Ibrutinib in the Treatment of Refractory Chronic Lymphocytic Leukemia

EA Nikitin1, EA Dmitrieva1, MA Panteleev2, EI Emelina3, VL Ivanova1, YuB Kochkareva1, EG Arshanskaya1, IE Lazarev1, EE Markova1, LA Mukha1, NG Novitskaya1, MM Pankrashkina1, VV Glazunova1, AV Shubina1, SA Chernysh1, NK Khuazheva1, EV Naumova4, SA Lugovskaya4, ME Pochtar’4, TN Obukhova5, OYu Vinogradova1, GE Gendlin3, VV Ptushkin1

1 SP Botkin Municipal Clinical Hospital, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284

2 Dmitrii Rogachev Federal Scientific Clinical Centre of Pediatric Hematology, Oncology and Immunology, 1 Samory Mashela str., Moscow, Russian Federation, 117198

3 NI Pirogov Russian National Research Medical University, 1 Ostrovityanova str., Moscow, Russian Federation, 117997

4 Department of Clinical Laboratory Diagnostics, Russian Medical Academy of Postgraduate Education, 7 bld. 2 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284

5 Hematology Research Center, 4а Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

For correspondence: Evgenii Aleksandrovich Nikitin, DSci, 5 2-i Botkinskii pr-d, Moscow, Russian Federation, 125284; Tel.: +7(916)572-06-44; e-mail: eugene_nikitin@mail.ru

For citation: Nikitin EA, Dmitrieva EA, Panteleev MA, et al. Ibrutinib in the Treatment of Refractory Chronic Lymphocytic Leukemia. Clinical oncohematology. 2017;10(3):271–81 (In Russ).

DOI: 10.21320/2500-2139-2017-10-3-271-281


ABSTRACT

Background & Aims. This paper presents the results of the observational study of ibrutinib in patients with chronic lymphocytic leukemia (CLL), conducted in SP Botkin Municipal Clinical Hospital. The main objective was the analysis of complications of ibrutinib and identification of factors, influencing the dosage regimen; the secondary objective was the estimation of the total response to treatment, event-free and overall survival.

Materials & Methods. The study included 96 patients with CLL with indications for ibrutinib therapy. The median age was 64,9 years (range 32–91 years), the study population consisted of 69 (72 %) men and 27 (28 %) women. The condition of 25 (26 %) patients according to the ECOG scale was of > 3 points. The disease of stage C were diagnosed in 36 (37 %) patients . Deletion of 17p/TP53 mutations were detected in 29 (33 %) of 87 patients. Seventy patients had refractory CLL. The median of the number of the lines of the previous therapy was 3 (range 1–9). Adverse events were assessed in accordance with the CTCAE criteria, version 4.0; the bleeding severity was evaluated using ITP-specific bleeding score; hematological complications were classified according to the recommendations of IWCLL-2008.

Results. Ibrutinib was administered at a dosage of 420 mg per day daily until progression or intolerable toxicity. The median duration of ibrutinib therapy was 10.3 months. Ibrutinib was shown to have moderate toxicity, mostly of grade I or II. The bleeding was the most frequent complication. Of the hematological complications, thrombocytopenia was the most common (35 %); neutropenia < 1 × 109/L was observed in 4 patients. GIT complications were identified in 51 (53 %) patients. Atrial fibrillation was registered in 5 patients, who initially had sinus rhythm. The total of 144 infections were diagnosed in 64 (66 %) patients. Severe infections (> grade III) developed in 26 % of patients. The treatment response was assessed in 92 patients. The overall response to treatment was 89 %. Complete remission, partial remission and partial remission with lymphocytosis were achieved in 4 (4 %), 57 (62 %), and 21 (23 %) patients, respectively. The event-free survival and overall survival by the month 10 was 90 % and 91 %, respectively. For this observation period, ECOG status and the number of the lines of therapy prior to ibrutinib had the prognostic value.

Conclusion. Ibrutinib was shown to have high efficiency in relapsed/refractory forms of CLL. The nature of the ibrutinib toxicity is fundamentally different from that of the conventional chemotherapy. The frequency of ibrutinib therapy complications and patients’ non-compliance depends on the intensity of the previous treatment of CLL. Despite a short observation period, it can be concluded that ibrutinib had the greatest impact on the patient’s quality of life when administered for the first relapse. The low toxicity of ibrutinib is likely to allow the combination with other antitumor agents.

Keywords: chronic lymphocytic leukemia, del 17p, TP53, refractory CLL, ibrutinib, bleeding, atrial fibrillation.

