Инфекционные осложнения после гаплоидентичной трансплантации гемопоэтических стволовых клеток у пациентов с опухолями кроветворной и лимфоидной тканей высокого риска: опыт одного центра

Ю.С. Осипов1, С.С. Бессмельцев2, Г.Н. Салогуб1, В.В. Иванов1, Е.С. Михайлов1, Н.А. Жукова1, А.В. Чечеткин2

1 ФГБУ «НМИЦ им. В.А. Алмазова» Минздрава России, ул. Аккуратова, д. 2, Санкт-Петербург, Российская Федерация, 197341

2 ФГБУ «Российский НИИ гематологии и трансфузиологии ФМБА», ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024

Для переписки: Юрий Сергеевич Осипов, ул. Аккуратова, д. 2, Санкт-Петербург, Российская Федерация, 197341; тел.: +7(812)702-37-65; e-mail: osipov_yus@almazovcentre.ru

Для цитирования: Осипов Ю.С., Бессмельцев С.С., Салогуб Г.Н. и др. Инфекционные осложнения после гаплоидентичной трансплантации гемопоэтических стволовых клеток у пациентов с опухолями кроветворной и лимфоидной тканей высокого риска: опыт одного центра. Клиническая онкогематология. 2019;12(4):406–15.

DOI: 10.21320/2500-2139-2019-12-4-406-415


РЕФЕРАТ

Цель. Определить частоту развития вирусных, бактериальных и грибковых инфекций в посттрансплантационный период, оценить прогностическое значение инфекций и их влияние на ранние и отдаленные результаты гаплоидентичной трансплантации гемопоэтических стволовых клеток (гаплоТГСК).

Материалы и методы. В ретроспективное исследование был включен 61 пациент старше 18 лет с онкогематологическими заболеваниями высокого риска. С 2015 по 2018 г. всем пациентам выполнена гаплоТГСК. Медиана наблюдения после гаплоТГСК составила 12,5 мес. (376 дней, диапазон 6–1202 дня). Больные разделены на две группы. Первая группа (n = 26) — гаплоТГСК выполнена в качестве терапии «спасения» («salvage»). В нее включены больные с рефрактерным течением опухоли и отсутствием ремиссии ко времени гаплоТГСК либо с ранними рецидивами после HLA-совместимых родственных или неродственных аллоТГСК. Вторая группа (n = 35) — гаплоТГСК выполнена при достижении оптимального предтрансплантационного статуса («non-salvage»).

Результаты. Частота реактивации цитомегаловирусной (CMV) инфекции, развития инвазивного микоза и бактериальных инфекций составила 70,4, 11,5 и 75,4 % соответственно. Влияния реактивации CMV-инфекции или развития инвазивного микоза на 35- и 100-дневную общую выживаемость (ОВ) не отмечено. Бактериальные инфекции впервые были стратифицированы по степени тяжести в соответствии с консенсусом Sepsis 3, что позволило выделить группы пациентов с неблагоприятным прогнозом. Тяжелые формы бактериальных инфекций (сепсис, септический шок) коррелировали с ухудшением как краткосрочных, так и отдаленных результатов, особенно у пациентов вне ремиссии к моменту выполнения гаплоТГСК, в то время как развитие фебрильной нейтропении/инфекций кровотока не влияло на ОВ. В целом смертность, связанная с бактериальными инфекциями, составила 26,2 %.

Заключение. Основным фактором, влияющим на раннюю летальность после гаплоТГСК, является развитие тяжелых бактериальных инфекций. Ведущий фактор риска — отсутствие ремиссии ко времени выполнения гаплоТГСК. Критерии Sepsis 3 могут использоваться в период постцитостатической цитопении, что позволит выделить группу больных с максимально неблагоприятным прогнозом (развитие септического шока). Внедрение в рутинную клиническую практику современных методов инфекционного контроля (генотипирование штаммов со множественной лекарственной устойчивостью и своевременное определение стратегии антимикробной химиотерапии с учетом полученных результатов) может способствовать улучшению результатов лечения этой категории больных.

Ключевые слова: гаплоидентичная трансплантация гемопоэтических стволовых клеток, инфекционные осложнения, сепсис, септический шок, реактивация цитомегаловирусной инфекции, инвазивный микоз.

Получено: 11 апреля 2019 г.

Принято в печать: 18 сентября 2019 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Поп В.П., Рукавицын О.А. Аллогенная трансплантация гемопоэтических стволовых клеток: перспективы и альтернативы, собственный опыт. Российский журнал детской онкологии и гематологии. 2017;4(2):46–69. doi: 10.17650/2311-1267-2017-4-2-46-69.

    [Pop VР, Rukavitsyn OА. Allogeneic transplantation of hematopoietic stem cells: Perspectives and alternatives, own experience. Russian Journal of Children Hematology and Oncology. 2017;4(2):46–69. doi: 10.17650/2311-1267-2017-4-2-46-69. (In Russ)]

  2. Luznik L, O’Donnell PV, Ephraim JF. Post-transplantation cyclophosphamide for tolerance induction in HLA-haploidentical Bone Marrow Transplantation. Semin Oncol. 2012;39(6):683–93. doi: 10.1053/j.seminoncol.2012.09.005.

  3. Luznik L, Fuchs EJ. High-dose, post-transplantation cyclophosphamide to promote graft-host tolerance after allogeneic hematopoietic stem cell transplantation. Immunol Res. 2010;47(1–3):65–77. doi: 10.1007/s12026-009-8139-0.

  4. Burroughs LМ, O’Donnell PV, Sandmaier BM, et al. Comparison of outcomes of HLA-matched related, unrelated, or HLA-haploidentical related hematopoietic cell transplantation following non-myeloablative conditioning for relapsed or refractory Hodgkin lymphoma. Biol Blood Marrow Transplant. 2008;14(11):1279–87. doi: 10.1016/j.bbmt.2008.08.014.

  5. Pagliardini T, Harbi S, Furst S, et al. Post-transplantation cyclophosphamide-based haploidentical versus Atg-based unrelated donor allogeneic stem cell transplantation for patients younger than 60 years with hematological malignancies: a single-center experience of 209 patients. Bone Marrow Transplant. 2018;54(7):1067–76. doi: 10.1038/s41409-018-0387-y.

  6. Kasamon Y, Luznik L, Leffell M, et al. Nonmyeloablative HLA-haploidentical Bone Marrow Transplantation with high-dose post-transplantation cyclophosphamide: effect of HLA disparity on outcome. Biol Blood Marrow Transplant. 2010;16(4):482–9. doi: 10.1016/j.bbmt.2009.11.01

  7. Бессмельцев С.С., Абдулкадыров К.М. Множественная миелома: руководство для врачей. М.: СИМК, 2016. 512 с.

