Achievements and Challenges in Allogeneic Hematopoietic Stem Cell Transplantation in Cytogenetically Unfavorable Acute Leukemias (Literature Review)

NN Mamaev, TL Gindina, BV Afanas’ev

RM Gorbacheva Scientific Research Institute of Pediatric Oncology, Hematology and Transplantation; IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

For correspondence: Nikolai Nikolaevich Mamaev, MD, PhD, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022; e-mail: nikmamaev524@gmail.com

For citation: Mamaev NN, Gindina TL, Afanas’ev BV. Achievements and Challenges in Allogeneic Hematopoietic Stem Cell Transplantation in Cytogenetically Unfavorable Acute Leukemias (Literature Review). Clinical oncohematology. 2019;12(2):111–9.

DOI: 10.21320/2500-2139-2019-12-2-111-119


ABSTRACT

Literature review provides the analysis of treatment results of implementing allogeneic hematopoietic stem cell transplantation (allo-HSCT) in patients with cytogenetically unfavorable acute myeloid and lymphoblastic leukemias including monosomal, complex, and hyperdiploid karyotypes, t(3;3)/inv(3), t(v;11)(v;q23), t(4;11)(q21;q23), t(9;22)(q34;q11) translocations, 17p abnormalities, and some other disorders. The major disadvantage of allo-HSCT seems to be linked to a strong chromosome-damaging effect of cytostatic drugs used in conditioning regimens which in turn is associated with additional chromosome abnormalities occurring in tumors, increasing genomic instability, and tumor progression. On the other hand, one of the advantages of allo-HSCT can consist in its specific “graft versus leukemia” (GVL) effect whose degree has not yet been adequately studied. To minimize the risks of allo-HSCT in above mentioned patients it appears appropriate to apply new treatment approaches based on de-escalation of chromosome- and whole-genome-damaging effects and also to introduce recent methods of active stimulation and qualitative assessment of GVL effect into clinical practice.

Keywords: acute leukemias, cytogenetically unfavorable variants, allo-HSCT, outcomes, additional chromosome abnormalities, “graft versus leukemia” effect.

Received: October 22, 2018

Accepted: February 2, 2019

Read in PDF 


REFERENCES

  1. Burnett AK, Hills RK. Who should be transplanted in first remission of acute myeloid leukemia? Curr Treatment Opt Oncol. 2011;12(4):329–40. doi: 10.1007/s11864-011-0169-x.

  2. Stelljes M, Beelen DW, Braess J, et al. Allogeneic transplantation as post-remission therapy for cytogenetically high-risk acute myeloid leukemia: landmark analysis from a single prospective multicenter trial. Haematologica. 2011;96(7):972–9. doi: 3324/haematol.2011.041004.

  3. Bejanyan N, Weisdorf DJ, Logan BR, et al. Survival of patients with acute myeloid leukemia relapsing after allogeneic hematopoietic cell transplantation: A Center for International Blood and Marrow Transplant Research Study. Biol Blood Marrow Transpl. 2015;21(3):454–9. doi: 10.1016/j.bbmt.2014.11.007.

  4. Dohner H, Estey EH, Grimwade D, et al. Diagnosis and management of acute myeloid leukemia in adults: 2017 ELN recommendation from an international expert panel. Blood. 2017;129(4):424–47. doi: 10.1182/blood-2016-08-733196.

  5. Vasu S, Kohlschmidt J, Mrozek K, et al. Ten-year outcome of patients with acute myeloid leukemia not treated with allogeneic transplantation in first complete remission. Blood Adv. 2018;2(13):1645–50. doi: 10.1182/bloodadvances.2017015222.

  6. de Lima M, Porter DL, Battiwalla M, et al. Proceedings from the National Cancer Institute’s Second International Workshop on the Biology, Prevention, and Treatment of Relapse after Hematopoietic Stem Cell Transplantation: Part III. Prevention and Treatment of Relapse after Allogeneic Transplantation. Biol Blood Marrow Transpl. 2014;20(1):4–13. doi: 1016/j.bbmt.2013.08.012.

  7. Christopeit М, Kroger N, Haferlach T, et al. Relapse assessment following allogeneic SCT in patients with MDS and AML. Ann Hematol. 2014;93(7):1097–110. doi: 1007/s00277-014-2046-8.

  8. Tsirigotis Р, Byrne M, Schmid C, et al. Relapse of AML after hematopoietic stem cell transplantation: methods of monitoring and preventive strategies. A review from the ALWP of the EBMT. Bone Marrow Transplant. 2016;51(11):1431–8. doi: 1038/bmt.2016.167.

  9. Cruz NM, Mencia-Trinchant N, Hassane DC, et al. Minimal residual disease in acute myelogenous leukemia. Int J Lab Hematol. 2017;39(Suppl 1):53–60. doi: 1111/ijlh.12670.

  10. Kroger N, Bishop M, Giralt S, et al. Third International workshop on the biology, prevention, and treatment of relapse after stem cell transplantation. Bone Marrow Transplant. 2018;53(1):1–2. doi: 10.1038/bmt.2017.218.

  11. Nahi H, Remberger M, Machaczka M, et al. Different impact of intermediate and unfavorable cytogenetics at the time of diagnosis of de novo AML after allo-SCT: a long-term retrospective analysis from a single institution. Med Oncol. 2012;29(4):2348–58. doi: 10.1007/s12032-011-0155-y.

  12. Cornelissen JJ, Blaise D. Hemopoietic stem cell transplantation for patients with AML in first complete remission. Blood. 2016;127(1):62–70. doi: 10.1182/blood-2015-07-604546.

  13. Gindina T, Mamaev N, Afanasyev B. Chromosome Abnormalities and Hematopoietic Stem Cell Transplantation. In: ML Larramendy, S Soloneski, eds. Chromosomal abnormalities – a hallmark manifestation of genomic instability. Croatia: INTECH; 2017. рр. 71–86. doi: 5772/67802.

  14. Hemmati PG, Schulze-Luchkov A, Terwey ThN, et al. Cytogenetic risk grouping by the monosomal karyotype classification is superior in predicting the outcome of acute myeloid leukemia undergoing allogeneic stem cell transplantation in complete remission. Eur J Hematol. 2013;92(2):102–10. doi: 10.1111/ejh.12216.

  15. Wang Y, Liu QF, Qin YZ, et al. Improved outcome of hematopoietic stem cell transplantation in a poor prognostic subgroup patients with mixed-lineage-leukemia-rearranged acute leukemia: results from a prospective, multicenter study. Am J Hematol. 2014;89(2):130–6. doi: 10.1002/ajh.23593.

  16. Parma M, Vigano C, Fumagalli M, et al. Good outcome for very high risk adult B cell acute lymphoblastic leukemia carring genetic abnormalities t(4;11)(q21;q23) or t(9;22)(q34;q11), if promtly submitted to allogeneic transplantation after obtaining a good molecular remission. Mediterr J Hematol Infect Dis. 2015;7(1):e2015041. doi: 10.4084/MJHID.2015.041.

  17. Fang M, Storer B, Estey E, et al. Outcome of patients with acute myeloid leukemia with monosomal karyotype who undergo hematopoietic stem cell transplantation. Blood. 2011;118(6):1490–4. doi: 10.1182/blood-2011-02-339721.

  18. Oran B, Dolan M, Cao Q, et al. Monosomal karyotype provides better prognostic prediction after allogeneic stem cell transplantation in patients with acute myelogenous leukemia. Biol Blood Marrow Transplant. 2011;17(3):356–64. doi: 10.1016/j.bbmt.2010.05.012.

  19. Cornelissen JJ, Breems D, van Putten WL, et al. Comparative analysis of the value of allogeneic hematopoietic stem-cell transplantation in acute myeloid leukemia with monosomal karyotype versus other cytogenetic risk categories. J Clin Oncol. 2012;30(17):2140–6. doi: 10.1200/jco.2011.39.6499.