Received: March 14, 2017

Accepted: April 14, 2017

Read in PDF (RUS)pdficon


REFERENCES

  1. Hallek M, Fischer K, Fingerle-Rowson G, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet. 2010;376(9747):1164–74. doi: 10.1016/S0140-6736(10)61381-5.
  2. Fischer K, Cramer P, Busch R, et al. Bendamustine in combination with rituximab for previously untreated patients with chronic lymphocytic leukemia: a multicenter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol. 2012;30(26):3209–16. doi: 10.1200/jco.2011.39.2688.
  3. Fischer K, Bahlo J, Fink AM, et al. Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: updated results of the CLL8 trial. Blood. 2016;127(2):208–15. doi: 10.1182/blood-2015-06-651125.
  4. Thompson PA, Tam CS, O’Brien SM, et al. Fludarabine, cyclophosphamide, and rituximab treatment achieves long-term disease-free survival in IGHV-mutated chronic lymphocytic leukemia. Blood. 2016;127(3):303–9. doi: 10.1182/blood-2015-09-667675.
  5. Rossi D, Terzi-di-Bergamo L, De Paoli L, et al. Molecular prediction of durable remission after first-line fludarabine-cyclophosphamide-rituximab in chronic lymphocytic leukemia. Blood. 2015;126(16):1921–4. doi: 10.1182/blood-2015-05-647925.
  6. Shvidel L, Shtalrid M, Bairey O, et al. Conventional dose fludarabine-based regimens are effective but have excessive toxicity in elderly patients with refractory chronic lymphocytic leukemia. Leuk Lymphoma. 2003;44(11):1947–50. doi: 10.1080/1042819031000110991.
  7. Marotta G, Bigazzi C, Lenoci M, et al. Low-dose fludarabine and cyclophosphamide in elderly patients with B-cell chronic lymphocytic leukemia refractory to conventional therapy. Haematologica. 2000;85(12):1268–70.
  8. Smolej L, Spacek M, Doubek M, et al. Low-Dose Fludarabine and Cyclophosphamide Combined With Rituximab Is a Safe and Effective Treatment Option for Elderly and Comorbid Patients With Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma: Preliminary Results of Project Q-lite, by the Czech CLL Study Group. Clin Lymph Myel Leuk. 2011;11:S261. doi: 10.1016/j.clml.2011.09.181.
  9. Mulligan SP, Gill D, Turner P, et al. A Randomised Dose De-Escalation Safety Study of Oral Fludarabine, ±Oral Cyclophosphamide and Intravenous Rituximab (OFOCIR) As First-Line Therapy of Fit Patients with Chronic Lymphocytic Leukaemia (CLL) Aged ≥65 Years: Final Analysis of Response and Toxicity. Blood. 2014;124:3325.
  10. Nikitin E, Kisilichina D, Zakharov O, et al. Randomised Comparison Of FCR-Lite And ClbR (Chlorambucil Plus Rituximab) Regimens In Elderly Patients With Chronic Lymphocytic Leukemia. Hematologica. 2013;98(Suppl 1):473, abstract NS1147.
  11. Foon KA, Mehta D, Lentzsch S, et al. Long-term results of chemoimmunotherapy with low-dose fludarabine, cyclophosphamide and high-dose rituximab as initial treatment for patients with chronic lymphocytic leukemia. Blood. 2012;119(13):3184–5. doi: 10.1182/blood-2012-01-408047.
  12. Goede V, Fischer K, Busch R, et al. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med. 2014;370(12):1101–10. doi: 10.1056/nejmoa1313984.
  13. Fischer K, Cramer P, Busch R, et al. Bendamustine combined with rituximab in patients with relapsed and/or refractory chronic lymphocytic leukemia: a multicenter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol. 2011;29(26):3559–66. doi: 10.1200/jco.2010.33.8061.
  14. Robak T, Dmoszynska A, Solal-Celigny Ph, et al. Rituximab plus fludarabine and cyclophosphamide prolongs progression-free survival compared with fludarabine and cyclophosphamide alone in previously treated chronic lymphocytic leukemia. J Clin Oncol. 2010;28(10):1756–65. doi: 10.1200/jco.2009.26.4556.
  15. Badoux XC, Keating MJ, Wen S, et al. Phase II study of lenalidomide and rituximab as salvage therapy for patients with relapsed or refractory chronic lymphocytic leukemia. J Clin Oncol. 2013;31(5):584–91. doi: 10.1200/jco.2012.42.8623.
  16. Keating MJ, O’Brien S, Kontoyiannis D, et al. Results of first salvage therapy for patients refractory to a fludarabine regimen in chronic lymphocytic leukemia. Leuk Lymphoma. 2002;43(9):1755–62. doi: 10.1080/1042819021000006547.
  17. Keating M.J. Therapeutic role of alemtuzumab (Campath-1H) in patients who have failed fludarabine: results of a large international study. Blood. 2002;99(10):3554–61. doi: 10.1182/blood.v99.10.3554.
