1086/517427.
  28. Razzouk BI, Srinivas S, Sample CE, et al. Epstein-Barr Virus DNA recombination and loss in sporadic Burkitt’s lymphoma. J Infect Dis. 1996;173(3):529–35. doi: 10.1093/infdis/173.3.529.