  20. Guo RJ, Atenafu FG, Craddock K, et al. Allogeneic hematopoietic cell transplantation may alleviate the negative prognostic impact of monosomal and complex karyotype on patients with acute myeloid leukemia. Biol Blood Marrow Transplant. 2014;20(5):690–5. doi: 10.1016/j.bbmt.2014.01.027.

  21. Pasquini M, Zhang M-J, Medeiros BC, et al. Hematopoietic cell transplantation outcomes in monosomal karyotype myeloid malignancies. Biol Blood Marrow Transplant. 2016;22(2):248–57. doi: 10.1016/j.bbmt.2015.08.024.

  22. Гиндина Т.Л., Мамаев Н.Н., Бондаренко С.Н. и др. Аллогенная трансплантация гемопоэтических стволовых клеток при острых миелоидных лейкозах: прогностическое значение сложного кариотипа, включающего аномалии del(5q), –7, del(7q). Клиническая онкогематология. 2016;9(3):271–8. doi: 21320/2500-2139-2016-9-3-271-278.

    [Gindina TL, Mamaev NN, Bondarenko SN, et al. Allogeneic Hematopoietic Stem Cell Transplantation in Acute Myeloid Leukemias: Prognostic Significance of Complex Karyotype Including del(5q), –7, del(7q) Abnormalities. Clinical oncohematology. 2016;9(3):271–8. 2016;9(3):271–8. doi: 10.21320/2500-2139-2016-9-3-271-278. (In Russ)]

  23. Koh K, Tomozawa D, Moriya Saito AM, et al. Early use of allogeneic hematopoietic stem cell transplantation for infants with MLL gene rearrangement-positive acute lymphoblastic leukemia. Leukemia. 2015;29(2):290–6. doi: 1038/leu.2014.172.

  24. Гиндина Т.Л., Мамаев Н.Н., Паина О.В.и др. Острый лимфобластный лейкоз c транслокацией t(4;11)(q21;q23)/KMT2A-AFF1: результаты аллогенной трансплантации гемопоэтических стволовых клеток у детей и взрослых. Клиническая онкогематология. 2017;10(3):342–50. doi: 21320/2500-2139-2017-10-3-342-350.

    [Gindina TL, Mamaev NN, Paina OV, et al. Acute Lymphoblastic Leukemia with t(4;11)(q21;q23)/KMT2A-AFF1 Translocation: The Results of Allogeneic Hematopoietic Stem Cells Transplantation in Children and Adults. Clinical oncohematology. 2017;10(3):342–50. doi: 10.21320/2500-2139-2017-10-3-342-350. (In Russ)]

  25. Poire X, Labopin M, Maertens J, et al. Allogeneic stem cell transplantation in adult patients with acute myeloid leukemia and 17p abnormalities in first complete remission: a study from the Acute Leukemia Working Party (ALWP) of the European Society for Blood and Marrow Transplantation (EBMT). J Hematol Oncol. 2017;10(1):20. doi: 10.1186/s13045-017-0393-3.

  26. Strickland SA, Sun Z, Ketterling RP, et al. Independent prognostic significance of monosomy 17 and impact of karyotype complexity in monosomal karyotype/complex karyotype acute myeloid leukemia: Results from FOUR ECOG-AGRIN prospective therapeutic trials. Leuk Res. 2017;59:55–64. doi: 10.1016/j.leukres.2017.05.010.

  27. Halaburda K, Labopin M, Houhou M, et al. AlloHSCT for inv(3)(q21;q26)t(3;3)(q21;q26) AML: a report from the acute leukemia working party of the European society for blood and marrow transplantation. Bone Marrow Transplant. 2018;53(6):683–91. doi: 10.1038/s41409-018-0165-x.

  28. Passerini V, Ozeri-Galai E, de Pagter MS, et al. The presence of extra chromosomes leads to genomic instability. Nat Commun. 2016;7(1):10754. doi: 10.1038/ncomms10754.

  29. Schmidt-Hieber M, Blau IW, Richter G, et al. Cytogenetic studies in acute leukemia patients relapsing after allogeneic stem cell transplantation. Cancer Gen Cytogenet. 2010;198(2):135–43. doi: 1016/j.cancergencyto.2010.01.005.

  30. Гиндина Т.Л., Мамаев Н.Н., БондаренкоС.Н. и др. Сложные хромосомные нарушения у больных с посттрансплантационными рецидивами острых лейкозов: клинические и теоретические аспекты. Клиническая онкогематология. 2015;8(1):69–77. doi: 10.21320/2500-2139-2015-8-1-69-77.

    [Gindina TL, Mamaev NN, Bondarenko SN, et al. Complex Chromosomal Aberrations in Patients with Post-Transplantation Relapses of Acute Leukemias: Clinical and Theoretical Aspects. Clinical oncohematology. 2015;8(1):69–77. doi: 10.21320/2500-2139-2015-8-1-69-77. (In Russ)]

  31. Breems DA, Van Putten WLL, De Greef GE, et al. Monosomal karyotype in acute myeloid leukemia: a better indicator of poor prognosis than a complex karyotype. J Clin Oncol. 2008;26(29):4791–7. doi: 10.1200/jco.2008.16.0259.

  32. Kayzer S, Zucknick M, Dohner K, et al. Monosomal karyotype in adult acute myeloid leukemia: prognostic impact and outcome after different treatment strategies. Blood. 2011;119(2):551–8. doi: 10.1182/blood-2011-07-367508.

  33. Ciurea SM, Labopin G, Socie G, et al. Relapse and survival after transplantation for complex karyotype acute myeloid leukemia: a report from the acute leukemia working party of the European society for Blood and Marrow Transplantation and the University of Texas MD Anderson Cancer Center. 2018;124(10):2134–41. doi: 10.1002/cncr.31311.

  34. Schoch C, Haferlach T, Haase D, et al. Patients with the de novo acute myeloid leukemia and complex karyotype aberrations show a poor prognosis despite intensive treatment: a study of 90 patients. Br J Haematol. 2001;112(1):118–26. doi: 10.1046/j.1365-2141.2001.02511.x.

  35. Mrozek K. Cytogenetic, molecular genetics, and clinical characteristics of acute myeloid leukemia with a complex karyotype. Semin Oncol. 2008;35(4):365–77. doi: 10.1053/j.seminoncol.2008.04.007.

  36. Schoch C, Kern W, Kohlmann A, et al. Acute myeloid leukemia with a complex aberrant karyotype is a distinct biological entity characterized by genomic imbalance and a special gene expression profile. Genes Chromos Cancer. 2005;43(3):227–38. doi: 1002/gcc.20193.

  37. Гиндина Т.Л., Мамаев Н.Н., Бархатов И.М. и др. Сложные повреждения хромосом у больных с рецидивами острых лейкозов после аллогенной трансплантации гемопоэтических стволовых клеток. Терапевтический архив. 2012;84(8):61–6. [Gindina TL, Mamaev NN, Barkhatov IM, et al. Complex chromosome damages in patients with recurrent acute leukemias after allogeneic hematopoietic stem cell transplantations. Terapevticheskii arkhiv. 2012;84(8):61–6. (In Russ)]

  38. Bacher U, Haferlach T, Alpermann T, et al. Comparison of cytogenetic clonal evolution patterns following allogeneic hematopoietic transplantation versus convential treatment in patients at relapse of AML. Biol Blood Marrow Transplant. 2010;16(12):1649–57. doi: 10/1016/j.bbmt.2010.06.007.

  39. Chen Y, Kantarjian H, Pierce S, et al. Prognostic significance of 11q23 aberrations in adult acute myeloid leukemia and the role of allogeneic stem cell transplantation. Leukemia. 2013;27(4):836–42. doi: 1038/leu.2012.319.

