Expression of the BCR-ABL1 Gene in Patients with Chronic Myeloproliferative Diseases with Signs of Progression

LA Kesaeva1, EN Misyurina2, DS Mar’in2, EI Zhelnova2, AYu Bulanov2, AE Misyurina3, AA Krutov4, IN Soldatova4, SS Zborovskii4, VA Misyurin1,4, VV Tikhonova1, YuP Finashutina1, ON Solopova1, NA Lyzhko1, AE Bespalova1, NN Kasatkina1, AV Ponomarev1, MA Lysenko2, AV Misyurin1,4

1 NN Blokhin National Medical Cancer Research Center, 24 Kashirskoye sh., Moscow, Russian Federation, 115478

2 Municipal Clinical Hospital No. 52, 3 Pekhotnaya str., Moscow, Russian Federation, 123182

3 National Research Center for Hematology, 4 Novyi Zykovskii pr-d, Moscow, Russian Federation, 125167

4 GenoTekhnologiya, 104 Profsoyuznaya str., Moscow, Russian Federation, 117485

For correspondence: Andrei Vital’evich Misyurin, PhD in Biology, 24 Kashirskoye sh., Moscow, Russian Federation, 115478; Tel.: +7(499)612-80-38; e-mail:

For citation: Kesaeva LA, Misyurina EN, Mar’in DS, et al. Expression of the BCR-ABL1 Gene in Patients with Chronic Myeloproliferative Diseases with Signs of Progression. Clinical oncohematology. 2018;11(4):354–9.

DOI: 10.21320/2500-2139-2018-11-4-354-359


Background. The V617F mutation of JAK2 is known to manifest in Ph-negative chronic myeloproliferative diseases (cMPD), such as polycythemia vera, thrombocythemia, and myelofibrosis. These diseases not infrequently advance into more aggressive forms up to acute leukemia. As the progression mechanism is still unknown, its study retains a high priority. JAK2 carrying the V617F mutation is believed to cause constant activation of V(D)J recombinase in myeloid tumor cells in cMPD patients. Aberrant activation of V(D)J recombinase in tumor cells in cMPD patients can lead to t(9;22)(q34;q11) chromosomal rearrangement.

Aim. To study the expression of BCR-ABL1 resulting from translocation t(9;22)(q34;q11) in cMPD patients at the progression stage in order to test the suggested hypothesis.

Materials & Methods. The BCRABL1 expression was assessed in peripheral blood granulocytes in cMPD patients by real-time PCR. The JAK2 V617F mutation was identified by quantitative allele-specific PCR. The JAK2 exon 12 mutations were determined using Sanger direct sequencing of PCR products.

Results. The BCR-ABL1 expression was discovered in 29 % of patients with cMPD progression. The BCR-ABL1 expression in these patients correlated with hepatosplenomegaly and hyperleukocytosis.

Conclusion. In a significant proportion of cMPD patients the disease progression can be associated with activation of the BCR-ABL expression.

Keywords: JAK2 V617F, BCR-ABL1, V(D)J recombinase, t(9;22)(q34;q11), polycythemia vera, essential thrombocythemia, myelofibrosis, chronic myeloid leukemia.

Received: April 2, 2018

Accepted: August 5, 2018

Read in PDF 


  1. Dameshek W. Some speculations on the myeloproliferative syndromes. Blood. 1951;6(4):372–5.

  2. Nowell P, Hungerford D. A minute chromosome in human chronic granulocytic leukemia. Science. 1960;132:1497, abstract.

  3. Rowley JD. Letter: A new consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243(5405):290–3. doi: 10.1038/243290a0.

  4. Davis R, Konopka J, Witte O. Activation of the c-abl оncogene by viral transduction or chromosomal translocation generates altered c-abl proteins with similar in vitro kinase properties. Mol Cell Biol. 1985;5(1):204–13. doi: 10.1128/mcb.5.1.204.

  5. Muller AJ, Young JC, Pendergast AM, et al. BCR first exon sequences specifically activate the BCR/ABL thyrosine kinase oncogene of Philadelphia chromosome-positive human leukemias. Mol Cell Biol. 1991;11(4):1785–92. doi: 10.1128/mcb.11.4.1785.

