Immunological Synapse in the Biology of Chronic Lymphocytic Leukemia

DS Badmazhapova, IV Gal’tseva, EE Zvonkov

National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Darima Semunkoevna Badmazhapova, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167; Tel.: +7(929)562-93-41; e-mail:

For citation: Badmazhapova DS, Gal’tseva IV, Zvonkov EE. Immunological Synapse in the Biology of Chronic Lymphocytic Leukemia. Clinical oncohematology. 2018;11(4):313–8.

DOI: 10.21320/2500-2139-2018-11-4-313-318


Chronic lymphocytic leukemia (CLL) is a lymphoproliferative disease manifested by accumulation of tumor B-cells with characteristic immunophenotype (CD19+CD5+CD23+) in bone marrow, peripheral blood and secondary lymphoid organs. The clinical course of CLL is heterogeneous. This is the most prevalent leukemia among older-aged patients. Despite the use of novel drugs refractory forms of disease remain. The latest discoveries in immunology enabled understanding of some mechanisms of tumor evasion from immune surveillance. The interaction of immune system cells occurs due to the development of immunological synapse that predominantly depends on the family of CD28/В7 molecules, the so-called immune checkpoints able to control the activating and inhibiting mechanisms of cells. The acquisition of tumor phenotype is a multistage process, in which cells obtain unique biological properties including the ability of being invisible to the immune system. As opposed to solid tumors in lymphoproliferative diseases tumor B-cells are able to express major histocompatibility complex class II and CD80 and CD86 co-stimulatory molecules. It proves their ability to present antigens to T-cells. Co-inhibitory molecules on the surface of tumor cells is a factor contributing to the inhibition of immune response. The present paper reviews current conceptions of biological properties and immunological interactions of CLL cells with the microenvironmental cells.

Keywords: chronic lymphocytic leukemia, immunological synapse, immune system.

Received: March 15, 2018

Accepted: June 29, 2018

Read in PDF 


  1. Hallek M, Cheson BD, Catovsky D, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111(12):5446–56. doi: 10.1182/blood-2007-06-093906.

  2. Eichhorst B, Robak T, Montserrat E, et al. Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(Suppl 5):v78–v84. doi: 10.1093/annonc/mdv303.

  3. The International CLL-IPI working group. An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): a meta-analysis of individual patient data. Lancet Oncol. 2016;17(6):779–90. doi: 10.1016/S1470-2045(16)30029-8.

  4. Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991–8. doi: 10.1038/ni1102-991.

  5. Mellor AL, Munn DH. Tryptophan catabolism and regulation of adaptive immunity. J Immunol. 2003;170(12):5809–13. doi: 4049/jimmunol.170.12.5809.

  6. Vladimirova R, Popova D, Vikentieva E, et al. Chronic Lymphocytic Leukemia — Microenvironment and B Cells. In: Guenova M, Balatzenko G, eds. Leukemias: Updates and New Insights [Internet]; 2015. рр. 247–76. doi: 10.5772/60761. Available from: (accessed 31.05.2018).

  7. Ярилин А.А. Иммунология: учебник. M.: ГЭОТАР-Медиа, 2010. С. 394–403.

    [Yarilin AA. Immunologiya: uchebnik. (Immunology: a manual.) Moscow: GEOTAR-Media Publ.; 2010. pp. 394–403. (In Russ)]

  8. Kupfer A, Kupfer H. Imaging immune cell interactions and functions: SMACs and the immunological synapse. Semin Immunol. 2003;15(6):295–300. doi: 10.1016/j.smim.2003.09.001.

  9. Dustin ML. Modular design of immunological synapses and kinapses. Cold Spring Harb Perspect Biol. 2009;1(1):a002873. doi: 10.1101/cshperspect.a002873.

  10. Janeway C, Travers P, Walport M, et al. Immunobiology. The immune system in health and disease, 6th edn. Garland Science; 2005.

  11. Burger JA. Nurture versus nature: the microenvironment in chronic lymphocytic leukemia. Hematology Am Soc Hematol Educ Program. 2011;1:96–103. doi: 10.1182/asheducation-2011.1.96.

  12. Pasikowska M, Walsby E, Apollonio B, et al. Phenotype and immune function of lymph node and peripheral blood CLL cells are linked to transendothelial migration. 2016;128(4):563–73. doi: 10.1182/blood-2016-01-683128.

  13. Hofbauer JP, Heyder C, Denk U, et al. Development of CLL in the TCL1 transgenic mouse model is associated with severe skewing of the T-cell compartment homologous to human CLL. Leukemia. 2011;25(9):1452–8. doi: 10.1038/leu.2011.111.

  14. Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol. 2005;23(1):515–48. doi:1146/annurev.immunol.23.021704.115611.