    [Bessmeltsev SS, Abdulkadyrov KM. Mnozhestvennaya mieloma: rukovodstvo dlya vrachei. (Multiple myeloma: manual for physicians.) Moscow: SIMK Publ.; 2016. 512 p. (In Russ)]

  8. Галстян Г.М., Макарова П.М., Кузьмина Л.А. и др. Успешная трансплантация аллогенного костного мозга у больных с тяжелым грамотрицательным сепсисом и септическим шоком. Клиническая онкогематология. 2014;7(2):122–30.

    [Galstyan GM, Makarova PM, Kuzmina LA, et al. Successful allogeneic bone marrow transplantation in patients with severe gram-negative sepsis and septic shock. Klinicheskaya onkogematologiya. 2014;7(2):122–30. (In Russ)]

  9. Fayard A, Daguenet E, Blaise D, et al. Evaluation of infectious complications after haploidentical hematopoietic stem cell transplantation with post-transplant cyclophosphamide following reduced-intensity and myeloablative conditioning: a study on behalf of the Francophone Society of Stem Cell Transplantation and Cellular Therapy (SFGM-TC). Bone Marrow Transplant. 2019. [ahead of print] doi: 10.1038/s41409-019-0475-7.

  10. Kumar G, Ahmad S, Taneja A, et al. Severe sepsis in hematopoietic stem cell transplant recipients. Crit Care Med. 2015;43(2):411–21. doi: 10.1097/ccm.0000000000000714.

  11. Omrani AS, Almaghrabi RS. Complications of hematopoietic stem cell transplantation: Bacterial infections. Hematol Oncol Stem Cell Ther. 2017;10(4):228–32. doi: 10.1016/j.hemonc.2017.05.018.

  12. Alhemmari SH, Refaat SM, Abdullah AA, Abul M. Infectious complications after allogeneic bone marrow transplantation: Sheikha Badryia Center, Kuwait. Gulf J Oncol. 2015;1(18):79–86.

  13. Freifeld AG, Bow EJ, Sepkowitz KA, et al. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of America. Clin Infect Dis. 2011;52(4):е56–е93. doi: 10.1093/cid/cir073.

  14. EORTC International Antimicrobial Therapy Cooperative Group. Gram-positive bacteraemia in granulocytopenic cancer patients. Eur J Cancer Clin Oncol. 1990;26(5):569–74. doi: 10.1016/0277-5379(90)90079-9.

  15. Klastersky J. Science and pragmatism in the treatment and prevention of neutropenic infection. J Antimicrob Chemother. 1998;41(Suppl 4):13–24. doi: 10.1093/jac/41.suppl_4.13.

  16. Mikulska M, Viscoli C, Orasch C, et al. Aetiology and resistance in bacteraemias among adult and paediatric haematology and cancer patients. J Infect. 2014;68(4):321–31. doi: 10.1016/j.jinf.2013.12.006.

  17. Tomblyn M, Chiller T, Einsele H, et al. Guidelines for preventing infectious complications among hematopoietic cell transplantation recipients: a global perspective. Biol Blood Marrow Transplant. 2009;15(10):1143–238. doi: 10.1016/j.bbmt.2009.06.019.

  18. De Pauw B, Walsh TJ, Donnelly JP, et al. Revised Definitions of Invasive Fungal Disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis. 2008;46(12):1813–21. doi: 10.1086/588660.

  19. Abraham E. New Definitions for Sepsis and Septic Shock: Continuing Evolution but With Much Still to Be Done. JAMA. 2016;315(8):757–9. doi: 10.1001/jama.2016.0290.

  20. Gustinetti G, Mikulska M. Bloodstream infections in neutropenic cancer patients: a practical update. Virulence. 2016;7(3):280–97. doi: 10.1080/21505594.2016.1156821.

  21. Wisplinghoff H, Seifert H, Wenzel RP, Edmond MB. Current trends in the epidemiology of nosocomial bloodstream infections in patients with hematological malignancies and solid neoplasms in hospitals in the United States. Clin Infect Dis. 2003;36(9):1103–10. doi: 10.1086/374339.

Тяжелая гипофункция трансплантата аллогенных гемопоэтических стволовых клеток у пациентов с онкогематологическими заболеваниями: частота, факторы риска, исходы

Т.А. Рудакова, А.Д. Кулагин, О.У. Климова, И.К. Голубовская, Е.И. Дарская, Т.А. Быкова, А.Г. Смирнова, Е.В. Морозова, С.Н. Бондаренко, И.С. Моисеев, А.В. Бейнарович, Д.Э. Певцов, А.Л. Алянский, Е.В. Бабенко, И.М. Бархатов, Б.В. Афанасьев

НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой, ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова», ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

Для переписки: Татьяна Александровна Рудакова, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022; e-mail: t_a_rudakova@mail.ru

Для цитирования: Рудакова Т.А., Кулагин А.Д., Климова О.У. и др. Тяжелая гипофункция трансплантата аллогенных гемопоэтических стволовых клеток у пациентов с онкогематологическими заболеваниями: частота, факторы риска, исходы. Клиническая онкогематология. 2019;12(3):309–18.

doi: 10.21320/2500-2139-2019-12-3-309-318


РЕФЕРАТ

Цель. Оценить в соответствии со строгими критериями частоту возникновения, предтрансплантационные факторы риска и исходы тяжелой гипофункции трансплантата (тГФТ) после трансплантации аллогенных гемопоэтических стволовых клеток (аллоТГСК) у взрослых.

Материалы и методы. В исследование включено 710 взрослых пациентов (медиана возраста 31 год, диапазон 18–70 лет; 55 % мужчин, 45 % женщин) с различными гематологическими заболеваниями и документированным приживлением трансплантата после аллоТГСК от совместимого сиблинга (20 %), неродственного (67 %) и гаплоидентичного (13 %) доноров в период с 2008 по 2016 г. Миелоаблативное кондиционирование и режимы со сниженной интенсивностью использовались у 30 и 70 % больных соответственно. Критерии тГФТ: цитопения в 2 линиях и более (тромбоциты < 20 × 109/л, абсолютное число нейтрофилов < 0,5 × 109/л, гемоглобин < 70 г/л в любой момент времени после документированного приживления), полный или стабильный смешанный донорский химеризм > 90 % и отсутствие признаков рецидива, отторжения и тяжелой острой реакции «трансплантат против хозяина». Анализировались следующие факторы: возраст, пол, диагноз, наличие/отсутствие ремиссии при острых лейкозах, уровень ферритина крови, тип донора, HLA-совместимость, совместимость по группе крови и полу, источник трансплантата, число трансплантированных клеток CD34+, режим кондиционирования. Многофакторный анализ включал параметры со значением < 0,05 в однофакторном анализе.