  40. Yang H, Huang S, Zhu C-Y, et al. The superiority of allogeneic hematopoietic stem cell transplantation over chemotherapy alone in the treatment of acute myeloid leukemia patients with mixed lineage leukemia (MLL) rearrangements. Med Sci Monitor. 2016;22:2315–23. doi: 12659/MSM.899186.

  41. Pigneux A, Labopin M, Maertens J, et al. Outcome of allogeneic hematopoietic stem-cell transplantation in adult patients with AML and 11q23/MLL rearragement (MLL-r-AML). Leukemia. 2015;29(12):2375–81. doi: 1038/leu.2015.143.

  42. Gindina T, Mamaev N, Alyanskiy A, et al. Outcome of allogeneic hematopoietic stem cell transplantation in patients with KMT2A (MLL)-related leukemia, depending on number of transplanted CD34+ cells. Bone Marrow Transplant. 2015;50(Suppl 1):S481.

  43. Гиндина Т.Л., Мамаев Н.Н., Николаева Е.С. и др. Исход аллогенной трансплантации гемопоэтических стволовых клеток при острых миелоидных лейкозах с гипердиплоидным кариотипом. Клиническая онкогематология. 2016;9(4):383–90. doi: 21320/2500-2139-2016-9-4-383-390.

    [Gindina TL, Mamaev NN, Nikolaeva ES, et al. Outcome of Allogeneic Hematopoietic Stem Cell Transplantation in Acute Myeloid Leukemias with Hyperdiploid Karyotype. Clinical oncohematology. 2016;9(4):383–90. doi: 10.21320/2500-2139-2016-9-4-383-390. (In Russ)]

  44. Chevallier P, Labopin M, Nagler A, et al. Outcome after allogeneic transplantation for adult acute myeloid leukemia patients exhibiting isolated trisomy 8 chromosomal abnormality: a survey on behalf of the ALWP of the EBMT. Bone Marrow Transplant. 2009;44(9):589–94. doi: 10.1038/bmt.2009.68.

  45. Konuma T, Kondo T, Yamashita T, et al. Outocome of allogeneic hematopoietic stem cell transplantation in adult patients with acute myeloid leulkemia harboring trisomy 8. Ann Hematol. 2017;96(3):469–78. doi: 1007/s00277-016-2009-2.

  46. Herold T, Metzeler KH, Vosberg S, et al. Isolated trisomy 13 defines a homogenous AML subgroup with high frequency of mutations in splisome genes and poor prognosis. Blood. 2014;124(8):1304–11. doi: 10.1182/blood-2013-12-540716.

  47. Mohr B, Schetelig J, Schafer-Eckart K, et al. Impact of allogeneic haematopoietic stem cell transplantation in patients with abnl(17p) acute myeloid leukemia. Br J Haematol. 2013;161(2):237–44. doi: 10.1111/bjh.12253.

  48. Middeke JM, Fang M, Cornellisen JJ, et al. Outcome of patients with abnl(17p) acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation. Blood. 2014;123(19):2960–7. doi: 10.1182/blood-201312-544957.

  49. Vey N, Thomas X, Picard C, et al. Allogeneic stem cell transplantation improves the outcome of adults with t(1;19)/E2A-PBX1 and t(4;11)/MLL-AF4 positive B-cell acute lymphoblastic leukemia: results of the prospective multicenter LALA-94 study. Leukemia. 2006;20:2155–61. doi: 10.1038/sj.leu.2404420.

  50. Marks DI, Moorman AV, Chilton L, et al. The clinical characteristics, therapy and outcome of 85 adults with acute lymphoblastic leukemia and t(4;11)(q21q23)/MLL-AFF1 prospectively treated in the UKALLXII/ECOG2993 trial. 2013;98(6):945–52. doi: 10.3324/haematol.2012.081877.

  51. Cimino G, Cenfra N, Elia L, et al. The therapeutic response and clinical outcome of adults with ALL1(MLL)/AF4 fusion positive acute lymphoblastic leukemia according to the GIMEMA experience. Haematologica. 2010;95(5):837–40. doi: 10.3324/haematol.2009.009035.

  52. Kato M, Hasegawa D, Koh K, et al. Allogeneic haematopoietic stem cell transplantation for infant acute lymphoblastic leukemia with KMT2A (MLL) rearrangements: a retrospective study from the paediatric acute lymphoblastic leukemia working group of the Japan Society for Haematopoietic Cell Transplantation. Br J Haematol. 2014;168(4):564–70. doi: 10.1111/bjh.13174.

  53. Ribera JM, Oriol A, Gonzalez M, et al. Concurrent intensive chemotherapy and imatinib before and after stem cell transplantation in newly diagnosed Philadelphia chromosome‐positive acute lymphoblastic leukemia. Final results of the CSTIBES02 trial. 2010;95(1):87–95. doi: 10.3324/haematol.2009.011221.

  54. Ribera JM, Garcia O, Montesinos P, et al. Treatment of young patients with Philadelphia chromosome-positive acute lymphoblastic leukemia using increased dose of imatinib and deintensified chemotherapy before allogeneic stem cell transplantation. Br J Haematol. 2012;159(1):78–81. doi: 10.1111/j.1365-2141.2012.09240.x.

  55. Kebriaie P, Saliba R, Rondon G, et al. Long-term follow-up of allogeneic hematopoietic stem cell transplantation for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: impact of tyrosine kinase inhibitors on treatment outcomes. Biol Blood Marrow Transplant. 2012;18(4):584–92. doi: 10.1016/j.bbmt.2011.08.011.

  56. Aldoss I, Stiller T, Cao TM, et al. Impact of additional cytogenetic abnormalities in adults with Philadelphia chromosome-positive acute lymphoblastic leukemia undergoing allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2015;21(7):1326–9. doi: 10.1016/j.bbmt.2015.03.021.

  57. Chiaretti S, Foa R. Management of adult Ph‐positive acute lymphoblastic leukemia. 2015;2015(1):406–13. doi: 10.1182/asheducation‐2015.1.406.

  58. Giebel S, Labopin M, Gorin NC, et al. Improving results of autologous stem cell transplantation for Philadelphia-positive acute lymphoblastic leukemia in the era of tyrosine kinase inhibitors: A report from the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Eur J Cancer. 2014;50(2):411–7. doi: 10.1016/j.ejca.2013.08.027.

  59. Giebel S, Labopin M, Potter M, et al. Comparable results of autologous and allogeneic haematopoietic stem cell transplantation for adults with Philadelphia-positive acute lymphoblastic leukaemia in first complete molecular remission: An analysis by the Acute Leukemia Working Party of the EBMT. Eur J Cancer. 2018;96:73–81. doi: 10.1016/j.ejca.2018.03.018.

  60. Gindina TL, Mamaev NN, Nikolaeva ES, et al. Results of allogeneic hematopoietic stem cell transplantation in a mixed cohort of patients with Ph-positive acute lymphoblastic leukemia. Cellular Therapy and Transplantation. 2017;6(1):10–9. doi: 10.18620/ctt-1866-8836-2017-6-1-10-19.

  61. Maino E, Scattolin AM, Viero P, et al. Modern immunotherapy of adult B-lineage acute lymphoblastic leukemia with monoclonal antibodies and chimeric antigen receptor modified T cells. Mediterr J Hematol Infect Dis. 2015;7(1):e2015001. doi: 10.4884/mjhid.2015001.

  62. Zhang J-P, Zhang R, Tsao Sh-T, et al. Sequential allogeneic and autologous CAR-T–cell therapy to treat an immune-compromised leukemic patient. Blood Adv. 2018;2(14):1691–5. doi: 10.1182/bloodadvances.2018017004.

  63. Ziser R. Introduction to a review series on strategies to improve GVL effects. Blood. 2018;131(10):1039. doi: 10.1182/blood-2017-11-814467.