  15. Sansom DM. CD28, CTLA-4 and their ligands: who does what and to whom? 2000;101(2):169–77. doi: 10.1046/j.1365-2567.2000.00121.x.

  16. Boussiotis VA, Freeman GJ, Gribben GJ, et al. The role of B7-1/B7-2:CD28/CTLA-4 pathways in the prevention of anergy, induction of productive immunity and downregulated of the immune response. Immunol Rev. 1996;153(1):5–26. doi: 10.1111/j.1600-065x.1996.tb00918.x.

  17. Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, et al. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med. 2012;209(6):1201–17. doi: 10.1084/jem.20112741.

  18. Sheppard KA, Fitz LJ, Lee JM, et al. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3 zeta signalosome and downstream signaling to PKC theta. FEBS Lett. 2004;574(1–3):37–41. doi: 10.1016/j.febslet.2004.07.083.

  19. Thibult M-L, Mamessier E, Gertner-Dardenne J, et al. PD-1 is a novel regulator of human B-cell activation. Int Immunol. 2013;25(2):129–37. doi: 10.1093/intimm/dxs098.

  20. Wang K, Wei G, Liu D. CD19: a biomarker for B cell development, lymphoma diagnosis and therapy. Exp Hematol Oncol. 2012;1(1):36. doi: 10.1186/2162-3619-1-36.

  21. Mills DM, Stolpa JC, Cambier JC. Modulation of MHC class II signal transduction by CD19. Adv Exp Med Biol. 2007;596:139–48. doi: 1007/0-387-46530-8_12.

  22. Kuijpers TW, Bende RJ, Baars PA, et al. CD20 deficiency in humans results in impaired T cell-independent antibody responses. J Clin Invest. 2010;120(1):214–22. doi: 1172/JCI40231.

  23. Nitschke L. CD22 and Siglec-G: B-cell inhibitory receptors with distinct functions. Immunol Rev. 2009;230(1):128–43. doi: 1111/j.1600-065X.2009.00801.x.

  24. Cerutti A, Kim EC, Shah S, et al. Dysregulation of CD30+ T cells by leukemia impairs isotype switching in normal B cells. Nat Immunol. 2001;2(2):150–6. doi: 10.1038/84254.

  25. Agata Y, Kawasaki A, Nishimura H, et al. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol. 1996;8(5):765–72. doi: 10.1093/intimm/8.5.765.

  26. Chinai JM, Janakiram M, Chen F, et al. New immunotherapies targeting the PD-1 pathway. Trends Pharmacol Sci. 2015;36(9):587–95. doi: 10.1016/

  27. Majolini MB, D’Elios MM, Galieni P, et al. Expression of the T-cell-specific tyrosine kinase Lck in normal B-1 cells and in chronic lymphocytic leukemia B cells. Blood. 1998;91(9):3390–6.

  28. Ramsay AG, Johnson AJ, Lee AM, et al. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest. 2008;118(7):2427–37. doi: 10.1172/JCI35017.

  29. Caligaris-Cappio F, Bertilaccio MT, Scielzo C. How the microenvironment wires the natural history of chronic lymphocytic leukemia. Semin Cancer Biol. 2014;24:43–8. doi: 10.1016/j.semcancer.2013.06.010.

  30. Damle RN, Calissano C, Chiorazzi N. Chronic lymphocytic leukaemia: a disease of activated monoclonal B cells. Clin Haematol. 2010;23(1):33–45. doi: 10.1016/j.beha.2010.02.001.

  31. Lauria F, Foa R, Catovsky D. Increase in T gamma lymphocytes in B-cell chronic lymphocytic leukaemia. Scand J Haematol. 1980;24(2):187–90. doi:1111/j.1600-0609.1980.tb02366.x.

  32. Herrmann F, Lochner A, Philippen H, et al. Imbalance of T cell subpopulations in patients with chronic lymphocytic leukaemia of the B cell type. Clin Exp Immunol. 1982;49(1):157–62.

  33. Mills KH, Worman CP, Cawley JC. T-cell subsets in B-chronic lymphocytic leukaemia (CLL). Br J Haematol. 1982;50(4):710–2. doi:1111/j.1365-2141.1982.tb01974.x.

  34. Platsoucas CD, Galinski M, Kempin S, et al. Abnormal T lymphocyte subpopulations in patients with B cell chronic lymphocytic leukemia: an analysis by monoclonal antibodies. J Immunol. 1982;129(5):2305–12.

  35. Pizzolo G, Chilosi M, Ambrosetti A, et al. Immunohistologic study of bone marrow involvement in B-chronic lymphocytic leukemia. Blood. 1983;62(6):1289–96.

  36. Ghia P, Strola G, Granziero L, et al. Chronic lymphocytic leukemia B cells are endowed with the capacity to attract CD4+, CD40L+ T cells by producing CCL22. Eur J Immunol. 2002;32(5):1403–13. doi: 10.1002/1521-4141(200205)32:5<1403::aid-immu1403>;2-y.