Результаты. тГФТ после аллоТГСК установлена у 103 пациентов с 2-летней кумулятивной частотой 15 % (95%-й доверительный интервал [95% ДИ] 12–18 %). В большинстве случаев тГФТ развивалась в 1-й год после аллоТГСК (медиана 50 дней). Двух- и трехростковая цитопении имели место в 59 и 41 % случаев соответственно. В многофакторном анализе риск развития тГФТ был связан с миелодиспластическим синдромом, миелопролиферативными заболеваниями (отношение рисков [ОР] 3,403; 95% ДИ 1,972–5,606; < 0,0001) и гаплоидентичным донором (ОР 3,830; 95% ДИ 1,545–8,828; = 0,001). Отсутствие ремиссии на момент аллоТГСК при острых лейкозах и несовместимость по группе крови имели пограничное значение. В 50 % случаев тГФТ определяла неблагоприятный исход, в т. ч. смерть от осложнений цитопении, последующие рецидивы и отторжение трансплантата. Прогноз двухростковой тГФТ был несколько лучше, чем трехростковой.

Заключение. В настоящем крупном когортном исследовании у взрослых пациентов с онкогемалогическими заболеваниями установлена частота и проанализирована структура тГФТ. Кроме того, определены ключевые предтрансплантационные факторы повышенного риска тГФТ. Результаты исследования могут позволить оптимизировать выбор тактики лечения после аллоТГСК.

Ключевые слова: трансплантация аллогенных гемопоэтических стволовых клеток, гипофункция трансплантата.

Получено: 6 марта 2018 г.

Принято в печать: 20 июня 2019 г.

Читать статью в PDF 


ЛИТЕРАТУРА

  1. Sureda A, Bader P, Cesaro S, et al. Indications for allo- and auto-SCT for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2015. Bone Marrow Transplant. 2015;50(8):1037–56. doi: 10.1038/bmt.2015.6.

  2. Афанасьев Б.В., Зубаровская Л.С., Семенова Е.В. и др. Опыт применения неродственной аллогенной трансплантации стволовых гемопоэтических клеток в клинике трансплантации костного мозга СПБГМУ им. акад. И.П. Павлова. Терапевтический архив. 2007;79(7):36–43.

    [Afanas’ev BV, Zubarovskaya LS, Semenova EV, et al. Experience of non-related allogeneic transplantation of stem hematopoietic cells in the Clinic of Bone Marrow Transplantation at I.P. Pavlov St. Petersburg Medical University. Terapevticheskii arkhiv. 2007;79(7):36–43. (In Russ)]

  3. Афанасьев Б.В., Зубаровская Л.С., Моисеев И.С. Аллогенная трансплантация гемопоэтических стволовых клеток у детей: настоящее, проблемы, перспективы. Российский журнал детской гематологии и онкологии. 2015;2(2):28–42. doi: 10.17650/2311-1267-2015-2-2-28-42.

    [Afanasiev BV, Zubarovskaya LS, Moiseev IS. Allogeneic hematopoietic stem cell transplantation in children: now, problems and prospects. Russian Journal of Children Hematology and Oncology. 2015;2(2):28–42. doi: 10.17650/2311-1267-2015-2-2-28-42. (In Russ)]

  4. Румянцев А.Г., Масчан А.А. Трансплантация гемопоэтических стволовых клеток у детей. М.: МИА, 2003. 912 с.

    [Rumyantsev AG, Maschan AA. Transplantatsiya gemopoeticheskikh stvolovykh kletok u detei. (Hematopoietic stem cell transplantation in children.) Moscow: MIA Publ.; 2003. 912 p. (In Russ)]

  5. Савченко В.Г., Любимова Л.С., Паровичникова Е.Н. и др. Трансплантация аллогенных и аутологичных гемопоэтических стволовых клеток при острых лейкозах (итоги 20-летнего опыта). Терапевтический архив. 2007;79(7):30–5.

    [Savchenko VG, Lyubimova LS, Parovichnikova EN, et al. Transplantation of allogeneic and autologous hematopoietic stem cells in acute leukemias (summary of 20-year experience). Terapevticheskii arkhiv. 2007;79(7):30–5. (In Russ)]

  6. Olsson R, Remberger M, Schaffer M, et al. Graft failure in the modern era of allogeneic hematopoietic SCT. Bone Marrow Transplant. 2013;48(4):537–43. doi: 10.1038/bmt.2012.239.

  7. Locatelli F, Lucarelli B, Merli P. Current and future approaches to treat graft failure after allogeneic hematopoietic stem cell transplantation. Expert Opin Pharmacother. 2014;15(1):23–36. doi: 10.1517/14656566.2014.852537.

  8. Kong Y, Chang Y-J, Wang Y-Z, et al. Association of an impaired bone marrow microenviroment with secondary poor graft function after allogenic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2013;19(10):1465–73. doi: 10.1016/j.bbmt.2013.07.014.

  9. Stasia A, Ghiso A, Galaverna F, et al. CD34 selected cells for the treatment of poor graft function following allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2014;20(9):1440–3. doi: 10.1016/j.bbmt.2014.05.016.

  10. Лисуков И.А., Успенская О.С., Кулагин А.Д. и др. Использование ромиплостима в терапии тромбоцитопений после аллогенной трансплантации костного мозга. Онкогематология. 2012;7(1):29–34. doi: 17650/1818-8346-2012-7-1-29-34.

    [Lisukov IA, Uspenskaya OS, Kulagin AD, et al. Romiplostim in thrombocytopenia treatment after allogeneic bone marrow transplantation. Oncohematology. 2012;7(1):29–34. doi: 10.17650/1818-8346-2012-7-1-29-34. (In Russ)]

  11. Алянский А.Л., Макаренко О.А., Иванова Н.Е. и др. Развитие регистра неродственных доноров костного мозга в Российской Федерации: опыт НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачeвой. Российский журнал детской гематологии и онкологии. 2016;3(2):68–74. doi: 10.17650/2311-1267-2016-3-2-68-74.

    [Alyanskiy AL, Makarenko OA, Ivanova NE, et al. Development of donor bone marrow registry in Russian Federation: experience of Raisa Gorbacheva Memorial Research Institute of Children Oncology, Hematology and Transplantation. Russian Journal of Children Hematology and Oncology. 2016;3(2):68–74. doi: 10.17650/2311-1267-2016-3-2-68-74. (In Russ)]

  12. Serov YA, Barkhatov IM, Klimov AS, Berkos AS. Current methods and opportunities of next-generation sequencing (NGS) for HLA-typing. Cellular Therapy and Transplantation. 2016;5(4):63–70. doi: 10.18620/ctt-1866-8836-2016-5-4-63-70.

