The Effect of Anticoagulant Therapy on Survival and Outcome of Venous Thrombosis in Children, Teenagers, and Young Adults with Acute Lymphoblastic Leukemia Treated According to ALL-MB-2008 and ALL-MB-2015 Protocols

VV Dmitriev, NV Migal, OI Bydanov, NV Lipai, EV Dmitriev

Republican National Applied Research Center of Pediatric Oncology, Hematology and Immunology, 43 Frunzenskaya, Borovlyany, Minskii district, Republic of Belarus, 223053

For correspondence: Vyacheslav Vasil’evich Dmitriev, MD, PhD, 43 Frunzenskaya str., Borovlyany, Minskii district, Republic of Belarus, 223053; Tel.: +375(17)265-42-22; e-mail:

For citation: Dmitriev VV, Migal NV, Bydanov OI, et al. The Effect of Anticoagulant Therapy on Survival and Outcome of Venous Thrombosis in Children, Teenagers, and Young Adults with Acute Lymphoblastic Leukemia Treated According to ALL-MB-2008 and ALL-MB-2015 Protocols. Clinical oncohematology. 2019;12(3):338–43 (In Russ).

doi: 10.21320/2500-2139-2019-12-3-338-343


Aim. To assess the effect of anticoagulant therapy on survival and outcome of venous thrombosis in children, teenagers, and young adults with acute lymphoblastic leukemia (ALL).

Materials & Methods. Venous thrombosis was diagnosed in 42 out of 592 ALL patients treated according to ALL-MB-2008 and ALL-MB-2015 protocols from 2008 to 2017.

Results. A daily dose of 150–200 IU/kg low molecular weight heparin (LMWH) was administered to 30 patients. Duration of anticoagulant treatment was up to 1 month in 4 patients, 2–3 months in 8 patients, 4–6 months in 12 patients, and 7–12 months in 4 patients. To 2 patients anticoagulants were administered for more than 24 months. Complete recanalization of thrombosed vessel was achieved in 19 patients, partial recanalization was achieved in 6 patients, obliteration of predominantly internal jugular vein was found in 5 patients. During thrombocytopenia (100 to 35 × 109/L) 12 patients received reduced doses of LMWH for 1–4 weeks. In the period of chemotherapy-induced thrombocytopenia the daily LMWH dose was reduced in proportion to thrombocyte level. After thrombocyte recovery up to more than 100 × 109/L antithrombotic treatment was continued with LMWH daily dose of 150–200 anti-Xa IU/kg. The duration of anticoagulant treatment among 12 patients who received reduced doses of LMWH was up to 1 month in 3 patients, 2–3 months in 4 patients, 4–6 months in 3 patients, and 7–12 months in 2 patients. Complete recanalization of thrombosed vessel was achieved in 8 patients, partial recanalization was achieved in 2 patients, vein obliteration was found in 2 patients. No correlation between LMWH dosage and thrombosis outcome was observed (χ2 = 0.494; = 0.78). Maintenance (accompanying) therapy was completed in 38 out of 42 ALL patients with venous thrombosis. Event-free survival was 83 ± 8 %, that was similar to the one (81 ± 2 %) in patients without thrombosis (= 0.654).

Conclusion. Anticoagulant treatment of venous thrombosis complicating ALL in children, teenagers, and young adults did not yield a decrease of either overall or event-free survival. Reduction of LMWH doses in the period of chemotherapy-induced thrombocytopenia did not affect the outcome of venous thrombosis.

Keywords: venous thrombosis, coagulation, acute lymphoblastic leukemia, children, teenagers, young adults, anticoagulant therapy, low molecular weight heparin.

Received: October 30, 2018

Accepted: June 5, 2019

Read in PDF 


  1. Жарков П.А., Румянцев А.Г., Новичкова Г.А. Венозные тромбозы у детей со злокачественными новообразованиями (обзор литературы). Российский журнал детской гематологии и онкологии. 2015;2(1):66–74. doi: 10.17650/2311-1267-2015-1-66-74.

    [Zharkov PA, Rumyantsev AG, Novichkova GA. Venous thromboembolism in children with cancer. Russian Journal of Pediatric Hematology and Oncology. 2015;2(1):66–74. doi: 10.17650/2311-1267-2015-1-66-74. (In Russ)]

  2. Raetz EA, Salzer WL. Tolerability and efficacy of L-asparaginase therapy in pediatric patients with acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 2010;32(7):554–63. doi: 10.1097/mph.0b013e3181e6f003.

  3. Payne JH, Vora AJ. Thrombosis and acute lymphoblastic leukemia. Br J Haematol. 2007;138(4):430–45. doi: 10.1111/j.1365-2141.2007.06677.x.

  4. Athale UH, Laverdiere C, Nayiager T, et al. Evaluation for inherited and acquired prothrombotic defects predisposing to symptomatic thromboembolism in children with acute lymphoblastic leukemia: a protocol for a prospective, observational, cohort study. BMC Cancer. 2017;17(1):313. doi: 10.1186/s12885-017-3306-5.

  5. Tuckuviene R, Ranta S, Albertsen BK, et al. Prospective study of thromboembolism in 1038 children with acute lymphoblastic leukemia: a Nordic Society of Pediatric Hematology and Oncology (NOPHO) study. J Thromb Haemost. 2016;14(3):485–94. doi: 10.1111/jth.13236.

  6. Caruso V, Iacoviello L, Di Castelnuovo A, et al. Thrombotic complications in childhood acute lymphoblastic leukemia: a meta-analysis of 17 prospective studies comprising 1752 pediatric patients. Blood, 2006;108(7):2216–22. doi: 10.1182/blood-2006-04-015511.

  7. Mitchell L, Lambers M, Flege S, et al. Validation of a predictive model for identifying an increased risk for thromboembolism in children with acute lymphoblastic leukemia: results of a multicenter cohort study. 2010;115(24):4999–5004. doi: 10.1182/blood-2010-01-263012.

  8. Appel IM, Hop WCJ, van Kessel-Bakvis C, et al. L-Asparaginase and the effect of age on coagulation and fibrinolysis in childhood acute lymphoblastic leukemia. Thromb Haemost. 2008;100(08):330–7. doi: 10.1160/th07-10-0620.

  9. Kearon С, Akl E, Ornelas J, et al. Antithrombotic Therapy for VTE Disease. CHEST Guideline and Expert Panel Report. CHEST. 2016;149 (2):315–52. doi: 10.1016/j.chest.2015.11.026.

  10. Carrier M, Khorana AA, Zwicker JI, et al. Management of challenging cases of patients with cancer-associated thrombosis including recurrent thrombosis and bleeding: guidance from the SSC of the ISTH. J Thromb Haemost. 2013;11(9):1760–5. doi: 10.1111/jth.12338.

  11. Saccullo G, Malato A, Raso S, et al. Cancer patients requiring interruption of long-term warfarin because of surgery or chemotherapy induced thrombocytopenia: the use of fixed subtherapeutic doses of low molecular weight heparin. Am J Hematol. 2012;87(4):388–91. doi: 10.1002/ajh.23122.

  12. Kerlin B, Stephens J, Hogan M, et al. Development of a Pediatric-Specific Clinical Probability Tool for Diagnosis of Venous Thromboembolism: A Feasibility Study. Pediatr Res. 2014;77(3):463–71. doi: 10.1038/pr.2014.198.

  13. Babilonia KM, Golightly LK, Gutman JA, et al. Antithrombotic Therapy in Patients With Thrombocytopenic Cancer: Outcomes Associated With Reduced-Dose, Low-Molecular-Weight Heparin During Hospitalization. Clin Appl Thromb Hemost. 2014;20(8):799–806. doi: 10.1177/1076029614543140.

  14. Dmitriev Nadroparin and dalteparin pharmacokinetics in thromboses complicated the treatment of children with oncological diseases. The Book of Abstracts The Congress on Open Issues in Thrombosis and Hemostasis 2018 jointly with the 9th Russian Conference on Clinical Hemostasiology and Hemorheology, Saint Petersburg, Russia October 4–6, 2018. pp 60.

