Soluble Guanylyl Cyclase (sGC) in Mechanisms of Hypotensive and Antiaggregatory Effects Induced by Teraphtal (TP, sodium salt 4,5-cardoxyphtalocyanin-cobalt)

ТА Sidorova1, NV Pyatakova2, IS Severina2, ОL Kaliya3, GK Gerasimova1

1 N.N. Blokhin Russian Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

2 V.N. Orekhovich Institute of Biomedical Chemistry, 10 bld. 8, Pogodinskaya str., Moscow, Russian Federation, 119121

3 State Scientific Center NIOPIC, 1 Bol’shaya Sadovaya str., Moscow, Russian Federation, 123995

For correspondence: Tat’yana Aleksandrovna Sidorova, PhD, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(499)612-79-92; e-mail: tatsid@yahoo.com

For citation: Sidorova TA, Pyatakova NV, Severina IS, et al. Soluble Guanylyl Cyclase (sGC) in Mechanisms of Hypotensive and Antiaggregatory Effects Induced by Teraphtal (TP, sodium salt 4,5-cardoxyphtalocyanin-cobalt). Clinical oncohematology. 2016;9(2):138–47 (In Russ).

DOI: 10.21320/2500-2139-2016-9-2-138-147


ABSTRACT

Background & Aims. Many antitumor drugs produces not only the variety of therapeutic effects but also a broad spectrum of side effects, including acute hemodynamic dysfunctions (hypotension/hypertension, coagulation disorders). The aim of the paper is to investigate the role of soluble guanylyl cyclase (sGC) in mechanisms of hypotensive and antiaggregatory effects induced by teraphtal (TP) under experimental conditions in the clinic.

Methods. The effect of different products on the basal activity of sGC isolated from platelets of human peripheral blood was assessed by the immunoenzyme method based on production of cyclic guanosine monophosphate (cGMP). The effect of TP on ADP-induced human platelet aggregation was evaluated by the turbidimetric Born method using an aggregometer.

Results. In the presence of TP, the basal sGC activity increased by the average of 2.5-fold. The TF-induced dose-response curve of sGC activation displays a bell-shaped behavior with maximal stimulation effect achieved at a concentration of 1 mmol/L. TP does not affect the sGC activation induced by known sGC regulators, such as sodium nitroprusside (SNP) and YC-1. On the other hand, after preliminary incubation of sGC with TP, the ability of YC-1 to potentiate the enzyme stimulation induced by SNP decreased by about 33 %. In vitro tests demonstrated the ability of TP to inhibit the ADP-induced platelet aggregation and established the IC50 value for TP (15 mmol/L).

Conclusion. TF is a direct sGC activator and therefore is able to participate in regulation of the NO®sGC®cGMP signaling pathway that controls the basal vascular tone and aggregatory platelet properties. Taking into account the TP characteristics, the paper discusses the involvement of additional mechanisms in the development of hypotension and hemostatic disorders induced by the drug.


Keywords: human platelets, soluble guanylyl cyclase, teraphtal, sodium nitroprusside, YC-1, hypotension, ADP-induced platelet aggregation.