  13. Бархатов И.М., Шакирова А.И., Евдокимов А.В. и др. InDel-полиморфизм в количественной оценке посттрансплантационного химеризма. Ученые записки СПбГМУ им. акад. И.П. Павлова. 2016;23(4):40–5. doi: 10.24884/1607-4181-2016-23-4-40-45.

    [Barkhatov IM, Shakirova AI, Evdokimov AV, et al. InDel polymorphisms in quantitative posttransplant chimerism evaluation. The Scientific Notes of the I.P. Pavlov St. Petersburg State Medical University. 2016;23(4):40–5. doi: 10.24884/1607-4181-2016-23-4-40-45. (In Russ)]

  14. Valcarcel D, Sureda A. Graft Failure. In: E Carreras, C Dufour, M Mohty, N Kroger, eds. The EBMT Handbook. Hematopoietic Stem Cell Transplantation and Cellular Therapies. Springer, Cham; 2019. pp. 314. doi: 10.1007/978-3-030-02278-5.

  15. Davies SM, Weisdorf DJ, Haake RJ, et al. Second infusion of bone marrow for treatment of graft failure after allogeneic bone marrow transplantation. Bone Marrow Transplant. 1994;14:73–7.

  16. Dominietto A, Raiola AM, van Lint MT, et al. Factors influencing haematological recovery after allogeneic haemopoietic stem cell transplants: graft-versus-host disease, donor type, cytomegalovirus infections and cell dose. Br J Haematol. 2001;112(1):219–27. doi: 10.1046/j.1365-2141.2001.02468.x.

  17. Rondon G, Saliba RM, Khouri I, et al. Long Term Follow Up Of Patients Who Experienced Graft failure Post Allogeneic Progenitor Cell Transplantation. Results of a Single Institution Analysis. Biol Blood Marrow Transplant. 2008;14(8):859–66. doi: 10.1016/j.bbmt.2008.05.005.

  18. Tamari R, Ramnath Sh, Kuk D, et al. Poor graft function in recipients of T-cell depleted (TCD) allogeneic hematopoietic cell transplants (HSCT) is mostly related to viral infections and anti-viral therapy. Blood. 2012;120:3147.

  19. Xiao Y, Song J, Jiang Z, et al. Risk-Factor Analysis of Poor Graft Function after Allogeneic Hematopoietic Stem Cell Transplantation. Int J Med Sci. 2014;11(6):652–7. doi: 10.7150/ijms.6337.

  20. Askaa B, Fischer-Nielsen A, Vindelov L, et al. Treatment of poor graft function after allogeneic hematopoietic cell transplantation with a booster of CD34-selected cells infused without conditioning. Bone Marrow Transplant. 2014;49(5):720–1. doi: 10.1038/bmt.2014.5.

  21. Tang C, Chen F, Rong D, et al. Successful treatment of secondary poor graft function post allogeneic hematopoietic stem cell transplantation with eltrombopag. J Hematol Oncol. 2018;11(1):103. doi: 10.1186/s13045-018-0649-6.

  22. Rudakova TA, Eismont YuA, Moiseev IS, et al. Role of polyomavirus in emerging secondary hypofunction of marrow graft following allogeneic bone marrow transplantation in adults. Cellular Therapy and Transplantation. 2016;5(3):79–82. doi: 10.18620/ctt-1866-8836-2016-5-3-79-82.

  23. Alchalby H, Yunus D-R, Zabelina T, et al. Incidence and risk factors of poor graft function after allogeneic stem cell transplantation for myelofibrosis. Bone Marrow Transplant. 2016;51(9):1223–7. doi: 10.1038/bmt.2016.98.

  24. Klyuchnikov E, El-Cheikh J,Sputtek A, et al. CD34(+)-selected stem cell boost without further conditioning for poor graft function after allogeneic stem cell transplantation in patients with hematological malignancies. Biol Blood Marrow Transplant. 2014;20(3):382–6. doi: 10.1016/j.bbmt.2013.11.034.

  25. Kroger N, Holler E, Kobbe G, et al. Allogeneic stem cell transplantation after reduced-intensity conditioning in patients with myelofibrosis: a prospective, multicenter study of the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Blood. 2009;114(26):5264–70. doi: 10.1182/blood-2009-07-234880.

  26. Bacigalupo A, Soraru M, Dominietto A, et al. Allogeneic hemopoietic SCT for patients with primary myelofibrosis: a predictive transplant score based on transfusion requirement, spleen size and donor type. Bone Marrow Transplant. 2010;45(3):458–63. doi: 10.1038/bmt.2009.188.

  27. Akpek G, Pasquini MC, Logan B, et al. Effects of spleen status on early outcomes after hematopoietic cell transplantation. Bone Marrow Transplant. 2013;48(6):825–31. doi: 10.1038/bmt.2012.249.

  28. Champlin RE, Horowitz MM, van Bekkum DW, et al. Graft failure following bone marrow transplantation for severe aplastic anemia: risk factors and treatment results. Blood. 1989;73:606–13.

  29. Shi M-M, Kong Y, Song Y, et al. Atorvastatin enhances endothelial cell function in posttransplant poor graft function. Blood. 2016;128(25):2988–99. doi: 10.1182/blood-2016-03-702803.

  30. Armand P, Kim HT, Cutler CS, et al. Prognostic impact of elevated pretransplantation serum ferritin in patients undergoing myeloablative stem-cell transplantation. Blood. 2007;109(10):4586–8. doi: 1182/blood-2006-10-054924.

  31. Shaheen M, Ivanova MO, Moiseev IS, et al. Impact of initial serum ferritin on early post-HSCT complications: a single-center study. Cellular Therapy and Transplantation. 2016;5(2):40–9. doi: 10.18620/1866-8836-2016-5-2-40-49.

  32. Chang Y-J, Zhao X-Y, Xu L-P, et al. Donor-specific anti-human leukocyte antigen antibodies were associated with primary graft failure after unmanipulated haploidentical blood and marrow transplantation: a prospective study with randomly assigned training and validation sets. J Hematol Oncol. 2015;8(1):84. doi: 10.1186/s13045-015-0182-9.

  33. Lee K-H, Lee J-H, Choi S-J et al. Failure of trilineage blood cell reconstitution after initial neutrophil engraftment in patients undergoing allogeneic hematopoietic cell transplantation – frequency and outcomes. Bone Marrow Transplant. 2004;33(7):729–34. doi: 10.1038/sj.bmt.1704428.