Blinatumomab in the Treatment of Acute Lymphoblastic Leukemia: Russian Multicenter Clinical Trial

SN Bondarenko1, EN Parovichnikova2, AA Maschan3, OYu Baranova4, TV Shelekhova5, VA Doronin6, VYa Mel’nichenko7, KD Kaplanov8, OS Uspenskaya9, AN Sokolov2, NV Myakova3, IS Moiseev1, IV Markova1, EI Darskaya1, AG Smirnova1, TA Bykova1, BI Ayubova1, IA Samorodova1, EV Babenko1, IM Barkhatov1, TL Gindina1, AD Kulagin1, BV Afanas’ev1

1 RM Gorbacheva Scientific Research Institute of Pediatric Oncology, Hematology and Transplantation; IP Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

2 National Medical Hematology Research Center, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

3 Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela str., Moscow, Russian Federation, 117997

4 NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

5 VI Razumovskii Saratov State Medical University, 112 Bol’shaya Kazach’ya str., Saratov, Russian Federation, 410012

6 Municipal Clinical Hospital No. 40, 7 Kasatkina str., Moscow, Russian Federation, 129301

7 NI Pirogov Russian National Medical Center of Surgery, 70 Nizhnyaya Pervomaiskaya str., Moscow, Russian Federation, 105203

8 Volgograd Regional Clinical Oncologic Dispensary, 78 Zemlyachki str., Volgograd, Russian Federation, 400138

9 Leningrad Regional Clinical Hospital, 45–49 Lunacharskogo pr-t, Saint Petersburg, Russian Federation, 194291

For correspondence: Sergei Nikolaevich Bondarenko, MD, PhD, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022; Tel.: +7(812)338-62-72; e-mail:

For citation: Bondarenko SN, Parovichnikova EN, Maschan AA, et al. Blinatumomab in the Treatment of Acute Lymphoblastic Leukemia: Russian Multicenter Clinical Trial. Clinical oncohematology. 2019;12(2):145–53.

DOI: 10.21320/2500-2139-2019-12-2-145-153


Background. Recent advances in the treatment of relapsed/refractory acute lymphoblastic leukemia (R/R ALL) are attributed to the implementation of immunotherapy methods which include blinatumomab, the bispecific engager of a patient’s endogenous T-cells (Blincyto™, Amgen®) (BC).

Aim. To assess BC efficacy and toxicity in the treatment of R/R ALL patients with persistence of minimal tumor clone before and after allogeneic hematopoietic stem cell transplantation (allo-HSCT).

Materials & Methods. The trial included 66 B-ALL patients with CD19+ aged 18 to 72 years, 23 (35 %) of them with measurable minimal residual disease (MRD+) and 43 (65 %) with R/R ALL. In 18 (27 %) patients BC was administered after prior allo-HSCT.

Results. In the overall group 2-year overall survival (OS) and disease-free survival (DFS) in patients with response to BC treatment were 53 % and 38 % respectively. In the R/R ALL group complete remission (CR) was achieved in 29 (67 %) patients including 24 (83 %) patients with negative MRD. CR rate was higher in standard cytogenetic risk group (73 %) in comparison with high-risk group (59 %). In patients with more or less than 50 % blast cells in bone marrow CR rate was 85 % and 61 %, respectively. When BC was administered after prior allo-HSCT and without it CR rate was 80 % and 60 %, respectively. In R/R ALL patients with response to BC 2-year OS and DFS were 40 % and 26 %, respectively, in the MRD+ group of ALL patients they were 66 % and 51 %, respectively. Relapse rate was lower in the group with allo-HSCT than in the group without it, i.e. 21 % vs. 55 %. Adverse events of grade 3–4 were observed in 25 (38 %) patients. In 11 (16 %) patients BC therapy had to be discontinued, in 5 (7 %) patients it was terminated prior to the scheduled date.

Conclusion. BC efficacy is higher in the MRD+ group and in R/R ALL patients with smaller tumor mass. BC treatment after allo-HSCT yields remissions in most patients and can be combined with immune-adoptive therapy.

Keywords: acute lymphoblastic leukemia, targeted therapy, blinatumomab.

Received: August 22, 2018

Accepted: January 18, 2019

Read in PDF 


  1. Gokbuget N, Stanze D, Beck J, et al. Outcome of relapsed adult lymphoblastic leukemia depends on response to salvage chemotherapy, prognostic factors, and performance of stem cell transplantation. 2012;120(10):2032–41. doi: 10.1182/blood-2011-12-399287.

  2. Faderl S, O’Brien S, Pui C-H, et al. Adult Acute Lymphoblastic Leukemia. Cancer. 2010;116(5):1165–76. doi: 10.1002/cncr.24862.

  3. Gokbuget N, Dombret H, Ribera J-M, et al. International reference analysis of outcomes in adults with B-precursor Ph-negative relapsed/refractor y acute lymphoblastic leukemia. Haematologica. 2016;101(12):1524–33. doi: 10.3324/haematol.2016.144311.

  4. Pavlu J, Labopin M, Zoellner AK, et al. Allogeneic Hematopoietic Cell Transplantation for Primary Refractory Acute Lymphoblastic Leukemia: A Report From the Acute Leukemia Working Party of the EBMT. Cancer. 2017;123(11):1965–70. doi: 10.1002/cncr.30604.

  5. Bondarenko SN, Moiseev IS, Slesarchuk OA, et al. Allogeneic hematopoietic stem cell transplantation in children and adults with acute lymphoblastic leukemia. Cellular Therapy and Transplantation. 2016;5(2):12–20. doi: 10.18620/1866-8836-2016-5-2-12-20.

  6. Паровичникова Е.Н., Соколов А.Н., Троицкая В.В. и др. Острые Ph-негативные лимфобластные лейкозы взрослых: факторы риска при использовании протокола ОЛЛ-2009. Терапевтический архив. 2016;88(7):15–24.

    [Parovichnikova EN, Sokolov AN, Troitskaya VV, et al. Acute Ph-negative lymphoblastic leukemias in adults: Risk factors in the use of the ALL-2009 protocol. Terapevticheskii arkhiv. 2016;88(7):15–24. (In Russ)]

  7. Swann JB, Smyth MJ. Immune surveillance of tumors. J Clin Invest. 2007;117(5):1137–46. doi: 10.1172/jci31405.

  8. Biagi E, Marin V, Attianese GM, et al. Chimeric T-cell receptors: new challenges for targeted immunotherapy in hematologic malignancies. Haematologica. 2007;92(3):381–8. doi: 10.3324/haematol.10873.

  9. Klinger M, Brandl C, Zugmaier G, et al. Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell–engaging CD19/CD3-bispecific BiTE antibody blinatumomab. Blood. 2012;119(26):6226–33. doi: 10.1182/blood-2012-01-400515.

  10. Topp MS, Gokbuget N, Stein AS, et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 2015;16(1):57–66. doi: 10.1016/s1470-2045(14)71170-2.

  11. Gokbuget N, Dombret H, Bonifacio M, et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood. 2018;131(14):1522–31. doi: 10.1182/blood-2017-08-798322.

  12. Kantarjian H, Stein AS, Gokbuget N, et al. Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia. N Engl J Med. 2017;376(9):836–47. doi: 10.1056/NEJMoa1609783.

  13. Zugmaier G, Gokbuget N, Klinger M, et al. Long-term survival and T-cell kinetics in relapsed/refractory ALL patients who achieved MRD response after blinatumomab treatment. Blood. 2015;126(24):2578–84. doi: 10.1182/blood-2015-06-649111.

Manufacturing of CD19 Specific CAR T-Cells and Evaluation of their Functional Activity in Vitro

AV Petukhov1, VA Markova2, DV Motorin1, AK Titov1, NS Belozerova2, PM Gershovich2, AV Karabel’skii2, RA Ivanov2, EK Zaikova1, EYu Smirnov2, PA Butylin1, AYu Zaritskey1

1 VA Almazov National Medical Research Center, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341

2 Biocad Biotechnology Company, 34-A Svyazi str., Strel’na, Saint Petersburg, Russian Federation, 198515

For correspondence: Andrei Yur’evich Zaritskey, MD PhD, 2 Akkuratova str., Saint Petersburg, Russian Federation, 197341; Tel.: +7(812)702-68-28, Fax: +7(812)702-37-65; e-mail:

For citation: Petukhov AV, Markova VA, Motorin DV, et al. Manufacturing of CD19 Specific CAR T-Cells and Evaluation of their Functional Activity in Vitro. Clinical oncohematology. 2018;11(1):1–9.

DOI: 10.21320/2500-2139-2018-11-1-1-9


Background. The most promising variant of adoptive immunotherapy of the B-line oncohematological diseases includes the use of cells with the chimeric antigen receptor (CAR T-cells), that showed extraordinary results in clinical studies.

Aim. To manufacture CAR T-cells for the clinical use and to study their cytotoxicity in vitro.

Methods. Human T-lymphocytes were transduced by the lentiviral vector containing anti-CD19-CAR, RIAD, and GFP genes. The T-cell transduction efficacy was assessed on the basis of GFP protein signal by flow cytometry. Propidium iodide was used to analyse the cell viability. Cytotoxic activity of the manufactured CAR T-cells was studied in the presence of the target cells being directly co-cultivated. Analysis of the number and viability of CAR T-cells and cytokine expression was performed by flow cytometry.