Received: April 24, 2015

Accepted: February 25, 2016

 Read in PDF (RUS) pdficon


REFERENCES

  1. Yeh EH, Tong AT, Lenihan DJ, et al. Cardiovascular complications of cancer therapy: diagnosis, pathogenesis, and management. Circulation. 2004;109(25):3122–31. doi: 10.1161/01.cir.0000133187.74800.b9.
  2. Lundin J, Kimby E, Bjorkholm M, et al. Phase II trial of subcutaneous anti-CD52 monoclonal antibody alemtuzumab (Campath-1H) as first-line treatment for patients with B-cell chronic lymphocytic leukemia (B-CLL). Blood. 2002;100(3):768–73. doi: 10.1182/blood-2002-01-0159.
  3. Onrust SV, Lamb HM, Balfour JA. Rituximab. Drugs. 1999;58(1):79–88. doi: 10.2165/00003495-199958010-00009.
  4. Saltz LB, Meropol NJ, Loehrer PJ, et al. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol. 2004;22(7):1201–8. doi: 10.1200/jco.2004.10.182.
  5. White RL, Schwartzentruber DJ, Guleria A, et al. Cardiopulmonary toxicity of treatment with high dose interleukin-2 in 199 consecutive patients with metastatic melanoma or renal cell carcinoma. Cancer. 1994;74(12):3212–22. doi: 10.1002/1097-0142(19941215)74:12<3212::aid-cncr2820741221>3.0.co;2-i.
  6. Vial T, Descotes J. Immune-mediated side-effects of cytokines in humans. Toxicology. 1995;105(1):31–57. doi: 10.1016/0300-483x(95)03124-x.
  7. Cohen MH, Broder LE, Fossieck BE, et al. Phase II clinical trial of weekly administration of VP-16-213 in small cell bronchogenic carcinoma. Cancer Treat Rep. 1977;61(3):489–90.
  8. Weiss RB, Donehower RC, Wiernik PH, et al. Hypersensitivity reactions from taxol. J Clin Oncol. 1990;8(7):1263–8.
  9. DiBella NJ. Vincristine-induced orthostatic hypotension: a prospective clinical study. Cancer Treat Rep. 1980;64(2–3):359–60.
  10. Zhu GD, Gandhi VB, Gong J, et al. Syntheses of potent, selective, and orally bioavailable indazole-pyridine series of protein kinase B/Akt inhibitors with reduced hypotension. J Med Chem. 2007;50(13):2990–3003. doi: 10.1021/jm0701019.
  11. Orlowski RZ, Stinchcombe TE, Mitchell BS, et al. Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol. 2002;20(22):4420–7. doi: 10.1200/jco.2002.01.133.
  12. Legha SS, Keating M, Picket S, et al. Phase I clinical investigation of homoharringtonine. Cancer Treat Rep. 1984;68(9):1085–91.
  13. Siderov J, Prasad P, De Boer R, Desai J. Safe administration of etoposide phosphate after hypersensitivity reaction to intravenous etoposide. Br J Cancer. 2002;86(1):12–3. doi: 10.1038/sj.bjc.6600003.
  14. Gelderblom H, Verweij J, Nooter K, Sparreboom A. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer. 2001;37(13):1590–8. doi: 10.1016/s0959-8049(01)00171-x.
  15. Itoch Y, Sendo T, Hirakawa T, et al. Role of sensory nerve peptides rather than mast cell histamine in paclitaxel hypersensitivity. Am J Respir Crit Care Med. 2004;169(1):113–9. doi: 10.1164/rccm.200307-901oc.
  16. Carmichael SM, Eagleton L, Ayers CR. Orthostatic hypotension during vincristine therapy. Arch Intern Med. 1970;126(2):290–3. doi: 10.1001/archinte.1970.00310080096015.
  17. Renninger JP, Murphy DJ, Morel DW. A selective Akt inhibitor produces hypotension and bradycardia in conscious rats due to inhibition of the autonomic nervous system. Toxicol Sci. 2012;125(2):578–85. doi: 10.1093/toxsci/kfr316.
  18. Akosman C, Ordu C, Eroglu E, Oyan B. Development of Acute Pulmonary Hypertension After Bortezomib Treatment in a Patient With Multiple Myeloma: A Case Report and the Review of the Literature. Am J Ther. 2013;22(3):e88–92. doi: 10.1097/01.mjt.0000433941.91996.5f.
  19. Richardson PG, Mitsiades C, Hideschima T, Anderson KC. Bortezomib: proteosome inhibition as an effective anticancer therapy. Annu Rev Med. 2006;57(1):33–47. doi: 10.1146/annurev.med.57.042905.122625.
  20. Savaraj N, Lu K, Feun LG, et al. Interaction of [3H] homoharringtonine (HHT) with the calcium antagonist receptor in the rat. Proc Am Assoc Cancer Res. 1985;26:1417.