  34. Larocca A, Piaggio G, Podesta M, et al. Boost of CD34+-selected peripheral blood cells without further conditioning in patients with poor graft function following allogeneic stem cell transplantation. Haematologica. 2006;91:935–40.

Клиническое значение гиперэкспрессии miR-3151 при синергичном взаимодействии с геном-хозяином BAALC у пациентов с острыми миелоидными лейкозами после трансплантации аллогенных гемопоэтических стволовых клеток

А.И. Шакирова, И.М. Бархатов, А.И. Чуркина, Н.Н. Мамаев, Л.С. Зубаровская, Б.В. Афанасьев

НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой, ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова», ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

Для переписки: Алена Игоревна Шакирова, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022; тел.: +7(812)338-62-72; e-mail: alyona.i.shakirova@gmail.com

Для цитирования: Шакирова А.И., Бархатов И.М., Чуркина А.И. и др. Клиническое значение гиперэкспрессии miR-3151 при синергичном взаимодействии с геном-хозяином BAALC у пациентов с острыми миелоидными лейкозами после трансплантации аллогенных гемопоэтических стволовых клеток. Клиническая онкогематология. 2019;12(3):303–8.

doi: 10.21320/2500-2139-2019-12-3-303-308


РЕФЕРАТ

Актуальность. Среди множества молекулярно-генетических изменений, потенциально обусловливающих развитие острых миелоидных лейкозов (ОМЛ), нарушение эпигенетической регуляции в лейкозных клетках занимает особое место. В их числе фигурирует изменение экспрессии гена miR-3151, который находится в составе гена BAALC, расположенного на хромосоме 8 в локусе q22.3. В настоящее время гиперэкспрессия гена BAALC отмечается у половины больных ОМЛ, причем у значительной части из них в комбинации с повышенной транскрипционной активностью гена miR-3151, что связано с наихудшим прогнозом течения ОМЛ.

Цель. Изучить прогностическое значение гиперэкспрессии miR-3151 при синергичном взаимодействии с геном-хозяином BAALC у пациентов с ОМЛ после трансплантации аллогенных гемопоэтических стволовых клеток (аллоТГСК).

Материалы и методы. В исследование включены образцы костного мозга 10 здоровых доноров ГСК и 29 пациентов с ОМЛ, которым выполнена аллоТГСК. Уровень относительной экспрессии miR-3151 и относительное количество копий гена BAALC определяли методом количественной полимеразной цепной реакции в режиме реального времени.

Результаты. В ходе исследования обнаружена слабая корреляционная зависимость между уровнем экспрессии miR-3151 и числом бластных клеток в костном мозге (r = 0,330; = 0,005), а также между уровнем экспрессии miR-3151 и гена BAALC (r = 0,273; = 0,020). Кроме того, выявлено существенное прогностическое значение гиперэкспрессии miR-3151 в посттрансплантационный период (= 0,005). У пациентов с коэкспрессией miR-3151 и BAALC в посттрансплантационный период прогноз значительно хуже по сравнению с группой контроля в отношении как безрецидивной выживаемости, так и риска развития рецидивов в течение 2 лет после аллоТГСК.

Заключение. Мониторинг уровня экспрессии miR-3151 и гена-хозяина BAALC у больных ОМЛ, которым выполнена аллоТГСК, представляется значимым в плане оценки не только прогноза течения ОМЛ, но и эффективности терапии.

Ключевые слова: острые миелоидные лейкозы, miR-3151, BAALC, прогноз, трансплантация аллогенных гемопоэтических стволовых клеток.

Получено: 22 октября 2018 г.

Принято в печать: 7 июня 2019 г.

Читать статью в PDF 


ЛИТЕРАТУРА

  1. Testa U, Pelosi E. MicroRNAs expressed in hematopoietic stem/progenitor cells are deregulated in acute myeloid leukemias. Leuk Lymphoma. 2015;56(5):1466–74. doi: 3109/10428194.2014.955019.

  2. Liao Q, Wang B, Li X, Jiang G. miRNAs in acute myeloid leukemia. Oncotarget. 2017;8(2):3666–82. doi: 10.18632/oncotarget.12343.

  3. Ambros V. MicroRNAs: tiny regulators with great potential. Cell. 2001;107(7):823–6. doi: 1016/S0092-8674(01)00616-X.

  4. Marcucci G, Haferlach T, Dohner H. Molecular genetics of adult acute myeloid leukemia: prognostic and therapeutic implications. J Clin Oncol. 2011;29(5):475–86. doi: 10.1200/JCO.2010.30.2554.

  5. Ehtesham N, Sharifi M. From conventional therapy toward microRNA-based therapy in acute promyelocytic leukemia. Adv Biomed Res. 2016;5:187. doi: 10.4103/2277-9175.190996.

  6. Li Z, Lu J, Sun M, et al. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci. 2008;105:15535–40. doi: 10.1073/pnas.0808266105.

  7. Dixon-McIver A, East P, Mein CA, et al. Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia. PLoS One. 2008;3(5):е2141. doi: 10.1371/journal.pone.0002141.

  8. Jongen-Lavrencic M, Sun SM, Dijkstra MK, et al. MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood. 2008;111(10):5078–85. doi: 10.1182/blood-2008-01-133355.

  9. Stark M, Tyagi S, Nancarrow D, et al. Characterization of the Melanoma miRNAome by Deep Sequencing. PLoS One. 2010;5(3):e9685. doi: 10.1371/journal.pone.0009685.

  10. Eisfeld A-K, Schwind S, Patel R, et al. Intronic miR-3151 within BAALC drives leukemogenesis by deregulating the TP53 Pathway. Sci Signal. 2014;7(321):ra36. doi: 10.1126/scisignal.2004762.

  11. Eisfeld A-K, Marcucci G, Maharry K, et al. miR-3151 interplays with its host gene BAALC and independently affects outcome of patients with cytogenetically normal acute myeloid leukemia. Blood. 2012;120(2):249–58. doi: 10.1182/blood-2012-02-408492.

  12. Diaz-Beya M, Brunet S, Nomdedeu J, et al. The expression level of BAALC-associated microRNA miR-3151 is an independent prognostic factor in younger patients with cytogenetic intermediate-risk acute myeloid leukemia. Blood Cancer J. 2015;5(10):e352. doi: 10.1038/bcj.2015.76.

  13. Weber S, Haferlach T, Alpermann T, et al. Feasibility of BAALC gene expression for detection of minimal residual disease and risk stratification in normal karyotype acute myeloid leukaemia. Br J Haematol. 2016;175(5):904–16. doi: 10.1111/bjh.14343.