Results. The viability of the transduced T-cells and GFP expression reached 91.87 % and 50.87 % respectively. When cultured in the presence of IL-2 and recombinant CD19 (the target antigen), the amount of CAR-T after 120 h of the process was 1.4 times larger compared with the period of 48 h. In the cytotoxic test of co-cultivation CAR-T with the K562-CD19+ cells the percentage of CAR-T increased to 57 % and 84.5 % after 48 h and 120 h of exposure respectively. When cultured with the K562 cells (test line not expressing CD19) the number of CAR T-cells decreased to 36.2 % within 48 h while the number of K562 cells increased to 58.3 %. The viability of target cells in the experimental and control groups was 3.5 % and 36.74 % respectively. Comparison of IL-6 level in the control and experimental groups revealed that the differences are insignificant, as opposed to the level of other cytokines (IFN-γ, IL-2, TNF) which proved to be different in both groups.

Conclusion. The present work resulted in the production of anti-CD19 CAR T-cells with adequate viability. The in vitro model demonstrated their cytotoxicity. Manufacturing of CAR T-cells for clinical use is the first step of the development of adoptive immunotherapy in the Russian Federation.

Keywords: CAR T-cells, adoptive immunotherapy, acute lymphoblastic leukemia, non-Hodgkin’s lymphomas, lentiviral transduction, graft-versus-host reaction, сytokine release syndrome.

Received: September 15, 2017

Accepted: December 7, 2017

Read in PDF 


  1. Kanakry CG, Fuchs EJ, Luznik L. Modern approaches to HLA-haploidentical blood or marrow transplantation. Nat Rev Clin Oncol. 2015;13(1):10–24. doi: 10.1038/nrclinonc.2015.128.
  2. Podhorecka M, Markowicz J, Szymczyk A, Pawlowski J. Target therapy in hematological malignances: new monoclonal antibodies. Int Sch Res Not. 2014;2014(3):1–16. doi: 10.1155/2014/701493.
  3. Hussaini M. Biomarkers in Hematological Malignancies: A Review of Molecular Testing in Hematopathology. Cancer Control. 2015;22(2):158–66. doi: 10.1177/107327481502200206.
  4. Forman SJ, Rowe JM. The myth of the second remission of acute leukemia in the adult. Blood. 2013;121(7):1077–82. doi: 10.1182/blood-2012-08-234492.
  5. Im A, Pavletic SZ. Immunotherapy in hematologic malignancies: past, present, and future. J Hematol Oncol. 2017;10(1):94. doi: 10.1186/s13045-017-0453-8.
  6. Luskin MR, DeAngelo DJ. Chimeric Antigen Receptor Therapy in Acute Lymphoblastic Leukemia Clinical Practice. Curr Hematol Malig Rep. 2017;12(4):370–9. doi: 10.1007/s11899-017-0394-x.
  7. Fesnak A, June CH, Levine BL. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer. 2016;16(9):566–81. doi: 10.1038/nrc.2016.97.
  8. Lim W, June C. The Principles of Engineering Immune Cells to Treat Cancer. Cell. 2017;168(4):724–40. doi: 10.1016/j.cell.2017.01.016.
  9. Sadelain M, Brentjens R, Riviere I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013;3(4):388–98. doi: 10.1158/2159-8290.CD-12-0548.
  10. Brentjens RJ, Davila ML, Riviere I, et al. CD19-Targeted T Cells Rapidly Induce Molecular Remissions in Adults with Chemotherapy-Refractory Acute Lymphoblastic Leukemia. Sci Transl Med. 2013;5(177):177ra38. doi: 10.1126/scitranslmed.3005930.
  11. Maude SL, Frey N, Shaw P, et al. Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia. N Engl J Med. 2014;371(16):1507–17. doi: 10.1056/NEJMoa1407222.
  12. Turtle CJ, Hanafi L-A, Berger C, et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest. 2016;126(6):2123–38. doi: 10.1172/JCI85309.
  13. Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–28. doi: 10.1016/S0140-6736(14)61403-3.
  14. Onea AS, Jazirehi AR. CD19 chimeric antigen receptor (CD19 CAR)-redirected adoptive T-cell immunotherapy for the treatment of relapsed or refractory B-cell Non-Hodgkin’s Lymphomas. Am J Cancer Res. 2016;6(2):403–24.
  15. Kebriaei P, Singh H, Huls MH, et al. Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells. J Clin Invest. 2016;126(9):3363–76. doi: 10.1172/JCI86721.
  16. ICML 2017: Data From the TRANSCEND Trial of JCAR017 in Relapsed and Refractory Aggressive B-Cell Non-Hodgkin Lymphoma — The ASCO Post. Available from: (accessed 7.10.2017).
  17. Locke FL, Neelapu SS, Bartlett NL, et al. Abstract CT019: Primary results from ZUMA-1: a pivotal trial of axicabtagene ciloleucel (axicel; KTE-C19) in patients with refractory aggressive non-Hodgkin lymphoma (NHL). Cancer Res. 2017;77(13 Suppl):CT019. doi: 10.1158/1538-7445.AM2017-CT019.
  18. Kalos M, Levine BL, Porter DL, et al. T Cells with Chimeric Antigen Receptors Have Potent Antitumor Effects and Can Establish Memory in Patients with Advanced Leukemia. Sci Transl Med. 2011;3(95):95ra73. doi: 10.1126/scitranslmed.3002842.
  19. Porter DL, Hwang W-T, Frey NV, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med. 2015;7(303):303ra139. doi: 10.1126/scitranslmed.aac5415.
  20. Jensen MC, Riddell SR. Designing chimeric antigen receptors to effectively and safely target tumors. Curr Opin Immunol. 2015;33:9–15. doi: 10.1016/j.coi.2015.01.002.
  21. Павлова А.А., Масчан М.А., Пономарев В.Б. Адоптивная иммунотерапия генетически модифицированными Т-лимфоцитами, экспрессирующими химерные антигенные рецепторы. Онкогематология. 2017;12(1):17–32. doi: 10.17650/1818-8346-2017-12-1-17-32. [Pavlova AА, Maschan MА, Ponomarev VB. Adoptitive immunotherapy with genetically engineered T lymphocytes modified to express chimeric antigen receptors. Oncohematology. 2017;12(1):17–32. doi: 10.17650/1818-8346-2017-12-1-17-32. (In Russ)]
  22. Dai H, Wang Y, Lu X, Han W. Chimeric Antigen Receptors Modified T-Cells for Cancer Therapy. J Natl Cancer Inst. 2016;108(7):1–15. doi: 10.1093/jnci/djv439.
  23. Abate-Daga D, Davila ML. CAR models: next-generation CAR modifications for enhanced T-cell function. Mol Ther Oncolytics. 2016;3:16014. doi: 10.1038/mto.2016.14.
  24. Holzinger A, Barden M, Abken H. The growing world of CAR T cell trials: a systematic review. Cancer Immunol Immunother. 2016;65(12):1433–50. doi: 10.1007/s00262-016-1895-5.
  25. Jensen MC, Popplewell L, Cooper LJ, et al. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol Blood Marrow Transplant. 2010;16(9):1245–56. doi: 10.1016/j.bbmt.2010.03.014.
  26. Gong MC, Latouche JB, Krause A, et al. Cancer patient T cells genetically targeted to prostate-specific membrane antigen specifically lyse prostate cancer cells and release cytokines in response to prostate-specific membrane antigen. Neoplasia. 1999;1(2):123–7.
  27. Davila ML, Sadelain M. Biology and clinical application of CAR T cells for B cell malignancies. Int J Hematol. 2016;104(1):6–17. doi: 10.1007/s12185-016-2039-6.
  28. Park JH, Geyer MB, Brentjens RJ. CD19-targeted CAR T-cell therapeutics for hematologic malignancies: interpreting clinical outcomes to date. Blood. 2016;127(26):3312–20. doi: 10.1182/blood-2016-02-629063.
  29. Grupp S, Kalos M, Barrett D, et al. Chimeric Antigen Receptor–Modified T Cells for Acute Lymphoid Leukemia. N Engl J Med. 2013;368(16):1509–18. doi: 10.1056/NEJMoa1215134.
  30. Yu H, Sotillo E, Harrington C, et al. Repeated loss of target surface antigen after immunotherapy in primary mediastinal large B cell lymphoma. Am J Hematol. 2017;92(1):E11–E13. doi: 10.1002/ajh.24594.
  31. Sotillo E, Barrett DM, Black KL, et al. Convergence of Acquired Mutations and Alternative Splicing of CD19 Enables Resistance to CART-19 Immunotherapy. Cancer Discov. 2015;5(12):1282–95. doi: 10.1158/2159-8290.CD-15-1020.
  32. Fischer J, Paret C, El Malki K, et al. CD19 Isoforms Enabling Resistance to CART-19 Immunotherapy Are Expressed in B-ALL Patients at Initial Diagnosis. J Immunother. 2017;40(5):187–95. doi: 10.1097/CJI.0000000000000169.
  33. Jacoby E, Nguyen SM, Fountaine TJ, et al. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nat Commun. 2016;7:12320. doi: 10.1038/ncomms12320.
  34. Gardner R, Wu D, Cherian S, et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood. 2016;127(20):2406–10. doi: 10.1182/blood-2015-08-665547.
  35. Zah E, Lin M-Y, Silva-Benedict A, et al. T Cells Expressing CD19/CD20 Bispecific Chimeric Antigen Receptors Prevent Antigen Escape by Malignant B Cells. Cancer Immunol Res. 2016;4(6):498–508. doi: 10.1158/2326-6066.CIR-15-0231.
  36. Shah NN, Stetler-Stevenson M, Yuan CM, et al. Minimal Residual Disease Negative Complete Remissions Following Anti-CD22 Chimeric Antigen Receptor (CAR) in Children and Young Adults with Relapsed/Refractory Acute Lymphoblastic Leukemia (ALL). Blood. 2016;128(22):650.
  37. Davila ML, Riviere I, Wang X, et al. Efficacy and Toxicity Management of 19-28z CAR T Cell Therapy in B Cell Acute Lymphoblastic Leukemia. Sci Transl Med. 2014;6(224):224ra25. doi: 10.1126/scitranslmed.3008226.
  38. Long AH, Haso WM, Shern JF, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21(6):581–90. doi: 10.1038/nm.3838.
  39. Hay KA, Turtle CJ. Chimeric Antigen Receptor (CAR) T Cells: Lessons Learned from Targeting of CD19 in B-Cell Malignancies. Drugs. 2017;77(3):237–45. doi: 10.1007/s40265-017-0690-8.
  40. Wehbi VL, Tasken K. Molecular mechanisms for cAMP-mediated immunoregulation in T cells – role of anchored protein kinase a signaling units. Front Immunol. 2016;7:1–19. doi: 10.3389/fimmu.2016.00222.
  41. Newick K, O’Brien S, Sun J, et al. Augmentation of CAR T-cell Trafficking and Antitumor Efficacy by Blocking Protein Kinase A Localization. Cancer Immunol Res. 2016;4(6):541–51. doi: 10.1158/2326-6066.CIR-15-0263.
  42. Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014;11(8):783–4. doi: 10.1038/nmeth.3047.
  43. Kochenderfer JN, Feldman SA, Zhao Y, et al. Construction and Preclinical Evaluation of an Anti-CD19 Chimeric Antigen Receptor. J Immunother. 2009;32(7):689–702. doi: 10.1097/CJI.0b013e3181ac6138.
  44. Wang K, Wei G, Liu D. CD19: a biomarker for B cell development, lymphoma diagnosis and therapy. Exp Hematol Oncol. 2012;1(1):36. doi: 10.1186/2162-3619-1-36.
  45. Uckun FFM, Jaszcz W, Ambrus JJL, et al. Detailed Studies on Expression and Function of CD19 Surface Determinant by Using B43 Monoclonal Antibody and the Clinical Potential of Anti-CD19 Immunotoxins. Blood. 1988;71(1):13–29.
  46. Wei G, Ding L, Wang J, et al. Advances of CD19-directed chimeric antigen receptor-modified T cells in refractory/relapsed acute lymphoblastic leukemia. Exp Hematol Oncol. 2017;6(1):10. doi: 10.1186/s40164-017-0070-9.
  47. Barrett DM, Singh N, Hofmann TJ, et al. Interleukin 6 Is Not Made By Chimeric Antigen Receptor T Cells and Does Not Impact Their Function. Blood. 2016;128(22):2016–7.
  48. Singh N, Hofmann TJ, Gershenson Z, et al. Monocyte lineage-derived IL-6 does not affect chimeric antigen receptor T-cell function. Cytotherapy. 2017;19(7):867–80. doi: 10.1016/j.jcyt.2017.04.001.
  49. Hartmann J, Schussler‐Lenz M, Bondanza A, Buchholz CJ. Clinical development of CAR T cells—challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med. 2017;9(9):1183–97. doi: 10.15252/emmm.201607485.
  50. Hagen T. Novartis Sets a Price of $475,000 for CAR T-Cell Therapy. Available from: (accessed 31.10.2017).
  51. Yang Y, Jacoby E, Fry TJ. Challenges and opportunities of allogeneic donor-derived CAR T cells. Curr Opin Hematol. 2015;22(6):509–15. doi: 10.1097/MOH.0000000000000181.
  52. Li H, Zhao Y. Increasing the safety and efficacy of chimeric antigen receptor T cell therapy. Protein Cell. 2017;8(8):573–89. doi: 10.1007/s13238-017-0411-9.