  18. Stilgenbauer S, Hallek M. Chronic lymphocytic leukemia. Treatment and genetic risk profile. Internist (Berl). 2013;54(2):164, 166–70.
  19. Stilgenbauer S, Zenz Th, Winkler D, et al. Subcutaneous alemtuzumab in fludarabine-refractory chronic lymphocytic leukemia: clinical results and prognostic marker analyses from the CLL2H study of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol. 2009;27(24):3994–4001. doi: 10.1200/jco.2008.21.1128.
  20. Advani RH, Buggy JJ, Sharman JP, et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol. 2013;31(1):88–94. doi: 10.1200/jco.2012.42.7906.
  21. Byrd JC, Furman RR, Coutre SE, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369(1):32–42. doi: 10.1056/NEJMoa1215637.
  22. Buggy JJ, Elias L. Bruton tyrosine kinase (BTK) and its role in B-cell malignancy. Int Rev Immunol. 2012;31(2):119–32. doi: 10.3109/08830185.2012.664797.
  23. Ponader S, Chen S-S, Buggy JJ, et al. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood. 2012;119(5):1182–9. doi: 10.1182/blood-2011-10-386417.
  24. Chun JK, Lee TJ, Song JW, et al. Analysis of clinical presentations of Bruton disease: a review of 20 years of accumulated data from pediatric patients at Severance Hospital. Yonsei Med J. 2008;49(1):28–36. doi: 10.3349/ymj.2008.49.1.28.
  25. Bruton OC, Apt L, Gitlin D, Janeway CA. Absence of serum gamma globulins. AMA Am J Dis Child. 1952;84(5):632–6.
  26. Byrd JC, Brown JR, O’Brien S, et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014;371(3):213–23. doi: 10.1056/nejmoa1400376.
  27. Byrd JC, Furman RR, Coutre SE, et al. Three-year follow-up of treatment-naive and previously treated patients with CLL and SLL receiving single-agent ibrutinib. Blood. 2015;125(16):2497–506. doi: 10.1182/blood-2014-10-606038.
  28. O’Brien S, Jones JA, Coutre SE, et al. Ibrutinib for patients with relapsed or refractory chronic lymphocytic leukaemia with 17p deletion (RESONATE-17): a phase 2, open-label, multicentre study. Lancet Oncol. 2016;17(10):1409–18. doi: 10.1016/s1470-2045(16)30212-1.
  29. Burger JA, Tedeschi A, Barr PM, et al. Ibrutinib as Initial Therapy for Patients with Chronic Lymphocytic Leukemia. N Engl J Med. 2015;373(25):2425–37. doi: 10.1056/NEJMoa1509388.
  30. Choi MY, Kipps TJ. Inhibitors of B-cell receptor signaling for patients with B-cell malignancies. Cancer J. 2012;18(5):404–10. doi: 10.1097/ppo.0b013e31826c5810.
  31. de Rooij MF, Kuil A, Geest CR, et al. The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. Blood. 2012;119(11):2590–4. doi: 10.1182/blood-2011-11-390989.
  32. Hallek M, Cheson BD, Catovsky D, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111(12):5446–56. doi: 10.1182/blood-2007-06-093906.
  33. Jones JA, Hillmen P, Coutre S, et al. Pattern of Use of Anticoagulation and/or Antiplatelet Agents in Patients with Chronic Lymphocytic Leukemia (CLL) Treated with Single-Agent Ibrutinib Therapy. Blood. 2014;124(21):1990.
  34. Rodeghiero F, Michel M, Gernsheimer T, et al. Standardization of bleeding assessment in immune thrombocytopenia: report from the International Working Group. Blood. 2013;121(14):2596–606. doi: 10.1182/blood-2012-07-442392.
  35. Cheson BD, Horning SJ, Coiffier B, et al. Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. J Clin Oncol. 1999;17(4):1244. doi: 10.1200/jco.1999.17.4.1244.
  36. Pettitt AR, Jackson R, Carruthers S, et al. Alemtuzumab in combination with methylprednisolone is a highly effective induction regimen for patients with chronic lymphocytic leukemia and deletion of TP53: final results of the national cancer research institute CLL206 trial. J Clin Oncol. 2012;30(14):1647–55. doi: 10.1200/jco.2011.35.9695.
  37. Perkins JG, Flynn JM, Howard RS, Byrd JC. Frequency and type of serious infections in fludarabine-refractory B-cell chronic lymphocytic leukemia and small lymphocytic lymphoma: implications for clinical trials in this patient population. Cancer. 2002;94(7):2033–9. doi: 10.1002/cncr.0680.abs.
  38. Wierda WG, Kipps TJ, Mayer J, et al. Ofatumumab as single-agent CD20 immunotherapy in fludarabine-refractory chronic lymphocytic leukemia. J Clin Oncol. 2010;28(10):1749–55. doi: 10.1200/jco.2009.25.3187.