  14. Shakirova A, Barkhatov I, Churkina A, et al. Prognostic significance of BAALC overexpression in patients with AML during the posttransplant period. Cellular Therapy and Transplantation. 2018;7(2):54–63. doi: 10.18620/ctt-1866-8836-2018-7-2–54-63.

  15. Schnerch D, Yalcintepe J, Schmidts A, et al. Cell cycle control in acute myeloid leukemia. Am J Cancer Res. 2012;2(5):508–28.

  16. Cilloni D, Renneville A, Hermitte F, et al. Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: a European LeukemiaNet study. J Clin Oncol. 2009;27(31):5195–201. doi: 10.1200/JCO.2009.22.4865.

  17. Мамаев Н.Н., Горбунова А.В., Бархатов И.М. и др. Молекулярный мониторинг течения острых миелоидных лейкозов по уровню экспрессии гена WT1 после аллогенной трансплантации гемопоэтических стволовых клеток. Клиническая онкогематология. 2015;8(3):309–20. doi: 10.21320/2500-2139-2015-8-3-309-320.

    [Mamaev NN, Gorbunova AV, Barkhatov IM, et al. Molecular Monitoring of WT1 Gene Expression Level in Acute Myeloid Leukemias after Allogeneic Hematopoietic Stem Cell Transplantation. Clinical oncohematology. 2015;8(3):309–20. doi: 21320/2500-2139-2015-8-3-309-320. (In Russ)]

  18. Hosen N, Sonoda Y, Oji Y, et al. Very low frequencies of human normal CD34+ haematopoietic progenitor cells express the Wilms’ tumour gene WT1 at levels similar to those in leukaemia cells. Br J Haematol. 2002;116(2):409–20. doi: 10.1046/j.1365-2141.2002.03261.x.

  19. Ellisen LW, Carlesso N, Cheng T, et al. The Wilms tumor suppressor WT1 directs stage-specific quiescence and differentiation of human hematopoietic progenitor cells. EMBO J. 2001;20(8):1897–909. doi: 10.1093/emboj/20.8.1897.

  20. Panyajai P, Amnajphook N, Keawsangthongcharoen S, et al. Study of Leukemic Stem Cell Population (CD34+/CD38-) and WT1 Protein Expression in Human Leukemic Cell Lines. J Assoc Med Sci. 2018;51(1):38–44. doi: 10.14456/jams.2018.5.

  21. Baldus C, Tanner S, Kusewitt D, et al. BAALC, a novel marker of human hematopoietic progenitor cells. Exp Hematol. 2003;31(11):1051–6. doi: 10.1016/j.exphem.2003.08.004.

  22. Najima Y, Ohashi K, Kawamura M, et al. Molecular monitoring of BAALC expression in patients with CD34-positive acute leukemia. Int J Hematol. 2010;91(4):636–45. doi: 10.1007/s12185-010-0550-8.

  23. Xiao S, Shen JZ, Huang JL, et al. Prognostic significance of the BAALC gene expression in adult patients with acute myeloid leukemia: A meta-analysis. Mol Clin Oncol. 2015;3(4):880–8. doi: 10.3892/mco.2015.562.

  24. Lucena-Araujo A, Pereira-Martins D, Koury L, et al. Clinical impact of BAALC expression in high-risk acute promyelocytic leukemia. Blood Adv. 2017;1(21):1807–14. doi: 10.1182/bloodadvances.2017005926.

Сравнительный анализ эффективности мобилизации и коллекции аутологичных гемопоэтических стволовых клеток крови у пациентов с лимфопролиферативными заболеваниями и рассеянным склерозом

О.В. Федык, В.О. Саржевский, Д.А. Федоренко, В.Я. Мельниченко, Ю.Н. Дубинина, Н.Е. Мочкин, Е.Г. Смирнова, Д.С. Колесникова, А.Е. Банникова

ФГБУ «Национальный медико-хирургический центр им. Н.И. Пирогова», Минздрава России, ул. Нижняя Первомайская, д. 70, Москва, Российская Федерация, 105203

Для переписки: Оксана Владимировна Федык, ул. Нижняя Первомайская, д. 70, Москва, Российская Федерация, 105203; тел.: +7(968)748-93-42; e-mail: ksen1005@inbox.ru.

Для цитирования: Федык О.В., Саржевский В.О., Федоренко Д.А. и др. Сравнительный анализ эффективности мобилизации и коллекции аутологичных гемопоэтических стволовых клеток крови у пациентов с лимфопролиферативными заболеваниями и рассеянным склерозом. Клиническая онкогематология. 2019;12(1):51–8.

DOI: 10.21320/2500-2139-2019-12-1-51-58


РЕФЕРАТ

Цель. Сравнительный анализ мобилизации и коллекции аутологичных гемопоэтических стволовых клеток крови (ГСК) перед проведением аутоТГСК у пациентов с лимфопролиферативными заболеваниями (ЛПЗ) и рассеянным склерозом (РС).

Материалы и методы. В исследование включено 237 пациентов: 103 — с ЛПЗ и 134 — с РС. Мобилизация ГСК с использованием только колониестимулирующих факторов (КСФ) проведена 225 пациентам, химиотерапии (циклофосфамид, этопозид) в комбинации с КСФ — 12. У всех больных в день предполагаемого цитафереза исследовали клетки крови на маркер CD34+. Цитаферез начинали, если количество клеток CD34+ превышало 0,01 × 106/мл.

Результаты. У 23 (22 %) из 103 больных ЛПЗ количество клеток CD34+ было недостаточным для проведения аутоТГСК (группа «неудачного забора»). В этой группе мобилизация с использованием КСФ проведена 19 больным, химиотерапии + КСФ — 4. Плериксафор вводили 5 больным, у 4 из них повторная мобилизация также не позволила собрать достаточное количество клеток. У 80 пациентов с ЛПЗ количество мобилизованных и собранных клеток CD34+ позволяло провести аутоТГСК (группа «удачного забора»). В этой группе аутоТГСК выполнена у 77 пациентов, мобилизация с использованием КСФ — у 74, химиотерапии + КСФ — у 6, плериксафора — у 11. Медиана общего числа клеток CD34+ в группе «удачного забора» составила 2,7 × 106/кг. У всех 134 пациентов РС количество полученных клеток CD34+ позволяло выполнить аутоТГСК. Мобилизация с использованием только КСФ проведена всем больным группы. Медиана общего количество клеток CD34+ в группе РС составила 2,34 × 106/кг. Мы оценили возможные факторы риска «неудачной» мобилизации ГСК при ЛПЗ. Учитывали возраст, пол, лучевую терапию в анамнезе, число линий противоопухолевого лечения до аутоТГСК, эффект лечения до аутоТГСК (полная, частичная ремиссия или стабилизация), режим мобилизации ГСК. Перечисленные факторы, кроме пола пациентов, не отнесены к параметрам «неудачной» мобилизации. Худшие показатели мобилизации отмечались у лиц мужского пола.