Bortezomib Combination Therapy of Relapsed and Refractory Acute Lymphoblastic Leukemia in Children

NA Batmanova, MA Shervashidze, AV Popa, LYu Grivtsova, IN Serebryakova, GL Mentkevich

NN Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Natal’ya Andreevna Batmanova, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(925)321-26-42; e-mail:

For citation: Batmanova NА, Shervashidze MА, Popa АV, et al. Bortezomib Combination Therapy of Relapsed and Refractory Acute Lymphoblastic Leukemia in Children. Clinical oncohematology. 2017;10(3):381–9 (In Russ).

DOI: 10.21320/2500-2139-2017-10-3-381-389


Background & Aims. Despite significant success in the treatment of acute lymphoblastic leukemia (ALL) in children, relapses and drug resistance to the standard therapy remain the main cause of treatment failure. The addition of bortezomib to the combination therapy of relapsed ALL to change the sensitivity of blast cells may be a perspective approach to cure patients. The aim was to evaluate the efficacy and toxicity of the anti-relapse ALL treatment protocols REZ BFM 95/96 without bortezomib and COG AALL07P1 with bortezomib in relapsed and refractory ALL in children.

Materials & Methods. The study included 54 children with a confirmed ALL of various localizations. From 1995 to 2011, ALL REZ BFM 95/96 treatment without bortezomib was administered to 26 patients. From 2011 to 2016, 28 children received COG AALL07P1 combination treatment with bortezomib.

Results. The immediate treatment efficacy significantly higher in patients treated with bortezomib (85.7 % vs 57.6 %) after induction chemotherapy with the ALL REZ BFM 95/96. The analysis of the long-term outcomes (disease-free, event-free, overall survival) showed no significant differences between the groups. The event-free survival of patients with isolated bone marrow relapses for a period of 2 years was 20.3 ± 17.5 %. The tolerability of the program was acceptable, complications developing during myelosuppression were not associated with the administration of bortezomib.

Conclusion. The intensification of induction chemotherapy in recurrent remission according to COG AALL07P1 protocol with the addition of bortezomib allowed to increase the number of complete remissions including MRD negative ones.

Keywords: acute lymphoblastic leukemia, refractoriness, relapses, bortezomib.