Results of Molecular Monitoring in Posttransplant Period by Means of Series Investigation of WT1 Gene Expression in Patients with Acute Myeloid Leukemia

YaV Gudozhnikova, NN Mamaev, IM Barkhatov, VA Katerina, TL Gindina, AI Shakirova, SN Bondarenko, OA Slesarchuk, EI Darskaya, OV Paina, LS Zubarovskaya, BV Afanas’ev

RM Gorbacheva Scientific Research Institute of Pediatric Oncology, Hematology and Transplantation; IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

For correspondence: Prof. Nikolai Nikolaevich Mamaev, MD, PhD, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022; Tel.: +7(812)233-12-43; e-mail: nikmamaev524@gmail.com

For citation: Gudozhnikova YaV, Mamaev NN, Barkhatov IM, et al. Results of Molecular Monitoring in Posttransplant Period by Means of Series Investigation of WT1 Gene Expression in Patients with Acute Myeloid Leukemia. Clinical oncohematology. 2018;11(3):241–51.

DOI: 10.21320/2500-2139-2018-11-3-241-251


ABSTRACT

Aim. To demonstrate diagnostic and prognostic significance of series measurement of WT1 expression in patients with acute myeloid leukemia (AML) after allogenic hematopoietic stem cell transplantation (allo-HSCT).

Materials & Methods. The clinical trial included 88 AML patients (38 females (43 %) and 50 males (57 %) aged 2–68, median 30 years). All the patients received allo-HSCT. Bone marrow was aspirated before (D0) and after HSCT (D+30, D+60, and D+100).

Results. The univariate analysis showed statistically significant differences in 2-year overall survival with respect to the following factors: with and without remission at the moment of HSCT (< 0.001), with and without chronic graft vs. host disease (cGVHD) (= 0.002), primary or secondary (MDS) AML (= 0,028), WT1 gene expression < and > 250 copies before HSCT (< 0.001) and at time points D+60 (= 0.012), and D+100 (< 0.001). Multivariate analysis revealed similar statistical significance of differences among patients transplanted in remission (= 0.041) and with cGVHD (= 0.03). In univariate analysis statistically significant differences in 2-year event-free survival (EFS) were found: a) in patients with allo-HSCT, either in remission or not (< 0.001); b) using HSC, but not bone marrow, as transplant source (p < 0.026); c) with normal or high WT1 expression at the stage of HSCT (< 0.001) and at time point D+100 (< 0.001); d) using HSC from related or unrelated donor (= 0.006); e) in patients with cGVHD (= 0.05). In multivariate analysis independent positive effect on EFS was observed only in patients with normal WT1 expression at D+100 (= 0.011) and with cGVHD (= 0.038). Cumulative incidence of posttransplant relapse (PTR) in AML patients with normal or high WT1 expression at the stage of HSCT within the 2-year follow-up was significantly different (28.2 vs. 58.9 %; = 0.002), also in measurements of this parameter at D+60 and D+100 (= 0.015 and < 0.001, respectively). In 1/4 of patients cytological relapses (cPTR) appeared considerably later than molecular relapses (mPTR), i.e. 13–489 days later (median 35 days), which is accounted for by early preventive therapy aimed at cPTR prophylaxis against the background of already recorded mPTR. According to our data, GVHD plays a crucial role in cPTR management.

Conclusion. Phenomenon of WT1 expression normalization after allo-HSCT in AML patients proves to have a high diagnostic and prognostic significance. Introduction of this approach into clinical practice seems highly advisable for national oncohematological centers.

Keywords: acute myeloid leukemia, allo-HSCT, posttransplant relapse, diagnostics and treatment with molecular monitoring of WT1 expression, graft vs. host disease.

Received: January 20, 2018

Accepted: April 18, 2018

Read in PDF 

REFERENCES

  1. Cilloni D, Gottardi E, De Micheli D, et al. Quantitative assessment of WT1 expression by real time quantitative PCR may be a useful tool for monitoring minimal residual disease in acute leukemia patients. Leukemia. 2002;16(10):2115–21. doi: 10:1038/sj.leu.2402675.
  2. Cilloni D, Gottardi E, Fava M, et al. Usefulness of quantitative assessment of the WT1 gene transcript as a marker for minimal residual disease detection. Blood. 2003;102(2);773–4. doi: 1182/blood-2003-03-0980.
  3. Ogawa H, Tamaki H, Ikegame K, et al. The usefulness of monitoring WT1 gene transcripts for the prediction and management of relapse following allogeneic stem cell transplantation in acute type leukemia. Blood. 2003;101(5):1698–704. doi: 1182/blood-2002-06-1831.
  4. Zhao X-S, Jin S, Zhu H-H, et al. Wilms’ tumor gene 1 expression: an independent acute leukemia prognostic indicator following allogeneic hematopoietic SCT. Bone Marrow Transplant. 2011;47(4):499–507. doi: 10.1038/bmt.2011.121.
  5. Мамаев Н.Н., Горбунова А.В., Бархатов И.М. и др. Молекулярный мониторинг течения острых миелоидных лейкозов по уровню экспрессии гена WT1 после аллогенной трансплантации гемопоэтических стволовых клеток. Клиническая онкогематология. 2015;8(3):309–20. doi: 10.21320/2500-2139-2015-8-3-309-320.[Mamaev NN, Gorbunova AV, Barkhatov IM, et al. Molecular Monitoring of WT1 Gene Expression Level in Acute Myeloid Leukemias after Allogeneic Hematopoietic Stem Cell Transplantation. Clinical oncohematology. 2015;8(3):309–20. doi: 10.21320/2500-2139-2015-8-3-309-320. (In Russ)]
  6. Мамаев Н.Н., Гудожникова Я.В., Горбунова А.В.  Гиперэкспрессия гена WT1при злокачественных опухолях системы крови: теоретические и клинические аспекты (обзор литературы). Клиническая онкогематология. 2016;9(3):257–64. doi: 10.21320/2500-2139-2016-9-3-257-264.[Mamaev NN, Gudozhnikova YaV, Gorbunova AV. WT1 Gene Overexpression in Oncohematological Disorders: Theoretical and Clinical Aspects (Literature Review). Clinical oncohematology. 2016;9(3):257–64. doi: 10.21320/2500-2139-2016-9-3-257-264. (In Russ)]
  7. Call KM, Gieser T, Ito CI, et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor gene locus. Cell. 1990;60(3):509–20. doi: 10:1016/0092-8674(90)90601-a.
  8. Rose EA, Glaser T, Jones C, et al. Complete physical map of the WAGR region of 11p13 localizes a candidate Wilms’ tumor gene. 1990;60(3):495–508. doi: 10.1016/0092-8674(90)90600-j.
  9. Miwa H, Beran M, Saunders GF. Expression of the Wilms’ tumor gene (WT1) in human leukemias. Leukemia. 1992;6(5):405–9.
  10. Inoue K, Sugiyama H, Ogava H, et al. WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood. 1994;84(9):3071–9.
  11. Inoue K, Ogawa H, Sonoda Y, et al. Aberrant overexpression of the Wilms’ tumor gene (WT1) in human leukemia. Blood. 1997;88(4):1405–12.
  12. Cilloni D, Gottardi E, Messa F, et al. Significant correlation between the degree of WT1 expression and the International Scoring System score in patients with myelodysplastic syndromes. J Clin Oncol. 2003;21(10):1988–95. doi: 10.1200/jco.2003.10.503.
  13. Alonso-Domingues JM, Tenorio M, Velasco D, et al. Correlation of WT1 expression with the burden of total and residual leukemic blasts in bone marrow samples of acute myeloid leukemia patients. Cancer Genet. 2012;205(4):190–1. doi: 10.1016/j.cancergen.2012.02.008.
  14. Cilloni D, Messa F, Arruga F, et al. Early prediction of treatment outcome in acute myeloid leukemia by measurement of WT1 transcript levels in peripheral blood samples collected after chemotherapy. Haematologica. 2008;93(6):921–4. doi: 10.3324/haematol.12165.
  15. Ogava H, Ikegame K, Kawakami M, Tamaki H. WT1 gene transcript assay for relapse in acute myeloid leukemia after transplantation. Leuk Lymphoma. 2004;45(9):1747–53. doi: 10.1080/10428190410001687503.
  16. Pozzi S, Geroldi S, Tedone E, et al. Leukemia relapse after allogeneic transplant for acute myeloid leukemia: predictive role of WT1 expression. Br J Haematol. 2013;160(4);503–9. doi: 10.1111/bjh.12181.
  17. Nendedeu J, Esquirol A, Carricondo M, et al. Bone marrow WT1 levels in allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia and myelodysplasia: Clinically relevant time-points and 100 copies threshold value. Biol Blood Marrow Transplant. 2017;24(1):55–63. doi: 10.1016/j.bbmt.2017.09.001.
  18. Cilloni D, Saglio G, Gottardi E, et al. WT1 as universal marker for minimal residual disease detection and quantification in myeloid leukemias and in myelodysplastic syndrome. Acta Hematol. 2004;112(1–2):79–84. doi: 10.1159/000077562.
  19. Candoni A, Toffoletti E, Galina R, et al. Monitoring of minimal residual disease by quantitative WT1 gene expression following reduced intensity conditioning allogeneic stem cell transplantation in acute myeloid leukemia. Clin Transpl. 2011;25(2):308–16. doi: 10.1111/j.1399-0012.2010.01251.x.
  20. Kwon M, Martinez-Laperche C, Infante M, et al. Evaluation of minimal residual disease by real-time quantitative PCR of Wilms’ Tumor 1 expression in patients with acute myelogenous leukemia after allogeneic stem cell transplantation: Correlation with flow cytometry and chimerism. Biol Blood Marrow Transplant. 2012;18(8):1235–42. doi: 10.1016/j.bbmt.2012.01.012.
  21. Polak J, Hajkova H, Haskovec C, et al. Quantitative monitoring of WT1 expression in peripheral blood before and after allogeneic stem cell transplantation for acute myeloid leukemia – a useful tool for early detection of minimal residual disease. Neoplasma. 2013;60(01):74–82. doi: 10.4149/neo_2013_011.
  22. Lapillone H, Renneville A, Auvrignon A, et al. High WT1 expression after induction therapy predicts high risk or relapse and death in pediatric acute myeloid leukemia. J Clin Oncol. 2006;24(10):1507–15. doi: 10.1200/jco.2005.03.5303.
  23. Messina C, Sala E, Carrabba M, et al. Early post-allogeneic transplantation WT1 transcript positivity predicts AML relapse. 40th EBMT Meeting. 30 March – 2 April; Milan, Italy; 2014: Abstract P239.
  24. Mear J-B, Salaun V, Dina N, et al. WT1 and flow cytometry minimal residual disease follow-up after allogeneic transplantation in practice. 40th EBMT Meeting. 30 March – 2 April; Milan, Italy; 2014: Abstract P655.
  25. Capelli D, Attolico I, Saraceli F, et al. Early cumulative incidence of relapse in 80 acute myeloid leukemia patients after chemotherapy and transplant post-consolidation treatment prognostic role of post-induction WT1. 40th EBMT Meeting. 30 March – 2 April; Milan, Italy; 2014: Abstract P287.
  26. Rossi G, Carella AM, Minervini MM, et al. Optimal time-points for minimal residual disease monitoring change on the basis of the method used in patients with acute myeloid leukemia who underwent allogeneic stem cell transplantation: A comparison between multiparameter flow cytometry and Wilms’ tumor 1 expression. Leuk Res. 2015;39(2):138–43. doi: 1016/j.leukres.2014.11.011.