Заключение. У 22 % больных ЛПЗ не удалось реализовать план лечения, включавший высокодозную химиотерапию и аутоТГСК, вследствие недостаточного количества аутологичных клеток CD34+ в продукте афереза. Возможным прогностическим фактором «неудачной» мобилизации при ЛПЗ может служить мужской пол пациента.

Ключевые слова: лимфопролиферативные заболевания, аутологичная трансплантация, мобилизация периферических стволовых клеток, аутоиммунные заболевания, рассеянный склероз.

Получено: 25 июня 2018 г.

Принято в печать: 8 декабря 2018 г.

Читать статью в PDF 


ЛИТЕРАТУРА

  1. Giralt S, Costa L, Schriber J, et al. Optimizing Autologous Stem Cell Mobilization Strategies to Improve Patient Outcomes: Consensus Guidelines and Recommendations. Biol Blood Marrow Transplant. 2014;20(3):295–308. doi: 10.1016/j.bbmt.2013.10.013.

  2. Oliansky DM, Czuczman M, Fisher RI, et al. The role of cytotoxic therapy with hematopoietic stem cell transplantation in the treatment of diffuse large B cell lymphoma: update of the 2001 evidence-based review. Biol Blood Marrow Transplant. 2011;17(1):20–47. doi: 10.1016/j.bbmt.2010.07.008.

  3. Dreyling M, Lenz G, Hoster E, et al. Early consolidation by myeloablative radiochemotherapy followed by autologous stem cell transplantation in first remission significantly prolongs progression-free survival in mantle-cell lymphoma: results of a prospective randomized trial of the European MCL Network. Blood. 2005;105(7):2677–84. doi: 10.1182/blood-2004-10-3883.

  4. Linch DC, Winfield D, Goldstone AH, et al. Dose intensification with autologous bone-marrow transplantation in relapsed and resistant Hodgkin’s disease: results of a BNLI randomised trial. Lancet. 1993;341(8852):1051–4. doi: 10.1016/0140-6736(93)92411-l.

  5. Mounier N, Canals C, Gisselbrecht C, et al. High-dose therapy and autologous stem cell transplantation in first relapse for diffuse large B cell lymphoma in the rituximab era: an analysis based on data from the European Blood and Marrow Transplantation Registry. Biol Blood Marrow Transplant. 2012;18(5):788–93. doi: 10.1016/j.bbmt.2011.10.010.

  6. Hermine О, Hoster E, Walewski J, et al. Addition of high-dose cytarabine to immunochemotherapy before autologous stem-cell transplantation in patients aged 65 years or younger with mantle cell lymphoma (MCL Younger): a randomised, open-label, phase 3 trial of the European Mantle Cell Lymphoma Network. Lancet. 2016;388(10044):565–75. doi: 10.1016/S0140-6736(16)00739-X.

  7. Philip T, Guglielmi C, Hagenbeek A, et al. Autologous bone marrow transplantation as compared with salvage chemotherapy in relapses of chemotherapy-sensitive non-Hodgkin’s lymphoma. N Engl J Med. 1995;333(23):1540–5. doi: 10.1056/NEJM199512073332305.

  8. Schmitz N, Pfistner B, Sextro M, et al. Aggressive conventional chemotherapy compared with high-dose chemotherapy with autologous haemopoietic stem-cell transplantation for relapsed chemosensitive Hodgkin’s disease: a randomised trial. Lancet. 2002;359(9323):2065–71. doi: 10.1016/S0140-6736(02)08938-9.

  9. Atkins H. Hematopoietic SCT for the treatment of multiple sclerosis. Bone Marrow Transplant. 2010;45(12):1671–81. doi: 10.1038/bmt.2010.168.

  10. Nash RA, Hutton GJ, Racke MK, et al. High-dose immunosuppressive therapy and autologous hematopoietic cell transplantation for relapsing-remitting multiple sclerosis (HALT-MS): a 3-year interim report. JAMA Neurol. 2015;72(2):159–69. doi: 10.1001/jamaneurol.2014.3780.

  11. Shevchenko J, Kuznetcov A, Ionova T, et al. Long-term outcomes of autologous hematopoietic stem cell transplantation with reduced-intensity conditioning in multiple sclerosis: physician’s and patient’s perspectives. Ann Hematol. 2015;94(7):1149–57. doi: 10.1007/s00277-015-2337-8.

  12. Федоренко Д.А. Принципы оценки эффективности аутологичной трансплантации гемопоэтических стволовых клеток у больных лимфомами и рассеянным склерозом: Дис. … д-ра мед. наук. М., 2015. 188 с.

    [Fedorenko DA. Printsipy otsenki effektivnosti autologichnoi transplantatsii gemopoeticheskikh stvolovykh kletok u bol’nykh limfomami i rasseyannym sklerozom. (Principles of efficacy estimation of autologous hematopoietic stem cell transplantation in lymphoma and multiple sclerosis patients.) [dissertation] Moscow; 2015. (In Russ)]

  13. Покровская О.С. Механизм действия и клиническая эффективность антагониста хемокинового рецептора CXCR4 плериксафора при мобилизации гемопоэтических стволовых клеток. Клиническая онкогематология. 2012;5(4):371–9.

    [Pokrovskaya OS. Mechanism of action and clinical activity of CXCR4 antagonist Plerixafor in stem cell mobilization. Klinicheskaya onkogematologiya. 2012;5(4):371–9. (In Russ)]

  14. Покровская О.С. Системные эффекты Г-КСФ при мобилизации стволовых клеток крови (СКК) у больных множественной миеломой (ММ). Клиническая онкогематология. 2009;2(1):67–8.

    [Pokrovskaya OS. Systemic effects of G-CSF in peripheral stem cells (PSC) mobilization in multiple myeloma (MM) patients. Klinicheskaya onkogematologiya. 2009;2(1):67–8. (In Russ)]

  15. Lemoli RM. New Strategies for Stem Cell Mobilization. Mediterr J Hematol Infect Dis. 2012;4(1):e2012066. doi: 10.4084/MJHID.2012.066.

  16. Pavone V, Gaudio F, Console G, et al. Poor mobilization is an independent prognostic factor in patients with malignant lymphomas treated by peripheral blood stem cell transplantation. Bone Marrow Transplant. 2006;37(8):719–24. doi: 10.1038/sj.bmt.1705298.