Received: February 24, 2017

Accepted: May 2, 2017

Read in PDF (RUS)pdficon


  1. Менткевич Г.Л., Маякова С.А. Лейкозы у детей. М.: Практическая медицина, 2009. 346 с. [Mentkevich GL, Mayakova SA. Leikozy u detei. (Leukemia in children.) Moscow: Prakticheskaya meditsina Publ.; 2009. 346 p. (In Russ)]
  2. Goto H. Childhood relapsed acute lymphoblastic leukemia: biology and recent treatment progress. Pediatr Intern. 2015;57(6):1059–66. doi: 10.1111/ped.12837.
  3. Pui CH, Carroll WL, Meshinchi S, Arceci R.J. Biology, risk stratification and therapy of pediatric acute leukemias: an update. J Clin Oncol. 2011;29(36):551–65. doi: 10.1200/JCO.2010.30.7405.
  4. Pui CH, Evans EW. A 50-year journey to cure childhood acute lymphoblastic leukemia. Semin Hematol. 2013;50(3):185–96. doi: 10.1053/j.seminhematol.2013.06.007.
  5. Bailey LC, Lange BJ, Rheingold SR, Bunin N.J. Bone-marrow relapse in pediatric acute lymphoblastic leukaemia. Lancet Oncol. 2008;9(9):873–83. doi: 10.1016/S1470-2045(08)70229-8.
  6. Bhojwani D, Pui CH. Relapsed childhood acute lymphoblastic leukaemia. Lancet Oncol. 2013;14(6):205–17. doi: 10.1016/S1470-2045(12)70580-6.
  7. Bhatla T. The biology of relapsed acute lymphoblastic leukemia: opportunities for therapeutic interventions. J Pediatr Hematol Oncol. 2014;36(6):413–8. doi: 10.1097/MPH.0000000000000179.
  8. Raetz AE, Bhatla T. Where do we stand in the treatment of relapsed acute lymphoblastic leukemia? Am Soc Hematol Educ Program. 2012;2012:129–36. doi: 10.1182/asheducation-2012.1.129.
  9. Gaynon PS. Childhood acute lymphoblastic leukaemia and relapse. Br J Haematol. 2005;131(5):579–87. doi: 10.1111/j.1365-2141.2005.05773.x.
  10. MacKezie A, Kasner M. Therapeutic developments in acute lymphoblastic leukemia. Blood Lymph Cancer: Targets Ther. 2012;2:145–58. doi: 10.2147/BLCTT.S24990.
  11. Ko RH, Barnette P, Bostrom B, et al. Outcome of patients treated for relapsed or refractory acute lymphoblastic leukemia: a therapeutic advances in childhood leukemia consortium study. J Clin Oncol. 2010;28(4):648–54. doi: 10.1200/JCO.2009.22.2950.
  12. Milano A, Perry F, Caponigro F. The ubiquitin-proteasome system as a molecular target in solid tumors: an update on bortezomib. Onco Targets Ther. 2009;2:171–8. doi: 10.2147/OTT.S4503.
  13. Brown RE. Morphoproteomics and bortezomib/dexamethasone-induced response in relapsed acute lymphoblastic leukemia. Ann Clin Lab Sci. 2004;34(2):203–5.
  14. Du Xiao-Li, Chen Qi. Recent advancement of bortezomib in acute lymphoblastic leukemia treatment. Acta Haematol. 2013;129(4):207–14. doi: 10.1159/000345260.
  15. Horton TM. Bortezomib interactions with chemotherapy agents in acute leukemia in vitro. Cancer Chemother Pharmacol. 2006;58(13):13–23. doi: 10.1007/s00280-005-0135-z.
  16. Messinger Y, Gaynon P, Raetz E, et al. Phase I study of bortezomib combined with chemotherapy in children with relapsed childhood acute lymphoblastic leukemia (ALL): a report from the therapeutic advances in childhood leukemia (TACL) consortium. Pediatr Blood Cancer. 2010;55(2):254–9. doi: 10.1002/pbc.22456.
  17. Messinger YH, Gaynon PS, Sposto R, et al. Bortezomib with chemotherapy is highly active in advanced B-precursor acute lymphoblastic leukemia: Therapeutic Advances in Childhood Leukemia & Lymphoma (TACL) Study. Blood. 2012;120(2):285–90. doi: 10.1182/blood-2012-04-418640.

Acute Lymphoblastic Leukemia with t(4;11)(q21;q23)/KMT2A-AFF1 Translocation: The Results of Allogeneic Hematopoietic Stem Cells Transplantation in Children and Adults

TL Gindina, NN Mamaev, OV Paina, AS Borovkova, PV Kozhokar’, OA Slesarchuk, YaV Gudozhnikova, EI Darskaya, AL Alyanskii, SN Bondarenko, LS Zubarovskaya, BV Afanas’ev

RM Gorbacheva Scientific Research Institute of Pediatric Hematology and Transplantation; Pavlov First Saint Petersburg State Medical University, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022

For correspondence: Tat’yana Leonidovna Gindina, PhD, 6/8 L’va Tolstogo str., Saint Petersburg, Russian Federation, 197022; Tel.: +7(812)233-12-43; e-mail:

For citation: Gindina TL, Mamaev NN, Paina OV, et al. Acute Lymphoblastic Leukemia with t(4;11)(q21;q23)/KMT2A-AFF1 Translocation: The Results of Allogeneic Hematopoietic Stem Cells Transplantation in Children and Adults. Clinical oncohematology. 2017;10(3):342–50 (In Russ).

DOI: 10.21320/2500-2139-2017-10-3-342-350


Aim. The aim was to evaluate the results of the allogeneic hematopoietic stem cells transplantation (allo-HSCT) in children and adults with the most prognostically unfavorable acute lymphoblastic leukemia (ALL) with t(4;11)(q21;q23)/KMT2A-AFF1 translocation.

Methods. We examined 21 patients (12 females, 9 males) aged from 3 months to 48 years (median 18.9 years). The analysis of prognostic factors of overall (OS) and event-free survival (EFS) after allo-HSCT in patients of different age groups with various clinical, transplantation and cytogenetic characteristics was performed. Allo-HSCT from HLA-compatible related and unrelated donors, as well as haploidentical allo-HSCT were performed in 4, 9 and 8 patients of age groups < 1 year, 1–18 years, and >18 years, respectively. In 10 (48 %) patients, allo-HSCT was performed in the first remission, in 2 (10 %) patients in the second remission, and in 9 (43 %) patients during the disease relapse.

Results. In 8 (38 %) patients, the only chromosomal disorder was the translocation t(4;11)(q21;q23). Additional changes in chromosomes were found in 11 (52 %) patients. In 8 (38 %) of them, 3 or more chromosomal abnormalities in the karyotype were found. According to the results of a univariant analysis, the OS and EFS were significantly different in patients with allo-HSCT performed in the first remission and at other stages of ALL (in the second remission and in relapse: < 0.001 in both cases), as well as in patients with or without 3 or more cytogenetic disorders in the karyotype (p = 0.04 in both cases). The multivariant analysis showed that the only independent prognostic factor affecting the OS and EFS in ALL patients with t(4;11) was the allo-HSCT, including the haploidentical procedure, during the first complete hematological and molecular remission (p = 0.002 and p = 0.0004, respectively).

Conclusion. ALL with t(4;11)/KMT2A-AFF1 was as an absolute indication for allo-HSCT in first remission, including children of < 1 year age group. Satisfactory results can be obtained with the use of haploidentical transplantation from the parents. This approach eliminates the search in the registers completely HLA-compatible donor and facilitates the treatment procedure.

Keywords: acute lymphoblastic leukemia, t(4;11)/KMT2A-AFF1 translocation, allogeneic HSCT.