Allogeneic Hematopoietic Stem Cell Transplantation in Myelofibrosis

MV Barabanshchikova, EV Morozova, VV Baikov, IM Barkhatov, NN Mamaev, SN Bondarenko, AL Alyanskii, LS Zubarovskaya, BV Afanas’ev

R.M. Gorbacheva Scientific Research Institute of Pediatric Hematology and Transplantation; Academician I.P. Pavlov First St. Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

For correspondence: Lyudmila Stepanovna Zubarovskaya, DSci, Professor, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022; Tel.: +7(812)338-62-64; e-mail: zubarovskaya_ls@mail.ru

For citation: Barabanshchikova MV, Morozova EV, Baikov VV, et al. Allogeneic Hematopoietic Stem Cell Transplantation in Myelofibrosis. Clinical oncohematology. 2016;9(3):279-86 (In Russ).

DOI: 10.21320/2500-2139-2016-9-3-279-286


ABSTRACT

Background & Aims. At present, the allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only treatment option with curative potential in patients with myelofibrosis (MF), especially in intermediate and high risk categories. The aim of the study is to perform a retrospective analysis of allo-HSCT outcomes in MF patients.

Materials & Methods. Outcomes of allo-HSCT in 11 intermediate-2 (= 3) and high (= 6) risk patients (based on Dynamic International Prognostic Scoring Scale, DIPSSplus) performed in the R.M. Gorbacheva Scientific Research Institute of Pediatric Hematology and Transplantation over the period from 2005 till 2015 were analyzed in the study. Two more patients underwent allo-HSCT in MF blast phase. Two patients received ruxolitinib before allo-HSCT and 1 patient before and after allo-HSCT. Reduced intensity conditioning regimen was used in all cases.

Results. Primary engraftment was documented in 8 patients. 72 % of patients achieved complete hematological remission. Molecular remission and myelofibrosis regression were confirmed in 5 patients. 5 of 11 patients were still with remission and followed-up by the date of the paper submission. The overall two-year survival was 46 %.

Conclusion. Allo-HSCT is an effective treatment option for MF patients. Further trials are required to evaluate an optimal timing for allo-HSCT in MF patients and efficacy of Janus kinase (JAK) inhibitors as pre- and posttransplant therapy in MF.


Keywords: myelofibrosis, allo-HSCT, reduced intensity conditioning regimen, ruxolitinib.