  21. Yang ZZ, Tschopp O, Baudry A, et al. Physiological functions of protein kinase B/Akt. Biochem Soc Trans. 2004;32(Pt 2):350–4. doi: 10.1042/bst0320350.
  22. Yeh ET. Cardiotoxicity induced by chemotherapy and antibody therapy. Annu Rev Med. 2006;57(1):485–98. doi: 10.1146/annurev.med.57.121304.131240.
  23. Senkus E, Jassem J. Cardiovascular effects of systemic cancer treatment. Cancer Treat Rev. 2011;37(4):300–11. doi: 10.1016/j.ctrv.2010.11.001.
  24. Yang JC, Haworth L, Sherry RM, et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med. 2003;349(5):427–34. doi: 10.1056/nejmoa021491.
  25. Gordon MS, Margolin K, Talpaz M, et al. Phase I safety and pharmacokinetic study of recombinant human anti-vascular endothelial growth factor in patients with advanced cancer. J Clin Oncol. 2001;19(3):843–50.
  26. Motzer RJ, Hutson TE, Tomczak P, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356(2):115–24. doi: 10.1056/nejmoa065044.
  27. Gupta R, Maitland ML. Sunitinib, Hypertension, and Heart Failure: A Model for Kinase Inhibitor-Mediated Cardiotoxicity. Curr Hypertens Rep. 2011;13(6):430–5. doi: 10.1007/s11906-011-0229-4..
  28. Rini BI, Cohen DP, Lu DR, et al. Hypertension as a biomarker of efficacy in patients with metastatic renal cell carcinoma treated with sunitinib. J Natl Cancer Inst. 2011;103(9):763–73. doi: 10.1093/jnci/djr128.
  29. Mourad JJ, Levy BI. Mechanisms of antiangiogenic-induced arterial hypertension. Curr Hypertens Rep. 2011;13(4):289–93. doi: 10.1007/s11906-011-0206-y.
  30. Kamba T, McDonald DM. Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br J Cancer. 2007;96(12):1788–95. doi: 10.1038/sj.bjc.6603813.
  31. Aparicio-Gallego G, Afonso-Afonso FJ, Leon-Mateos L, et al. Molecular basis of hypertension side effects induced by sunitinib. Anticancer Drugs. 2011;22(1):1–8. doi: 10.1097/CAD.0b013e3283403806.
  32. Facemire CS, Nixon AB, Griffiths R, et al. Vascular endothelial growth factor receptor 2 controls blood pressure by regulating nitric oxide synthase expression. Hypertension. 2009;54(3):652–8. doi: 10.1161/HYPERTENSIONAHA.109.129973.
  33. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling – in control of vascular function. Nat Rev Mol Cell Biol. 2006;7(5):359–71. doi: 10.1038/nrm1911.
  34. Ignarro LJ. Nitric oxide: a unique endogenous signaling molecule in vascular biology. Biosci Rep. 1999;19:51–71.
  35. Denninger JW, Marletta MA. Guanylate cyclase and the NO/cGMP signaling pathway. Biochim Biophys Acta. 1999;1411(2–3):334–50. doi: 10.1016/s0005-2728(99)00024-9.
  36. Daher IN, Yeh ET. Vascular complications of selected cancer therapies. Nat Clin Pract Cardiovasc Med. 2008;5(12):797–805. doi: 10.1038/ncpcardio1375.
  37. Aharon IB, Joseph HB, Tzabari M, et al. Doxorubicin-induced vascular toxicity –targeting potential pathways may reduce procoagulant activity. PLoS One. 2013;8(9):e75157. doi: 10.1371/journal.pone.0075157.
  38. Togna GI, Togna AR, Franconi M, Caprino L. Cisplatin Triggers Platelet Activation. Thromb Res. 2000;99(5):503–9. doi: 10.1016/s0049-3848(00)00294-2.
  39. Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol. 2009;53(24):2231–47. doi: 10.1016/j.jacc.2009.02.050.
  40. Martin JF, Greaves M. Vincristine inhibits the synthesis of malondialdehyde by human platelets in vitro. Cancer. 1982;49(4):665–8. doi: 10.1002/1097-0142(19820215)49:4<665::aid-cncr2820490413>3.0.co;2-y.
  41. Lee JJ, Yu JY, Lee JH, et al. The protective effects of paclitaxel on platelet aggregation through the inhibition of thromboxane A2 synthase. Arch Pharm Res. 2010;33(3):387–94. doi: 10.1007/s12272-010-0307-1.
  42. Ермакова Н.П., Михайлова Л.М., Трифонов А.И. и др. Влияние терафтала и бинарной каталитической системы «Терафтал+аскорбиновая кислота» на артериальное давление. Российский биотерапевтический журнал. 2006;5(1):14.