Received: January 17, 2017

Accepted: May 10, 2017

Read in PDF (RUS)pdficon


  1. Marchesi F, Girardi K, Avvisati G. Pathogenetic, clinical and prognostic features of adult t(4;11)(q21;q23)/MLL-AF4 positive B-cell acute lymphoblastic leukemia. Adv Hematol. 2011;2011:1–8. doi: 10.1155/2011/621627.
  2. Marks DI, Moorman AV, Chilton L, et al. The clinical characteristics, therapy and outcome of 85 adults with acute lymphoblastic leukemia and t(4;11)(Q21;Q23)/MLL-AFF1 prospectively treated in the UKALLXII/ECOG2993 trial. Haematologica. 2013;98(6):945–52. doi: 10.3324/haematol.2012.081877.
  3. Vey N, Thomas X, Picard C, et al. Allogeneic stem cell transplantation improves the outcome of adults with t(1;19)/E2a-PBX1 and t(4;11)/MLL-AF4 positive B-cell acute lymphoblastic leukemia: results of the prospective multicenter LALA-94 study. Leukemia. 2006;20(12):2155–66. doi: 10.1038/sj.leu.2404420.
  4. Cimino G, Cenfra N, Elia L, et al. The therapeutic response and clinical outcome of adults with ALL1(MLL)/AF4 fusion positive acute lymphoblastic leukemia according to the GIMEMA experience. Haematologica. 2010;95(5):837–40. doi: 10.3324/haematol.2009.009035.
  5. Koh K, Tomizawa D, Saito MA, et al. Early use of allogeneic hematopoietic stem cell transplantation for infants with MLL gene-arrangement-positive acute lymphoblastic leukemia. Leukemia. 2015;29(2):290–6. doi: 10.1038/leu.2014.172.
  6. Parma M, Vigano C, Fumagatti M, et al. Good outcome for very high risk adult B cell acute lymphoblastic leukemia carrying genetic abnormalities t(4;11)(q21q23), if promtly submitted to allogeneic transplantation after obtaining a good molecular remission. Mediterr J Hematol Infect Dis. 2015;7(1):e2015041. doi: 10.4084/MJHID.2015.041.
  7. Kosaka Y, Koh K, Kinukawa N, et al. Infant acute lymphoblastic leukaemia with MLL gene arrangements: outcome following intensive chemotherapy and hematopoietic stem cell transplantation. Blood. 2004;104(12):3527–34. doi: 10.1182/blood-2004-04-1390.
  8. Mann G, Attarbaschi A, Schrappe M, et al. Improved outcome with hematopoietic stem cell transplantation in a poor prognostic subgroup of infants with mixed-lineage-leukemia (MLL)-rearranged acute lymphoblastic leukemia: Results from the Interfant-99 Study. Blood. 2010;116(15):2644–50. doi: 10.1182/blood-2010-03-273532.
  9. Kato M, Hasegawa D, Kato K, et al. Allogeneic haematopoietic stem cell transplantation for infant acute lymphoblastic leukemia with KMT2A (MLL) rearrangements: a retrospective study from the paediatric acute lymphoblastic leukemia working group of the Japan Society for Haematopoietic Cell Transplantation. Br J Haematol. 2015;168(4):564–70. doi: 10.1111/bjh.13174.
  10. Wang Y, Liu QF, Liu Dh, et al. Improved outcome with hematopoietic stem cell transplantation in a poor prognostic subgroup of patients with mixed-lineage-leukemia-rearranged acute leukemia: results from a prospective, multi-center study. Am J Hematol. 2014;89(2):130–6. doi: 10.1002/ajh.23595.
  11. Гиндина Т.Л., Мамаев Н.Н., Бархатов И.М. и др. Сложные повреждения хромосом у больных с рецидивами острых лейкозов после аллогенной трансплантации гемопоэтических стволовых клеток. Терапевтический архив. 2012;8:61–6. [Gindina TL, Mamaev NN, Barkhatov IM, et al. Complex chromosome damages in patients with recurrent acute leukemias after allogeneic hematopoietic stem cell transplantations. Terapevticheskii arkhiv. 2012;8:61–6. (In Russ)]
  12. Schaffer L, McGovan-Jordan J, Schmid M. An International System for Human Cytogenetic Nomenclature. Basel: S. Karger; 2013. p. 140.
  13. Sanjuan-Pla A, Bueno C, Prieto C, et al. Revisiting the biology of infant t(4;11)/MLL-AF41 B-cell acute lymphoblastic leukemia. Blood. 2015;126(25):2676–85. doi: 10.1182/blood-2015-09-967378.
  14. Motllo C, Ribera J-M, Morgades M, et al. Frequency and prognostic significance of t(v;11q23)/KMT2A rearrangements in adult patients with acute lymphoblastic leukemia treated with risk-adapted protocols. Leuk Lymphoma. 2017;58(1):145–52. doi: 10.1080/10428194.2016.1177182.
  15. Dreyer ZE, Dinndorf PA, Camitta B, et al. Analysis of the role of hematopoietic stem-cell transplantation in infants with acute lymphoblastic leukemia in first remission and MLL gene rearrangements: a report from the Children’s Oncology Group. J Clin Oncol. 2011;29(2):214–22. doi: 10.1200/jco.2009.26.8938.
  16. Tomizava D, Kato M, Takahashi H, et al. Favourable outcome in non-infant children with MLL-AF4-positive acute lymphoblastic leukemia: a report from the Tokyo Children’s Cancer Study Group. Int J Hematol. 2015;102(5):602–10. doi: 10.1007/s12185-015-1869-y.

Cytogenetic and Molecular Genetic Prognostic Factors of Acute Lymphoblastic Leukemias

AV Misyurin

NN Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Andrei Vital’evich Misyurin, PhD, 24 Kashirskoe sh., Moscow, Russian Federation, 115478; e-mail:

For citation: Misyurin AV. Cytogenetic and Molecular Genetic Prognostic Factors of Acute Lymphoblastic Leukemias. Clinical oncohematology. 2017;10(3):317–23 (In Russ).

DOI: 10.21320/2500-2139-2017-10-3-317-323


This review presents characteristic and reproducible chromosome rearrangements in acute lymphoblastic leukemia (ALL), which can be detected with a standard cytogenetic research (G-bands staining) or by FISH. More subtle genetic changes, inaccessible to the observation of cytogeneticists, are detected with the help of modern methods of molecular biological diagnosis. The prognostic value of cytogenetic and molecular genetic markers of ALL is shown in this article. A minimal set of clinically relevant molecular markers is presented, which it is advisable to investigate with ALL.

Keywords: acute lymphoblastic leukemia, chromosomal aberration, chimeric oncogene, gene expression, gene mutation.