Received: January 28, 2016

Accepted: March 22, 2016

Read in  PDF (RUS)pdficon


REFERENCES

  1. Cervantes F, Dupriez B, Pereira A, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009;113(13):2895–901. doi: 10.1182/blood-2008-07-170449.
  2. Passamonti F, Rumi E, Caramella M, et al. A dynamic prognostic model to predict survival in post-polycythemia vera myelofibrosis. Blood. 2008;111(7):3383–7. doi: 10.1182/blood-2007-11-121434.
  3. Passamonti F, Rumi E, Arcaini L, et al. Prognostic factors for thrombosis, myelofibrosis, and leukemia in essential thrombocythemia: a study of 605 patients. Haematologica. 2008;93(11):1645–51. doi: 10.3324/haematol.13346.
  4. Dupriez BB, Morel P, Demory JL, et al. Prognostic factors in agnogenic myeloid metaplasia: a report on 195 cases with a new scoring system. Blood. 1996;88(3):1013–8.
  5. Passamonti F, Cervantes F, Vannucchi AM, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood. 2009;115(9):1703–8. doi: 10.1182/blood-2009-09-245837.
  6. Gangat N, Caramazza D, Vaidya R, et al. DIPSS Plus: A Refined Dynamic International Prognostic Scoring System for Primary Myelofibrosis That Incorporates Prognostic Information From Karyotype, Platelet Count, and Transfusion Status. J Clin Oncol. 2011;29(4):392–7. doi: 10.1200/jco.2010.32.2446.
  7. Vannucchi AM, Guglielmelli P, Rotunno G, et al. Mutation-Enhanced International Prognostic Scoring System (MIPSS) for Primary Myelofibrosis: An AGIMM & IWG-MRT Project. ASH; 2014. Abstract 405.
  8. Verstovsek S, Mesa R, Gotlib J, et al. Efficacy, safety, and survival with ruxolitinib in patients with myelofibrosis: results of a median 3-year follow-up of COMFORT-I. Haematologica. 2015;100(4):479–88. doi: 10.3324/haematol.2014.115840.
  9. Kvasnicka HM, Thiele J, Bueso-Ramos CE, et al. Long-Term Effects of Ruxolitinib on Bone Marrow Morphology in Patients With Myelofibrosis and Comparison to Best Available Therapy. Haematologica. 2014;14: Abstract S155. doi:10.1016/j.clml.2014.06.098.
  10. Giorgino T, Scott BL, Ditschkowski M, et al. CME Article Impact of allogeneic stem cell transplantation on survival of patients less than 65 years of age with primary myelofibrosis. Blood. 2015;125(21):3347–51. doi: 10.1182/blood-2014-10-608315.
  11. Kroger N, Holler E, Kobbe G, et al. Allogeneic stem cell transplantation after reduced-intensity conditioning in patients with myelofibrosis: a prospective, multicenter study of the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Blood. 2009;114(26):5264–70. doi: 10.1182/blood-2009-07-234880.
  12. Thiele J, Kvasnica HM, Facchetti F, et al. European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica. 2005;90(8):1128–32.
  13. Jagasia MH, Greinix HT, Arora M, et al. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: I. The 2014 Diagnosis and Staging Working Group report. Biol Blood Marrow Transplant. 2015;21(3):389–401. doi: 10.1016/j.bbmt.2014.12.001.
  14. Kroger N, Zabelina T, Alchalby H, et al. Dynamic of bone marrow fibrosis regression predicts survival after allogeneic stem cell transplantation for myelofibrosis. Biol Blood Marrow Transplant. 2014;20(6):812–5. doi: 10.1016/j.bbmt.2014.02.019.
  15. Slot S, Smits K, van de Donk NW, et al. Effect of conditioning regimens on graft failure in myelofibrosis: a retrospective analysis. Bone Marrow Transplant. 2015;11;1424–31. doi: 10.1038/bmt.2015.172.
  16. Shanavas M, Popat U, Michaelis LC, et al. Outcomes of Allogeneic Hematopoietic Cell Transplantation in Patients with Myelofibrosis with Prior Exposure to Janus Kinase 1/2 Inhibitors. Biol Blood Marrow Transplant. 2016;22(3):432–40. doi: 10.1016/j.bbmt.2015.10.005.
  17. Verstovsek S, Kantarjian H, Mesa RA, et al. Safety and Efficacy of INCB018424, a JAK1 and JAK2 Inhibitor, in Myelofibrosis. N Engl J Med. 2010;363(12):1117–27. doi: 10.1056/nejmoa1002028.
  18. Stubig T, Alchalby H, Ditschkowski M, et al. JAK inhibition with ruxolitinib as pretreatment for allogeneic stem cell transplantation in primary or post-ET/PV myelofibrosis. Leukemia. 2014;28(8):1736–8. doi: 10.1038/leu.2014.86.
  19. Jaekel N, Behre G, Behning A, et al. Allogeneic hematopoietic cell transplantation for myelofibrosis in patients pretreated with the JAK1 and JAK2 inhibitor ruxolitinib. Bone Marrow Transplant. 2014;49(2):179–84. doi: 10.1038/bmt.2013.173.

Results of Allogeneic Hematopoietic Stem Cell Transplantation in Patients with Acute Myeloid Leukemia with t(8;21)(q22;q22)/RUNX1-RUNX1T1 and Additional Cytogenetic Abnormalities

TL Gindina, NN Mamaev, SN Bondarenko, ES Nikolaeva, OA Slesarchuk, AS Borovkova, OV Paina, SV Razumova, AL Alyanskii, LS Zubarovskaya, BV Afanas’ev

R.M. Gorbacheva Scientific Research Institute of Pediatric Hematology and Transplantation; Academician I.P. Pavlov First St. Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

For correspondence: Tat’yana Leonidovna Gindina, PhD, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022; Tel.: +7(812)233-12-43; e-mail: cytogenetics.bmt.lab@gmail.com

For citation: Gindina TL, Mamaev NN, Bondarenko SN, et al. Results of Allogeneic Hematopoietic Stem Cell Transplantation in Patients with Acute Myeloid Leukemia with t(8;21)(q22;q22)/RUNX1-RUNX1T1 and Additional Cytogenetic Abnormalities. Clinical oncohematology. 2016;9(2):148–54 (In Russ).

DOI: 10.21320/2500-2139-2016-9-2-148-154


ABSTRACT

Aim. To evaluate the impact of additional chromosomal aberrations on outcomes of allogeneic hematopoietic stem cell transplantation (allo-HSCT) in patients with acute myeloid leukemia (AML) with t(8;21)(q22;q22)/RUNX1-RUNX1T1 translocation.

Methods. Twenty-five AML patients with t(8;21)(q22;q22)/RUNX1-RUNX1T1 translocation (10 women and 15 men, aged from 2 to 58 years; median 20.2) were examined. Analysis of overall (OS) and event-free survival (EFS) predictors after allo-HSCT in patients with different clinical, transplant and cytogenetic characteristics was performed.

Results. The additional cytogenetic abnormalities were found in 13 (52 %) patients before the transplantation, at that, complex karyotype with three or more chromosomal abnormalities were registered in 9 (69 %) patients. The univariate analysis showed that OS and EFS after allo-HSCT differed in patients with different characteristics such as age (= 0.03; = 0.0006), clinical status at transplantation (= 0.0002; = 0,006), donor type (= 0.0003; = 0.002), the interval from diagnosis of leukemia to allo-HSCT (= 0,008, for OS only), additional cytogenetic abnormalities (= 0.03; = 0.009) and complex karyotype (= 0.004; = 0.0003), respectively. In multivariate analysis, independent predictors of OS were donor type (= 0.01), the interval from diagnosis of leukemia to allo-HSCT (= 0.01), and additional cytogenetic abnormalities in karyotype (= 0.04), as well as donor type (= 0.04) and patient’s age (= 0.004) for EFS.

Conclusion. AML with t(8;21)(q22;q22)/RUNX1-RUNX1T1 translocation is a heterogeneous disease. The prognosis in patients with the additional cytogenetic abnormalities, especially in those with the complex karyotype, is worse both after the standard chemotherapy (i.e. before allo-HSCT), and after allo-HSCT.


Keywords: AML with t(8;21) translocation, allo-HSCT, cytogenetic abnormalities.