  37. Bagnara D, Kaufman MS, Calissano C, et al. A novel adoptive transfer model of chronic lymphocytic leukemia suggests a key role for T lymphocytes in the disease. Blood. 2011;117(20):5463–72. doi: 10.1182/blood-2010-12-324210.

  38. Qorraj M, Bottcher M, Mougiakakos D. PD-L1/PD-1: new kid on the “immune metabolic” block. Oncotarget. 2017;8(43):73364–5. doi: 10.18632/oncotarget.20639.

  39. Burger JA, Tsukada N, Burger M, et al. Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood. 2000;96(8):2655–63.

  40. Tsukada N, Burger JA, Zvaifler NJ, Kipps TJ. Distinctive features of “nurselike” cells that differentiate in the context of chronic lymphocytic leukemia. Blood. 2002;99(3):1030–7. doi: 10.1182/blood.V99.3.1030.

  41. Schiemann B, Gommerman JL, Vora K, et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science. 2001;293(5537):2111–4. doi: 1126/science.1061964.

  42. Schneider P, Takatsuka H, Wilson A, et al. Maturation of marginal zone and follicular B cells requires B cell activating factor of the tumor necrosis factor family and is independent of B cell maturation antigen. J Exp Med. 2001;194(11):1691–7. doi: 10.1084/jem.194.11.1691.

  43. Mackay F, Schneider P, Rennert P, et al. BAFF and APRIL: a tutorial on B cell survival. Annu Rev Immunol. 2003;21(1):231–64. doi: 1146/annurev.immunol.21.120601.141152.

  44. Walton JA, Lydyard PM, Nathwani A, et al. Patients with B cell chronic lymphocytic leukaemia have an expanded population of CD4 perforin expressing T cells enriched for human cytomegalovirus specificity and an effector-memory phenotype. Br J Haematol. 2010;148(2):274–84. doi: 10.1111/j.1365-2141.2009.07964.x.

  45. Nunes C, Wong R, Mason M, et al. Expansion of a CD8(+) PD-1(+) replicative senescence phenotype in early stage CLL patients is associated with inverted CD4:CD8 ratios and disease progression. Clin Cancer Res. 2012;18(3):678–87. doi: 10.1158/1078-0432.CCR-11-2630.

  46. Brown JA, Dorfman DM, Ma FR, et al. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol. 2003;170(3):1257–66. doi: 10.4049/jimmunol.170.3.1257.

  47. Ramsay AG, Clear AJ, Fatah R, et al. Multiple inhibitory ligands induce impaired T-cell immunologic synapse function in chronic lymphocytic leukemia that can be blocked with lenalidomide: establishing a reversible immune evasion mechanism in human cancer. Blood. 2012;120(7):1412–21. doi: 10.1182/blood-2012-02-411678.

  48. Grzywnowicz M, Karabon L, Karczmarczyk A, et al. The function of a novel immunophenotype candidate molecule PD-1 in chronic lymphocytic leukemia. Leuk Lymphoma. 2015;56(10):2908–13. doi: 10.3109/10428194.2015.1017820.

  49. Li J, Pang N, Zhang Z, et al. PD-1/PD-L1 expression and its implications in patients with chronic lymphocytic leukemia. Zhonghua Xue Ye Xue Za Zhi. 2017;38(03):198–203. doi: 10.3760/cma.j.issn.0253-2727.2017.03.005.

  50. Brusa D, Serra S, Coscia M, et al. The PD-1/PD-L1 axis contributes to T-cell dysfunction in chronic lymphocytic leukemia. Haematologica. 2013;98(6):953–63. doi: 10.3324/haematol.2012.077537.

  51. Xerri L, Chetaille B, Seriari N, et al. Programmed death 1 is a marker of angioimmunoblastic T-cell lymphoma and B-cell small lymphocytic lymphoma/chronic lymphocytic leukemia. Hum Pathol. 2008;39(7):1050–8. doi: 10.1016/j.humpath.2007.11.012.

  52. Panayiotidis P, Jones D, Ganeshaguru K, et al. Human bone marrow stromal cells prevent apoptosis and support the survival of chronic lymphocytic leukaemia cells in vitro. Br J Haematol. 1996;92(1):97–103. doi: 10.1046/j.1365-2141.1996.00305.x.

  53. Burger M, Hartmann T, Krome M, et al. Small peptide inhibitors of the CXCR4 chemokine receptor (CD184) antagonize the activation, migration and antiapoptotic responses of CXCL12 in chronic lymphocytic leukemia B cells. Blood. 2005;106(5):1824–30. doi: 10.1182/blood-2004-12-4918.