Received: December 3, 2016

Accepted: March 8, 2017

Read in PDF (RUS)pdficon


  1. Гематология: национальное руководство. Под ред. О.А. Рукавицына. М.: ГЭОТАР-Медиа, 2015. 776 с.
    [Rukavitsyn OA, ed. Gematologiya: natsional’noe rukovodstvo. (Hematology: national guidelines.) Moscow: GEOTAR-Media Publ.; 2015. 776 p. (In Russ)]
  2. Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia. Lancet. 2013;381(9881):1943–55. doi: 10.1016/S0140-6736(12)62187-4.
  3. Shago M. Recurrent Cytogenetic Abnormalities in Acute Lymphoblastic Leukemia. Meth Mol Biol. 2017;1541:257–78. doi: 10.1007/978-1-4939-6703-2_21.
  4. Deshpande PA, Srivastava VM, Mani S, et al. Atypical BCR-ABL11 fusion transcripts in adult B-acute lymphoblastic leukemia, including a novel fusion transcript-e8a1. Leuk Lymphoma. 2016;57(10):2481–4. doi: 10.3109/10428194.2016.1151512.
  5. McGregor S, McNeer J, Gurbuxani S. Beyond the 2008 World Health Organization classification: the role of the hematopathology laboratory in the diagnosis and management of acute lymphoblastic leukemia. Semin Diagn Pathol. 2012;29(1):2–11.
  6. Zerbini MCN, Soares FA, Velloso EDRP, et al. World Health Organization classification of tumors of hematopoietic and lymphoid tissues, 2008: major changes from the 3rd edition. Revista da Associacao Medica Brasileira. 2011;57(1):6–73. doi: 10.1590/S0104-42302011000100019.
  7. Paulsson K, Johansson B. High hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromos Cancer. 2009;48(8):637–60. doi: 10.1002/gcc.20671.
  8. Mrоzek K, Harper DP, Aplan PD. Cytogenetics and Molecular Genetics of Acute Lymphoblastic Leukemia. Hematol Oncol Clin North Am. 2009;23(5):1–20. doi: 10.1016/j.hoc.2009.07.001.
  9. Faderl S, Estrov Z. Residual disease in acute lymphoblastic leukemia of childhood: methods of detection and clinical relevance. Cyt Cell Mol Ther. 1998;4(2):73–85.
  10. Heerema NA, Raimondi SC, Anderson JR, et al. Specific extra chromosomes occur in a modal number dependent pattern in pediatric acute lymphoblastic leukemia. Genes Chromos Cancer. 2007;46(7):684–93. doi: 10.1002/gcc.20451.
  11. Woo JS, Alberti MO, Tirado CA. Childhood B-acute lymphoblastic leukemia: a genetic update. Exper Hematol Oncol. 2014;3(1):16. doi: 10.1186/2162-3619-3-16.
  12. Sutcliffe MJ, Shuster JJ, Sather HN, et al. High concordance from independent studies by the Children’s Cancer Group (CCG) and Pediatric Oncology Group (POG) associating favorABL1e prognosis with combined trisomies 4, 10, and 17 in children with NCI Standard-Risk B-precursor Acute Lymphoblastic Leukemia: a Children’s Oncology Group (COG) initiative. Leukemia. 2005;19(5):734–40. doi: 10.1038/sj.leu.2403673.
  13. Moorman AV, Richards SM, Martineau M, et al. Outcome heterogeneity in childhood high-hyperdiploid acute lymphoblastic leukemia. Blood. 2003;102(8):2756–62. doi: 10.1182/blood-2003-04-1128.
  14. Forestier E, Johansson B, Gustafsson G, et al. Prognostic impact of karyotypic findings in childhood acute lymphoblastic leukaemia: a Nordic series comparing two treatment periods. Br J Haematol. 2000;110(1):147–53.
  15. Raimondi SC, Pui CH, Hancock ML, et al. Heterogeneity of hyperdiploid (51-67) childhood acute lymphoblastic leukemia. Leukemia. 1996;10(2):213–24.
  16. Pullarkat V, Slovak ML, Kopecky KJ, et al. Impact of cytogenetics on the outcome of adult acute lymphoblastic leukemia: results of Southwest Oncology Group 9400 study. Blood. 2008;111(5):2563–72. doi: 10.1182/blood-2007-10-116186.
  17. Oostlander AE, Meijer GA, Ylstra B. Microarray-based comparative genomic hybridization and its applications in human genetics. Clin Genet. 2004;66(6):488–95. doi: 10.1111/j.1399-0004.2004.00322.x.
  18. Rubnitz JE, Wichlan D, Devidas M, et al. Prospective analysis of TEL gene rearrangements in childhood acute lymphoblastic leukemia: a Children’s Oncology Group study. J Clin Oncol. 2008;26(13):2186–91. doi: 10.1200/JCO.2007.14.3552.
  19. Attarbaschi A, Mann G, Konig M, et al. Incidence and relevance of secondary chromosome abnormalities in childhood TEL/AML1+ acute lymphoblastic leukemia: an interphase FISH analysis. Leukemia. 2004;18(10):1611–6. doi: 10.1038/sj.leu.2403471.
  20. Pullarkat V, Slovak ML, Kopecky KJ, et al. Impact of cytogenetics on the outcome of adult acute lymphoblastic leukemia: results of Southwest Oncology Group 9400 study. Blood. 2008;111(5):2563–72. doi: 10.1182/blood-2007-10-116186.
  21. Stock W. Advances in the treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia. Clin Adv Hematol Oncol. 2008;6(7):487–8.
  22. Fielding AK, Rowe JM, Richards SM, et al. Prospective outcome data on 267 unselected adult patients with Philadelphia-chromosome positive acute lymphoblastic leukemia confirms superiority of allogeneic transplantation over chemotherapy in the pre-imatinib era: results from the international ALL trial MRC KALLXII/ECOG2993. Blood. 2009;113(19):4489–96. doi: 10.1182/blood-2009-01-199380.
  23. Yanada M, Matsuo K, Suzuki T, et al. Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations for acute myeloid leukemia: a metaanalysis. Leukemia. 2005;19(8):1345–9. doi: 10.1038/sj.leu.2403838.
  24. Moorman AV, Richards SM, Robinson HM, et al. Prognosis of children with acute lymphoblastic leukemia (ALL) and intrachromosomal amplification of chromosome 21 (iAMP21). Blood. 2007;109(6):2327–30. doi: 10.1182/blood-2006-08-040436.
  25. Heerema NA, Harbott J, Galimberti S, et al. Secondary cytogenetic aberrations in childhood Philadelphia chromosome positive acute lymphoblastic leukemia are nonrandom and may be associated with outcome. Leukemia. 2004;18(4):693–702. doi: 10.1038/sj.leu.2403324.
  26. Wetzler M, Talpaz M, Estrov Z, Kurzrock R. CML: mechanisms of disease initiation and progression. Leuk Lymphoma. 1993;11(Suppl 1):47–50. doi: 10.3109/10428199309047863.
  27. Chessells JM, Swansbury GJ, Reeves B, et al. Cytogenetics and prognosis in childhood lymphoblastic leukaemia: results of MRC UKALL X. Br J Haematol. 1997;99(1):93–100.
  28. Chessells JM, Harrison CJ, Kempski H, et al. Clinical features, cytogenetics and outcome in acute lymphoblastic and myeloid leukaemia of infancy: report from the MRC Childhood Leukaemia working party. Leukemia. 2002;16(5):776–84. doi: 10.1038/sj.leu.2402468.
  29. Moorman AV, Raimondi SC, Pui CH, et al. No prognostic effect of additional chromosomal abnormalities in children with acute lymphoblastic leukemia and 11q23 abnormalities. Leukemia. 2005;19(4):557–63. doi: 10.1038/sj.leu.2403695.
  30. Pui CH, Sandlund JT, Pei D, et al. Results of therapy for acute lymphoblastic leukemia in black and white children. JAMA. 2003;290(15):2001–7. doi: 10.1001/jama.290.15.2001.
  31. Pui C-H, Chessells JM, Camitta B, et al. Clinical heterogeneity in childhood acute lymphoblastic leukemia with 11q23 rearrangements. Leukemia. 2003;17(4):700–6. doi: 10.1038/sj.leu.2402883.
  32. Jeha S, Pei D, Raimondi SC, et al. Increased risk for CNS relapse in pre-B cell leukemia with the t(1;19)/TCF3-PBX1. Leukemia. 2009;23(8):1406–9. doi: 10.1038/leu.2009.42.
  33. Mrozek K. Cytogenetic, molecular genetic, and clinical characteristics of acute myeloid leukemia with a complex karyotype. Semin Oncol. 2008;35:365–77. doi: 10.1053/j.seminoncol.2008.04.007.
  34. Wetzler M, Dodge RK, Mrozek K, et al. Prospective karyotype analysis in adult acute lymphoblastic leukemia: the cancer and leukemia Group B experience. Blood. 1999;93(11):3983–93.
  35. Bernard OA, Busson-LeConiat M, Ballerini P, et al. A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia. 2001;15(10):1495–504. doi: 10.1038/sj.leu.2402249.
  36. Graux C, Stevens-Kroef M, Lafage M, et al. Heterogeneous patterns of amplification of the NUP214-ABL11 fusion gene in T-cell acute lymphoblastic leukemia. Leukemia. 2009;23(1):125–33. doi: 10.1038/leu.2008.278.
  37. Quintas-Cardama A, Tong W, Manshouri T, et al. Activity of tyrosine kinase inhibitors against human NUP214-ABL11-positive T cell malignancies. Leukemia. 2008;22(6):1117–24. doi: 10.1038/leu.2008.80.
  38. Krawczyk J, Haslam K, Lynam P, et al. No prognostic impact of P2RY8-CRLF2 fusion in intermediate cytogenetic risk childhood B-cell acute lymphoblastic leukaemia. Br J Haematol. 2013;160(4):555–6. doi: 10.1111/bjh.12130.
  39. Hoelzer D. Personalized medicine in adult acute lymphoblastic leukemia. Haematologica. 2015;100(7):855–8. doi: 10.3324/haematol.2015.127837.
  40. Tsuzuki S, Taguchi O, Seto M. Promotion and maintenance of leukemia by ERG. Blood. 2011;117(14):3858–68. doi: 10.1182/blood-2010-11-320515.
  41. Mullighan CG, Su X, Zhang J, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med. 2009;360(5):470–80. doi: 10.1056/NEJMoa0808253.
  42. Mullighan CG, Miller CB, Radtke I, et al. BCR-ABL11 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature. 2008;453(7191):110–4. doi: 10.1038/nature06866.
  43. Yoda A, Yoda Y, Chiaretti S, et al. Functional screening identifies CRLF2 in precursor B-cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 2010;107(1):252–7. doi: 10.1073/pnas.0911726107.
  44. Mullighan CG, Zhang J, Kasper LH, et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature. 2011;471(7337):235–9. doi: 10.1038/nature09727.
  45. Van Vlierberghe P, Palomero T, Khiabanian H, et al. PHF6 mutations in T-cell acute lymphoblastic leukemia. Nat Genet. 2010;42(4):338–42. doi: 10.1038/ng.542.
  46. Coustan-Smith E, Mullighan CG, Onciu M, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10(2):147–56. doi: 10.1016/S1470-2045(08)70314-0.
  47. Weng AP, Ferrando AA, Lee W, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306(5694):269–71. doi: 10.1126/science.1102160.
  48. Гапонова Т.В., Менделеева Л.П., Мисюрин А.В. и др. Экспрессия опухолеассоциированных генов PRAME, WT1 и XIAP у больных множественной миеломой. Онкогематология. 2009;2:52–5.
    [Gaponova TV, Mendeleeva LP, Misyurin AV, et al. PRAME, WT1 and XIAP tumor-associated genes expression in multiple myeloma patients. Onkogematologiya. 2009;2:52–5. (In Russ)]
  49. Абраменко И.В., Белоус Н.И., Крячок И.А. и др. Экспрессия гена PRAME при множественной миеломе. Терапевтический архив. 2004;76(7):77–81.
    [Abramenko IV, Belous NI, Kryachok IA, et al. PRAME gene expression in multiple myeloma. Terapevticheskii arkhiv. 2004;76(7):77–81. (In Russ)]
  50. Мисюрин В.А. Аутосомные раково-тестикулярные гены. Российский биотерапевтический журнал. 2014;13(3):77–82.
    [Misyurin VA. Autosomal cancer-testis genes. Rossiiskii bioterapevticheskii zhurnal. 2014;13(3):77–82. (In Russ)]
  51. Мисюрин А.В. Основы молекулярной диагностики онкогематологических заболеваний. Российский биотерапевтический журнал. 2016;15(4):18–24. doi: 10.17650/1726-9784-2016-15-4-18-24.
    [Misyurin AV. Essentials of the molecular diagnosis of oncohematological diseases. Rossiysky bioterapevtichesky zhurnal. 2016;15(4):18–24. doi: 10.17650/1726-9784-2016-15-4-18-24. (In Russ)]


Bone Marrow Transplantation in Patients with Acute Lymphoblastic Leukemia with Extremely Poor Prognosis: Literature Review and Case Report

NN Subbotina, AV Popa, IS Dolgopolov, VK Boyarshinov, RI Pimenov, VV Dailidite, GL Mentkevich

N.N. Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

For correspondence: Natal’ya Nikolaevna Subbotina, PhD, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(499)324-45-08; e-mail:

For citation: Subbotina N.N., Popa A.V., Dolgopolov I.S., Boyarshinov V.K., Pimenov R.I., Dailidite V.V., Mentkevich G.L. Bone Marrow Transplantation in Patients with Acute Lymphoblastic Leukemia with Extremely Poor Prognosis: Literature Review and Case Report. Klin. Onkogematol. 2015; 8(3): 331-6. (In Russ.)