    [Ermakova NP, Mikhailova LM, Trifonov AI, et al. Effect of teraphtal and binary catalytic system “Teraphtal+ascorbic acid” on blood pressure. Rossiiskii bioterapevticheskii zhurnal. 2006;5(1):14. (In Russ)]
  43. Маджуга А.В., Ермакова Н.П., Членова Е.Л. и др. Влияние терафтала-лио на гемостаз животных. Вопросы онкологии. 2001;47(6):715–7.
    [Madzhuga AV, Ermakova NP, Chlenova EL, et al. Effect of teraphtal-lio on animals’ hemostasis. Voprosy onkologii. 2001;47(6):715–7. (In Russ)]
  44. Манзюк Л.В., Бредер В.В., Гершанович М.Л. и др. Результаты I-II фазы клинических испытаний каталитической системы «Терафтал+аскорбиновая кислота». Российский биотерапевтический журнал 2005;4(1):105–7.
    [Manzyuk LV, Breder VV, Gershanovich ML, et al. Results of Phase I-II clinical trials of catalytic system “Teraphtal+ascorbic acid”. Rossiiskii bioterapevticheskii zhurnal. 2005;4(1):105–7. (In Russ)]
  45. Mingone CJ, Gupte SA, Chow JL, et al. Protoporphyrin IX generation from delta-aminolevulinic acid elicits pulmonary artery relaxation and soluble guanylate cyclase activation. Am J Physiol Lung Cell Mol Physiol. 2006;291(3):L337–44. doi: 10.1152/ajplung.00482.2005.
  46. Sharina I, Sobolevsky M, Doursout MF, et al. Coinamides are novel coactivators of oxide receptor that target soluble guanylyl cyclase catalytic domain. J Pharmacol Exp Ther 2012;340(3):723–32. doi: 10.1124/jpet.111.186957.
  47. Martin E, Sharina I, Liang YY, Doursout MF. Corrin-mediated activation of nitric oxide receptor and its cardiovascular consequences. Circulation. 2009;120:S1072. Abstract 5218.
  48. Чирков Ю.Ю., Тыщук И.А., Белушкина Н.Н., Северина И.С. Гуанилатциклаза тромбоцитов крови человека. Биохимия. 1987;52(6):956–63.
    [Chirkov YuYu, Tyshchuk IA, Belushkina NN, Severina IS. Guanylyl cyclase of human platelets. Biokhimiya. 1987;52(6):956–63. (In Russ)]
  49. Garbers DL, Murad F. Guanylate cyclase assay methods. Adv Cyclic Nucleotide Res. 1979;10:57–67.
  50. Born GVR. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature. 1962;194(4832):927–9. doi: 10.1038/194927b0.
  51. Bellamy TC, Garthwaite J. The receptor-like properties of nitric oxide-activated soluble guanylyl cyclase in intact cells. Mol Cell Biochem. 2002;230(1–2):165–76.
  52. Gibb B, Wykes V, Garthwaite J. Properties of NO-activaed guanylyl cyclases expressed in cells. Br J Pharmacol. 2003;139(5):1032–40. doi: 10.1038/sj.bjp.0705318.
  53. Proinsias K, Gryko DT, Hisaeda Y, et al. Vitamin B12 derivatives as activators of soluble guanylyl cyclase. J Med Chem. 2012;55(20):8943–7. doi: 10.1021/jm3006959.
  54. Bindslev N. A homotropic two-state model and auto-antagonism. BMC Pharmacol. 2004;4(1):11. doi: 10.1186/1471-2210-4-11.
  55. Ignarro LJ, Wood KS, Wolin MS. Activation of purified soluble guanylate cyclase by protoporphyrin IX. Proc Natl Acad Sci USA. 1982;9:2870–3. doi: 10.1073/pnas.79.9.2870.
  56. Ko FN, Wu CC, Kuo SC, et al. YC-1, a novel activator of platelet guanylate cyclase. Blood. 1994;84(12):4226–33.
  57. Chun YS, Yeo EJ, Park JW. Versatile pharmacological actions of YC-1: anti-platelet to anticancer. Cancer Lett. 2004;207(1):1–7. doi: 10.1016/j.canlet.2004.01.005.
  58. Rapoport RM, Murad F. Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP. Circ Res. 1983;52(3):352–7. doi: 10.1161/01.res.52.3.352.
  59. Herman MA, Webber J, Fromm D, Kessel D. Hemodynamic effects of 5-aminolevulinic acid in humans. J Photochem Photobiol B. 1998;43(1):61–5. doi: 10.1016/s1011-1344(98)00086-4.
  60. Chung IW, Eljamel S. Risk factors for developing oral 5-aminolevulinic acid-induced side effects in patients undergoing fluorescence guided resection. Photodiagn Photodyn Ther. 2013;10(4):362–7. doi: 10.1016/j.pdpdt.2013.03.007.
  61. Rothermund L, Friebe A, Paul M, et al. Acute blood pressure effects of YC-1-induced activation of soluble guanylyl cyclase in normotensive and hypertensive rats. Br J Pharmacol. 2000;130(2):205–8. doi: 10.1038/sj.bjp.0703320.