Received: February 6, 2016

Accepted: February 15, 2016

Read in PDF (RUS)pdficon


REFERENCES

  1. Mrozek K, Bloomfield CD. Chromosomal abnormalities in acute leukemia and their clinical importance. In: Rowley JD, et al, eds. Chromosomal translocations and genome rearrangements in cancer. Switzerland: Springer International Publishing; 2015. pp. 275–306. doi: 10.1007/978-3-319-19983-2_13.
  2. Klein K, Kaspers G, Harrison CJ, et al. Clinical impact of additional cytogenetic aberrations, cKIT and RAS mutations, and treatment elements in pediatric t(8;21)-AML: results from an international retrospective study by the international Berlin-Frankfurt-Munster study group. J Clin Oncol. 2015;33(36):4247. doi: 10.1200/jco.2015.61.1947.
  3. Krauth MT, Eder C, Alpermann T, et al. High number of additional genetic lesions in acute myeloid leukemia with t(8;21)/RUNX1-RUNX1T1: frequency and impact on clinical outcome. Leukemia. 2014;28(7):1449–58. doi:10.1038/leu.2014.4.
  4. Byrd JC, Dodge RK, Carroll A, et al. Patients with t(8;21)(q22;q22) and acute myeloid leukemia have superior failure-free and overall survival when repetitive cycles of high-dose cytarabine are administered. J Clin Oncol. 1999;17:3767–75.
  5. Numata A, Fujimaki K, Aoshima T, et al. Retrospective analysis of treatment outcomes in 70 patients with t(8;21) acute myeloid leukemia. Jpn J Clin Oncol. 2012;53(7):698–704.
  6. Kuwatsuka Y, Miyamura K, Suzuki R, et al. Hematopoietic cell transplantation for core binding factor acute myeloid leukemia: t(8;21) and inv(16) represent different clinical outcomes. Blood. 2009;113(9):2096–103. doi: 10.1182/blood-2008-03-145862/
  7. Shlenk RF, Benner A, Krauter J, et al. Individual patient data-based meta-analysis of patients aged 16 to 60 years with core binding factor acute myeloid leukemia: a survey of the German Acute Myeloid Leukemia Intergroup. J Clin Oncol. 2004;22(18):3741–50. doi: 10.1200/JCO.2004.03.012.
  8. Shlenk RF, Pasquini MC, Perez WS, et al. HLA-identical sibling allogeneic transplant versus chemotherapy in acute myelogenous leukemia with t(8;21) in first complete remission: collaborative study between the German AML Intergroup and CIBMTR. Biol Blood Marrow Transplant. 2008;14(2):187–96. doi: 10.1016/j.bbmt.2007.10.006.
  9. Мамаев Н.Н., Горбунова А.В., Гиндина Т.Л. и др. Трансплантация гемопоэтических стволовых клеток при остром миелоидном лейкозе с транслокацией t(8;21)(q22;q22). Клиническая онкогематология. 2013;6(4):439–50. [Mamaev NN, Gorbunova AV, Gindina TL, et al. Hematopoietic stem cell transplantation in AML patients with t(8;21) (q22;q22) translocation. Klinicheskaya onkogematologiya. 2013;6(4):439–50. (In Russ)]
  10. Appelbaum FR, Kopecky KJ, Tallman MS, et al. The clinical spectrum of adult acute myeloid leukemia associated with core binding factor translocations. Br J Haematol. 2006;135(2):165–73. doi: 10.1111/j.1365-2141.2006.06276.x.
  11. Yoon JH, Kim HJ, Kim JW, et al. Identification of molecular and cytogenetic risk factors for unfavorable core-binding factor-positive adult AML with post-remission treatment outcome analysis including transplantation. Bone Marrow Transplant. 2014;49(12):1466–74. doi: 10.1038/bmt.2014.180.
  12. Marcucci G, Mrozek K, Ruppert AS, et al. Prognostic factors and outcome of core binding factor acute myeloid leukemia patients with t(8;21) differ from those of patients with inv(16): a Cancer and Leukemia Group B Study. J Clin Oncol. 2005;23(24):5705–17. doi: 10.1200/jco.2005.15.610.
  13. Qin YZ, Zhu HH, Jiang Q, et al. Prevalence and prognostic significance of c-KIT mutations in core binding factor acute myeloid leukemia: a comprehensive large-scale study from a single Chinese center. Leuk Res. 2016;38(12):1435–40. doi: 10.1016/j.leukres.2014.09.017.
  14. Mosna F, Papayannidis C, Martinelli G, et al. Complex karyotype, older age, and reduced first-line dose intensity determine poor survival in core binding factor acute myeloid leukemia patients with long-term follow-up. Am J Hematol. 2015;90(6):515–23. doi: 10.1002/ajh.24000.
  15. Гиндина Т.Л., Мамаев Н.Н., Бархатов И.М. и др. Сложные повреждения хромосом у больных с рецидивами острых лейкозов после аллогенной трансплантации гемопоэтических стволовых клеток. Терапевтический архив. 2012;8:61–6. [Gindina TL, Mamaev NN, Barhatov IM, et al. Complex chromosome damages in patients with recurrent acute leukemias after allogeneic hematopoietic stem cell transplantations. Terapevticheskii arkhiv. 2012;8:61–6. (In Russ)]
  16. Schaffer L, McGovan-Jordan J, Schmid M. ISCN. An international System for Human Cytogenetic Nomenclature. Basel: S. Karger; 2013.
  17. Gindina T, Mamaev N, Nikolaeva E, et al. Jumping translocations in a 13-year-old child with RUNX1/RUNX1T1-positive acute myeloid leukemia. 10th European Cytogenetics Conference 2015. Chromosome Res. 2015;23(Suppl 1):88. doi: 10.1007/s10577-015-9476-6.
  18. Мамаев Н.Н., Горбунова А.В., Бархатов И.М. и др. Молекулярный мониторинг течения острых миелоидных лейкозов по уровню экспрессии гена WT1 после аллогенной трансплантации гемопоэтических стволовых клеток. Клиническая онкогематология. 2015;8(3):309–20. [Mamaev NN, Gorbunova AV, Barkhatov IM, et al. Molecular Monitoring of WT1 Gene Expression Degree in Acute Myeloid Leukemias after Allogeneic Hematopoietic Stem Cell Transplantation. Klinicheskaya onkogematologiya. 2015;8(3):309–20. (In Russ)]
  19. Mamaev N, Mamaeva S. Two cases of acute myeloblastic leukemia (M2-type) with karyotypes 45X,-X,t(6;8)(q27;q22),inv(9) and 46,XY, t(8;21)(q22;q22),del(9)(q22). Cancer Genet Cytogenet. 1985;18(2):105–11. doi: 10.1016/0165-4608(85)90060-3.
 

Impact of molecular genetic and cytogenetic characteristics on outcomes of allogeneic hematopoietic stem cell transplantation in chronic myeloid leukemia

A.V. Gorbunova, T.L. Gindina, E V. Morozova, I.M. Barkhatov, N.N. Mamayev, and B.V. Afanasyev

R.M. Gorbacheva Institute of Pediatric Oncology, Hematology and Transplantology, I.P. Pavlov State Medical University, Saint Petersburg, Russian Federation


ABSTRACT

Point mutations in the BCR-ABL kinase domain, BCR-ABL and EVI1 gene expression alterations, and additional chromosomal aberrations in Philadelphia chromosome-positive chronic myeloid leukemia are strongly associated with resistance to tyrosine kinase inhibitors (TKIs) and disease progression, but their effect on the outcome of allogeneic hematopoietic stem cell transplantation (allo-HSCT) is uncertain. This retrospective study included 35 CML patients with resistance to TKI therapy who received a related or unrelated HSCT. Additional chromosomal aberrations were associated with the decreased rate of the complete molecular response (CMR) after allo-HSCT. EVI1 expression level was associated with a decreased disease-free survival (DFS). BCR-ABL kinase domain mutations showed no influence on CMR, OS, and DFS in this patient cohort. 9 out of 10 patients with T315I mutation achieved CMR. EVI1-directed stratification of patients during the post-transplantation period may improve outcome of HSCT.


Keywords: chronic myeloid leukemia, CML, allogeneic hematopoietic stem cells transplantation, allo-HSCT, BCR-ABL, EVI1.