The difference in the survival rate between patients receiving the chemotherapy alone and those receiving the chemotherapy with hematopoietic stem cell transplantation (HSCT) becomes more significant with the increased number of acute lymphoblastic leukemia (ALL) risk factors. Myeloablative conditioning regimens remain a gold standard before HSCT in children and young adults with ALL. The traditional TBI-CPM based conditioning regimen followed by HSCT from related HLA identical donor demonstrates the highest survival rates. The survival rate of patients with ALL relapses after allogeneic HSCT remains low. The second HSCT is the only possible therapeutic option that provides a longer survival rate for not more than 10–15 % of patients. Delayed relapses after the first HSCT and patient’s age less than 10 y.o. are statistically significant factors of a better prognosis. The article describes author’s own experience in the management of an ALL high-risk group patients who have undergone chemotherapy, 3 allogeneic related HSCT with involvement of several donors, as well as an additional transfusion of peripheral blood stem cells obtained from the second HLA matching donor. The patient remains under medical supervision in the N.N. Blokhin Russian Cancer Research Center by the date of composition of this paper (23 months after a haploidentical HSCT).

Keywords: acute lymphoblastic leukemia, extremely poor prognosis, hematopoietic stem cell transplantation, conditioning regimen.

Received: March 3, 2015

Accepted: June 3, 2015

Read in PDF (RUS)pdficon


  1. Favre C, Foa R, Locatelli F, et al. Hematopoietic stem cell transplantation for children with high-risk acute lymphoblastic leukemia in first complete remission: a report from the AIEOP registry. Haematologica. 2013;98(8):1273–81. doi: 10.3324/haematol.2012.079707.
  2. Silverman LB, Gelber RD, Clavell LA, et al. Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91-01. Blood. 2001;97(5):1211–8. doi: 10.1182/blood.v97.5.1211.
  3. Arico M, Valsecchi MG, Messina C, et al. Improved outcome in high-risk childhood acute lymphoblastic leukemia defined by prednisone poor response treated with double Berlin-Frankfurt-Muenster protocol II. Blood. 2002;100(2):420–6. doi: 10.1182/blood.v100.2.420.
  4. Pui CH, Robison LL, Look AT. Acute lymphoblastic leukaemia. The Lancet. 2008;371(9617):1030–43. doi: 10.1016/s0140-6736(08)60457-2.
  5. Pulte D, Gondos A, Brenner H. Trends in 5-and 10-year survival after diagnosis with childhood hematologic malignancies in the United States 1990–2004. J Natl Cancer Inst. 2008;100(18):1271–3. doi: 10.1093/jnci/djn276.
  6. Burke PW, Douer D. Acute lymphoblastic leukemia in adolescents and young adults. Acta Haematol. 2014;132(3–4):264–73. doi: 10.1159/000360204.
  7. Barry EV, Silverman LB. Acute lymphoblastic leukemia in adolescents and young adults. Curr Hematol Malig Rep. 2008;3(3):161–6. doi: 10.1007/s11899-008-0023-9.
  8. Balduzzi A, Klingebiel T, Peters C, et al. Chemotherapy versus allogeneic transplantation for very-high-risk childhood acute lymphoblastic leukaemia in first complete remission: comparison by genetic randomization in an international prospective study. The Lancet. 2005;366(9486):635–42. doi: 10.1016/s0140-6736(05)66998-x.
  9. Kato M, Horikoshi Y, Okamoto Y, et al. Second allogeneic hematopoietic SCT for relapsed ALL in children. Bone Marrow Transplant. 2012;47(10):1307–11. doi: 10.1038/bmt.2012.29.
  10. Poon LM, Bassett R. Jr, Kebriaei P, et al. Outcomes of second allogeneic hematopoietic stem cell transplantation for patients with acute lymphoblastic leukemia. Bone Marrow Transplant. 2013;48(5):666–70. doi: 10.1038/bmt.2012.195.
  11. Spyridonidis A, Labopin M, Rocha V, et al. Immunotherapy Subcommittee of Acute Leukemia Working Party. Outcomes and prognostic factors of adults with acute lymphoblastic leukemia who relapse after allogeneic hematopoietic cell transplantation. An analysis on behalf of the Acute Leukemia Working Party of EBMT. Leukemia. 2012;26(6):1211–7. doi: 10.1038/leu.2011.351.
  12. Mohty M, Nagler A, Rocha V, et al. Acute Leukemia Working Party of EBMT. Reduced-intensity versus conventional myeloablative conditioning allogeneic stem cell transplantation for patients with acute lymphoblastic leukemia: a retrospective study from the European Group for Blood and Marrow Transplantation. Blood. 2010;116(22):4439–43. doi: 10.1182/blood-2010-02-266551.
  13. Eom KS, Shin SH, Lee S, et al. Comparable long-term outcomes after reduced-intensity conditioning versus myeloablative conditioning allogeneic stem cell transplantation for adult high-risk acute lymphoblastic leukemia in complete remission. Am J Hematol. 2013;88(8):634–41. doi: 10.1002/ajh.23465.
  14. Verneris MR, Eapen M, Davies SM, et al. Reduced-Intensity Conditioning Regimens for Allogeneic Transplantation in Children with Acute Lymphoblastic Leukemia. Biol Blood Marrow Transplant. 2010;16(9):1237–44. doi: 10.1016/j.bbmt.2010.03.009.
  15. Bunin N, Cnaan A, Simms S, et al. Randomized trial of busulfan vs total body irradiation containing conditioning regimens for children with acute lymphoblastic leukemia: a Pediatric Blood and Marrow Transplant Consortium study. Bone Marrow Transplant. 2003;32(6):543–8. doi: 10.1038/sj.bmt.1704198.
  16. Davies SM, Ramsay NK, Horowitz MM, et al. Comparison of preparative regimens in transplants for children with acute lymphoblastic leukemia. J Clin Oncol. 2000;18(2):340–7.
  17. Blaise D, Maraninchi D, Archimbaud E, et al. Allogeneic bone marrow transplantation for acute myeloid leukemia in first remission: A randomized trial of a busulfan-cytoxan versus cytoxan-total body irradiation as preparative regimen. A report from the Groupe d’Etudes de la Greffe de Moelle Osseuse. Blood. 1992;79:2578–82.
  18. Dusenbery KE, Daniels KA, McClure JS, et al. Randomized comparison of cyclophosphamide-total body irradiation versus busulfan-cyclophosphamide conditioning in autologous bone marrow transplantation for acute myeloid leukemia. Int J Radiat Oncol Biol Phys. 1995;31(1):119–28. doi: 10.1016/0360-3016(94)00335-i.
  19. Ringden O, Ruutu T, Remberger M, et al. A randomized trial comparing busulfan with total body irradiation as conditioning in allogeneic marrow transplant recipients with leukemia: A report from the Nordic Bone Marrow Transplantation Group. Blood. 1994;83(9):2723–30.
  20. Ringden O, Labopin M, Tura S, et al. A comparison of busulfan versus total body irradiation combined with cyclophosphamide as conditioning for autograft or allograft bone marrow transplantation in patients with acute leukemia. Br J Haematol. 1996;93(3):637–45. doi: 10.1046/j.1365-2141.1996.d01-1681.x.
  21. Rozman C, Carreras E, Qian C, et al. Risk factors for hepatic veno-occlusive disease following HLA-identical sibling bone marrow transplantation for leukemia. Bone Marrow Transplant. 1996;17(1):75–80.
  22. Bhatia S, Ramsay NK, Neglia JP, et al. Malignant neoplasms following bone marrow transplantation. Blood. 1996;87(9):3633–9.
  23. Deeg HJ, Gluckman E, Storb R, et al. Malignancies after marrow transplantation for aplastic anemia and Fanconi anemia: a joint Seattle and Paris analysis of results in 700 patients. Blood. 1996;87(1):386–92.
  24. Chou RH, Wong GB, Wara WM, et al. Toxicities of total-body irradiation for pediatric bone marrow transplantation. Int J Radiat Oncol Biol Phys. 1996;34(4):843–51.