  6. James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signaling causes polycythaemia vera. Nature. 2005;434(7037):1144–8. doi: 10.1038/nature03546.

  7. Scott LM, Tong W, Levine RL, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007;356(5):459–68. doi: 10.1056/NEJMoa065202.

  8. Pikman Y, Lee BH, Mercher T, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3(7):e270. doi: 10.1371/journal.pmed.0030270.

  9. Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379–90. doi: 10.1056/NEJMoa1311347.

  10. Nangalia J, Massie CE, Baxter EJ, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369(25):2391–405. doi: 10.1056/NEJMoa1312542.

  11. Tutaeva V, Misurin AV, Rozenberg JM, et al. Application of PRV-1 mRNA expression level and JAK2V617F mutation for the differentiating between polycytemia vera and secondary erythrocytosis and assessment of treatment by interferon or hydroxyurea. Hematology. 2007;12(6):473–9. doi: 10.1080/10245330701384005.

  12. Мисюрин А.В. Молекулярный патогенез миелопролиферативных заболеваний. Клиническая онкогематология. 2009;2(3):211–9.

    [Misyurin AV. Molecular pathogenesis of myeloproliferative disorders. Klinicheskaya onkogematologiya. 2009;2(3):211–9. (In Russ)]

  13. Vainchenker W, Delhommeau F, Constantinescu SN, Bernard OA. New mutations and pathogenesis of myeloproliferative neoplasms. Blood. 2011;118(7):1723–35. doi: 10.1182/blood-2011-02-292102.

  14. Mirza I, Frantz C, Clarce G, et al. Transformation of polycythemia vera to chronic myelogenous leukemia. Arch Pathol Lab Med. 2007;131(11):1719–24.

  15. Toogeh G, Ferdowsi S, Naadali F, et al. Concomitant presence of JAK2 V617F mutation and BCR-ABL translocation in a pregnant woman with polycythemia vera. Med Oncol. 2011;28(4):1555–8. doi: 10.1007/s12032-010-9570-8.

  16. Bee PC, Gan GG, Nadarajan VS, et al. A man with concomitant polycythaemia vera and chronic myeloid leukemia: the dynamics of the two disorders. Int J Hematol. 2010;91(1):136–9. doi: 10.1007/s12185-009-0471-6.

  17. Kemp NH, Stafford JL, Tanner R. Chromosome studies during early and terminal chronic myeloid leukemia. Br Med J. 1964;1(5389):1010–4. doi: 10.1136/bmj.1.5389.1010.

  18. Hoppin EC, Lewis JP. Polycythemia Rubra Vera Progressing to Ph-Positive Chronic Myelogenous Leukemia. Ann Intern Med. 1975;83(6):820–3. doi: 10.7326/0003-4819-83-6-820.

  19. Saviola A, Claudia Fiorani C, Ferrara L. Transition of polycythemia vera to chronic myeloid leukaemia. Eur J Haematol. 2005;75(3):264–6. doi: 10.1111/j.1600-0609.2005.00488.x.

  20. Мисюрин А.В., Сурин В.Л., Тагиев А.Ф. Новые точки разрыва транслокации t(9;22) при хроническом миелолейкозе. Биоорганическая химия. 1999;25(3):234–6.

    [Misyurin AV, Surin VL, Tagiev AF. New breakpoints of translocation t(9;22) in chronic myeloid leukemia. Bioorganicheskaya khimiya. 1999;25(3):234–6. (In Russ)]

  21. Score J, Calasanz MJ, Ottman O, et al. Analysis of genomic breakpoints in p190 and p210 BCR-ABL indicate distinct mechanisms of formation. Leukemia. 2010;24(10):1742–50. doi: 10.1038/leu.2010.174.

  22. Bassing CH, Swat W, Alt FW. The mechanism and regulation of chromosomal V(D)J recombination. Cell. 2002;109(2):S45–S55. doi: 10.1016/S0092-8674(02)00675-X.