Read in PDF (RUS)pdficon


Refernces

  1. Oyekunle A., Klyuchnikov E., Ocheni S. et al. Challenges for allogeneic hematopoietic stem cell transplantation in chronic myeloid leukemia in the era of tyrosine kinase inhibitors. Acta Haematol. 2011; 126(1): 30–9.
  2. Baccarani M., Cortes J., Pane F. et al. Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. Clin. Oncol. 2009; 27(35): 6041–51.
  3. Soverini S., Hochhaus A., Nicolini F.E. et al. BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood 2011; 118(5): 1208–15.
  4. Cortes J.E., Kantarjian H., Shah N.P. et al. Ponatinib in refractory Philadelphia chromosome-positive leukemias. Engl. J. Med. 2012; 367(22): 2075–88.
  5. Hochhaus A., Kreil S., Corbin A.S. et al. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 2002; 16: 2190–6.
  6. Wang Y., Cai D., Brendel C. et al. Adaptive secretion of granulocytemacrophage colony-stimulating factor (GM-CSF) mediates imatinib and nilotinib resistance in BCR/ABL+ progenitors via JAK-2/STAT-5 pathway activation. Blood 2007; 109: 2147–55.
  7. Chu S., Holtz M., Gupta M. et al. BCR/ABL kinase inhibition by imatinib mesylate enhances MAP kinase activity in chronic myelogenous leukemia CD34+ cells. Blood 2004; 103: 3167–74.
  8. Burchert A., Wang Y., Cai D. et al. Compensatory PI3-kinase/Akt/mTOR activation regulates imatinib resistance development. Leukemia 2005; 19: 1774–82.
  9. Daghistani M., Marin D., Khorashad J.S. et al. EVI-1 oncogene expression predicts survival in chronic-phase CML patients resistant to imatinib treated with second-generation tyrosine kinase inhibitors. Blood 2010; 116(26): 6014–7.
  10. Мамаев Н.Н., Горбунова А.В., Гиндина Т.Л. и др. Лейкозы и миело- диспластические синдромы с экспрессией гена EVI1: теоретические и клинические аспекты. Клин. онкогематол. 2012; 5(4): 361–4. [Mamayev N.N., Gorbunova A.V., Gindina T.L. i dr. Leykozy i miyelodis_ plasticheskiye sindromy s vysokoy ekspressiyey gena EVI1: teoreticheskiye i klinicheskiye aspekty (Leukemias and myelodisplastic syndromes with high EVI1 gene expression: theoretical and clinical aspects. In: Clin. oncohematol.). Klin. onkogematol. 2012; 5(4): 361–4.]
  11. Groschel S., Lugthart S., Schlenk R.F. et al. High EVI1 expression predicts outcome in younger adult patients with acute myeloid leukemia and is associated with distinct cytogenetic abnormalities. Clin. Oncol. 2010; 28(12): 2101–7.
 

Management of refractory acute lymphoblastic leukemia in children and adolescents: remission re-induction followed by allogeneic hematopoietic stem cell transplantation

E.V. Semenova, N.V. Stancheva, S.N. Bondarenko, V.N. Vavilov, D.A. Bagge, O.V. Paina, S.V. Razumova, A.S. Borovkova, T.A. Bykova, A.A. Raths, L.S. Zuborovskaya, B.V. Afanasyev

R.M. Gorbacheva Memorial Institute of Children Hematology and Transplantation, Pavlov State Medical University, Saint-Petersburg, Russian Federation


ABSTRACT

Objective: to analyze efficacy of fludarabine- and nelarabine-containing chemotherapy  before  allogeneic hematopoietic stem cell transplantation (allo-HSCT) in children and adolescents with relapsed and refractory acute lymphoblastic leukemia (ALL) .

Patients and methods: Thirty three patients (pts) with relapsed and refractory ALL from 1 till 21 y.o. (median age was 11,5 y.o.) were treated by fludarabine- (n=23) and nelarabine- (n=10) containing therapy.  Subsequently 24 patients underwent allo-HSCT.  

Results: CR was achieved in 11(48%) of 23 pts after FLAG±IDA and 7 (70%) of 10 pts after nelarabine-containg regimens. Duration of remissions were 1-18 months (median was 4,9 months).

Overall 3-year survival (OS) after allo-HSCT in remission was 58%, OS  after allo-HSCT in relapse was 8%, OS without allo-HSCT was 0%.

Conclusion: Fludarabine- and nelarabine-containing therapy can be used as bridge to allo-HSCT in children and adolescents with poor-prognosis ALL.


Кeywords: fludarabine, nelarabine, allo-HSCT, relapsed or refractory acute lymphoblastic leukemia, children and adolescents

Read in PDF (RUS)pdficon


REFERENCES

 
  1. Schrappe M., Reiter A., Ludwig W.D. et al. Improved outcome in childhood acute Lymphoblastic leukemia despite reduced use of antracyclines and cranial radiotherapy: results of trial ALL-BFM 90. Blood 2000; 95(11): 3310–22.
  2. Silverman L.B., Gelber R.D., Dalton V.K. et al. Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91-01. Blood 2001; 97(5): 1211–8.
  3. Pui C.-H., Schrappe M., Ribeiro R.C., Niemeyer C.M. Childhood and adolescent lymphoid and myeloid leukemia. Hematology 2004; 84: 124–32.
  4. Pui C.H., Evans W.E. Treatment of acute lymphoblastic leukemia. N. Engl. J. Med. 2006; 354(2): 166–78.
  5. Chessells J.M., Veys P., Kempski H. et al. Long-term follow-up of relapsed childhood acute lymphoblastic leukaemia. Br. J. Haematol. 2003; 123: 396–405.
  6. Nguyen K., Devidas M., Cheng S.C. et al. Factors influencing survival after relapse from acute lymphoblastic leukemia: A Children’s Oncology Group study. Leukemia 2008; 22: 2142–50.
  7. Афанасьев Б.В., Зубаровская Л.С. Трансплантация гемопоэтических стволовых клеток крови. Детская онкология: Руководство. СПб., 2002: 90–108. [Afanas’ev B.V., Zubarovskaya L.S. Transplantatsiya gemopoeticheskikh stvolovykh kletok krovi. Detskaya onkologiya: Rukovodstvo (Hematopoietic stem cell transplantation. Pediatric oncology. Manual). , 2002: 90–108.]
  8. Румянцев А.Г., Масчан А.А. Трансплантация гемопоэтических стволовых клеток у детей: Руководство для врачей. М., 2003. [Rumyantsev A.G., Maschan A.A. Transplantatsiya gemopoeticheskikh stvolovykh kletok u detei: Rukovodstvo dlya vrachei (Hematopoietic stem cell transplantation in children. Manual for medical practitioners)., 2003.]
  9. McCarthy A.J., Pitcher L.A., Hann I.M., Oakhill A. FLAG (fludarabine, high-dose cytarabine, and G-CSF) for refractory and high-risk relapsed acute leukemia in children. Med. Pediatr. Oncol. 1999; 32(6): 411–5.
  10. Yang S.W. et al. Dual mode of inhibition of purified DNA ligase from human cells by 9-β-D-arabinosyl-2-fluoroadenine triphosphate. J. Biol. Chem. 1992; 267: 2345–9.
  11. Ross S.P. et al. Fludarabine: a review of its pharmacological properties and therapeutic potential in malignancy. Drug 1993; 45: 737–59.
  12. Gandhi V. et al. Combination of fludarabine and arabinosyl-cytosine for the treatment of chronic lymphocytic leukemia: clinical efficacy and modulation of arabinosyl-cytosine pharmacology. Cancer Chem. Pharmacol. 1994; 34: 30–6.
  13. Tavil B., Aytac S., Balci Y.I. et al. Fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin (FLAG-IDA) for the treatment of children with poor-prognosis acute leukemia: the Hacettepe experience. Hematol. Oncol. 2010; 27(7): 517–28.
  14. Quarello P., Berger M., Rivetti E. et al. FLAG-liposomal doxorubicin (Myocet) regimen for refractory or relapsed acute leukemia pediatric patients. J. Pediatr. Hematol. Oncol. 2012; 34(3): 208–16.
  15. Berg S.L., Blaney S.M., Devidas M. et al. Phase II study of Nelarabine in children and young adults with refractory T-cell malignancies: a report from the Children’s Oncology Group. J. Clin. Oncol. 2005; 23(15): 3376–82.
  16. Commander L.A., Seif A.E., Insogna I.G., Susan R. Rheingold. Salvage therapy with nalarabine, etoposide and cyclophosphamide in relapsed/refractory paediatric T-cell lymphoblastic leukaemia and lymphoma. J. Haem. 2010; 150: 345–51.
  17. Trotti A., Colevas A.D. et al. CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. Radiat. O 2007; 13: 176–81.