  62. Friebe A, Mullershausen F, Smolenski A, et al. YC-1 potentiates nitric oxide- and carbon monoxide-induced cyclic GMP effects in human platelets. Mol Pharmacol. 1998;54(6):962–7.
  63. Severina IS. Nitric oxide. Potentiation of NO-dependent activation of soluble guanylate cyclase – (patho)physiological and pharmacotherapeutical significance. Biomed Khim. 2007;53(4):385–99.
  64. Герасимова Г.К., Якубовская Р.И., Панкратов А.А. и др. Бинарная каталитическая терапия — новый подход к лечению злокачественных опухолей. Результаты доклинических и клинических исследований. Российский химический журнал. 2013;LVII(2):69–82.
    [Gerasimova GK, Yakubovskaya RI, Pankratov AA, et al. Binary catalytic therapy: new approach to treatment of malignancies. Results of pre-clinical and clinical studies. Rossiiskii khimicheskii zhurnal. 2013;LVII(2):69–82. (In Russ)]
  65. Broderick KE, Singh V, Zhuang S, et al. Nitric oxide scavenging by the cobalamin precursor cobinamide. J Biol Chem. 2005;280(10):8678–85. doi: 10.1074/jbc.m410498200.
  66. Ignarro LJ. Experimental evidences of nitric oxide-dependent vasodilatory activity of nebivolol, a third-generation beta-blocker. Blood Press. 2004;13(Suppl 1):2–16. doi: 10.1080/08038020410016557.
  67. Герасимова Г.К., Сидорова Т.А., Солнцева Т.И. и др. Бинарная каталитическая терапия — новый подход к контролю роста опухолевых клеток с помощью высокореактивных радикалов кислорода. Российский биотерапевтический журнал. 2006;5(3):98–105.
    [Gerasimova GK, Sidorova TA, Solntseva TI, et al. Binary catalytic therapy – a new approach to control of malignant tumors growth by reactive oxygen species. Rossiiskii bioterapevticheskii zhurnal. 2006;5(3):98–105. (In Russ)]
  68. Rosendorff C. Beta-blocking agents with vasodilator activity (Short Survey). J Hypertens. 1993;11(Suppl 4):S37–40. doi: 10.1097/00004872-199306003-00009.
  69. Seitz S, Wegener JW, Rupp J, et al. Involvement of K(+) channels in the relaxant effects of YC-1 in vascular smooth muscle. Eur J Pharmacol. 1999;382(1):11–8. doi: 10.1016/s0014-2999(99)00574-9.
  70. Boerrigter G, Burnett JC Jr. Nitric oxide-independent stimulation of soluble guanylate cyclase with BAY 41-2272 in cardiovascular disease. Cardiovasc Drug Rev. 2007;25(1):30–45. doi: 10.1111/j.1527-3466.2007.00003.x.
  71. Hardman JG, Davis JW, Sutherland EW. Effects of some hormonal and other factors on the excretion of guanosine 3¢,5¢-monophosphate and adenosine 3¢,5¢-monophosphate in rat urine. J Biol Chem. 1969;244(23):6354–62.
  72. Silva BR, Pernomian L, Grando MD, Bendhack LM. Phenylephrine activates eNOS Ser 1177 phosphorylation and nitric oxide signaling in renal hypertensive rat aorta. Eur J Pharmacol. 2014;738:192–9. doi: 10.1016/j.ejphar.2014.05.040.
  73. Hilgers RHP, Oparil S, Wouters W, Coelingh Bennink HJT. Vasorelaxing effects of estetrol in rat arteries. J Endocrinol. 2012;215(1):97–106. doi: 10.1530/JOE-12-0009.
  74. Nossaman B, Pankey E, Kadowitz P. Stimulators and activators of soluble guanylate cyclase: review and potential therapeutic indications. Crit Care Res Pract. 2012;2012:290805. doi: 10.1155/2012/290805.
  75. Mellion BT, Ignarro LJ, Ohlstein EH, et al. Evidence for the inhibitory role of guanosine 3¢,5¢-monophosphate in ADP-induced human platelet aggregation in the presence of nitric oxide and related vasodilators. Blood. 1981;57(5):946–55.
  76. Gachet C. P2 receptors, platelet function and pharmacological implications. Thromb Haemost. 2008;99(3):466–72. doi: 10.1160/TH07-11-0673.
  77. Roger S, Badier-Commander C, Paysant J, et al. The anti-aggregating effect of BAY 41-2272, a stimulator of soluble guanylyl cyclase, requires the presence of nitric oxide. Br J Pharmacol. 2010;161(5):1044–58. doi: 10.1111/j.1476-5381.2010.00943.x.