  17. Kim JG, Sohn SK, Chae YS, et al. Multicenter study of intravenous busulfan, cyclophosphamide, and etoposide (i.v. Bu/Cy/E) as conditioning regimen for autologous stem cell transplantation in patients with non-Hodgkin’s lymphoma. Bone Marrow Transplant. 2007;40(10):919–24. doi: 10.1038/sj.bmt.1705841.

  18. Blank N, Lisenko K, Pavel P, et al. Low-dose cyclophosphamide effectively mobilizes peripheral blood stem cells in patients with autoimmune disease. Eur J Haematol. 2016;97(1):78–82. doi: 10.1111/ejh.12686.

  19. Kyrcz-Krzemien S, Helbig G, Torba K, et al. Safety and efficacy of hematopoietic stem cells mobilization in patients with multiple sclerosis. Hematology. 2016;21(1):42–5. doi: 10.1080/10245332.2015.1101973.

  20. Моталкина М.С., Кулева С.А., Алексеев С.М. и др. Пример успешной мобилизации стволовых кроветворных клеток периферической крови с помощью плериксафора и пэгфилграстима у пациентки с неходжкинской лимфомой. Современная онкология. 2015;17(2):54–6.

    [Motalkina MS, Kuleva SA, Alekseev SM, et al. An example of successful mobilization of peripheral blood stem cells from with plerixafor and pegfilgrastim administration in a non-Hodgkin’s lymphoma patient. Sovremennaya onkologiya. 2015;17(2):54–6. (In Russ)]

  21. Wuchter P, Ran D, Bruckner T, et al. Poor Mobilization of Hematopoietic Stem Cells-Definitions, Incidence, Risk Factors, and Impact on Outcome of Autologous Transplantation. Biol Blood Marrow Transplant. 2010;16(4):490–9. doi: 10.1016/j.bbmt.2009.11.012.

  22. Mendrone AJr, Arrais CA, Saboya R, et al. Factors affecting hematopoietic progenitor cell mobilization: an analysis of 307 patients. Transfus Apher Sci. 2008;39(3):187–92. doi: 10.1016/j.transci.2008.09.012.

  23. To LB, Levesque J-P, Herbert KE. How I treat patients who mobilize hematopoietic stem cells poorly. Blood. 2011;118(17):4530–40. doi: 10.1182/blood-2011-06-318220.

 

Сравнительное исследование микофенолата мофетила и метотрексата в профилактике реакции «трансплантат против хозяина» при родственных и неродственных аллоТГСК у взрослых

И.С. Моисеев, Ю.А. Тараканова, А.Л. Алянский, Е.В. Бабенко, М.М. Канунников, В.А. Дубкова, Е.В. Морозова, Е.И. Дарская, О.А. Слесарчук, А.Д. Кулагин, С.Н. Бондаренко, Б.В. Афанасьев

НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой, ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова», ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

Для переписки: Иван Сергеевич Моисеев, канд. мед. наук, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022; тел.: +7(812)338-55-03; e-mail: moisiv@mail.ru

Для цитирования: Моисеев И.С., Тараканова Ю.А., Алянский А.Л. и др. Сравнительное исследование микофенолата мофетила и метотрексата в профилактике реакции «трансплантат против хозяина» при родственных и неродственных аллоТГСК у взрослых. Клиническая онкогематология. 2019;12(1):43–50.

DOI: 10.21320/2500-2139-2019-12-1-43-50


РЕФЕРАТ

Актуальность. Несмотря на большое число работ, в которых сравнивались метотрексат (МТХ) и микофенолата мофетил (ММФ) в качестве профилактики реакции «трансплантат против хозяина» (РТПХ) при трансплантации аллогенных гемопоэтических стволовых клеток (аллоГСК), результаты этих исследований зачастую противоречивы, что и послужило основанием для проведения настоящего одноцентрового ретроспективного сравнения этих двух подходов в профилактике РТПХ.

Материалы и методы. В исследование включено 294 реципиента аллоГСК, получавших МТХ, и 172 — ММФ в режиме профилактики. Трансплантация выполнена от родственного совместимого донора у 36 % пациентов, от неродственного — у 64 %.

Результаты. При однофакторном и многофакторном анализах вероятность развития острой РТПХ II–IV степени составлила 36 vs 39 % (отношение рисков [ОР] 1,297; 95%-й доверительный интервал [95% ДИ] 0,931–1,795;= 0,122), III–IV степени — 21 vs 25 % (ОР 1,472; 95% ДИ 0,951–2,256;= 0,05), хронической РТПХ — 52 vs 55 % (ОР 0,978; 95% ДИ 0,951–1,406;= 0,91). Трансплантационная летальность (ОР 1,173; 95% ДИ 0,797–1,708;= 0,43), частота рецидивов (ОР 1,034; 95% ДИ 0,743–1,428;= 0,84), показатели общей выживаемости (ОР 1,087; 95% ДИ 0,825–1,433;= 0,55), бессобытийной выживаемости (ОР 1,108; 95% ДИ 0,854–1,437;= 0,43), выживаемости без рецидива и РТПХ (ОР 1,065; 95% ДИ 0,845–1,343;= 0,59) статистически значимо не различались в группах МТХ и ММФ. При использовании ММФ отмечалось более раннее приживление трансплантата (= 0,035). Применение ММФ вместо МТХ связано с меньшей вероятностью развития токсического гепатита III–IV степени (7 vs 31 %; p < 0,0001) и мукозита III–IV степени (23 vs 45 %;= 0,0002).

Заключение. Профилактика РТПХ с использованием ММФ сравнима по своей эффективности с МТХ, при этом ММФ обладает лучшим профилем безопасности в виде снижения вероятности тяжелой печеночной токсичности и мукозита.

Ключевые слова: трансплантация аллогенных гемопоэтических стволовых клеток, реакция «трансплантат против хозяина», профилактика, метотрексат, микофенолата мофетил.

Получено: 23 мая 2018 г.

Принято в печать: 4 декабря 2018 г.

Читать статью в PDF 


ЛИТЕРАТУРА

  1. Савченко В.Г., Любимова Л.С., Паровичникова Е.Н. и др. Трансплантация аллогенных и аутологичных гемопоэтических стволовых клеток при острых лейкозах (итоги 20-летнего опыта). Терапевтический архив. 2007;79(7):30–5.

    [Savchenko VG, Lyubimova LS, Parovichnikova EN, et al. Transplantation of allogeneic and autologous hematopoietic stem cells in acute leukemias (summary of 20-year experience). Terapevticheskii arkhiv. 2007;79(7):30–5. (In Russ)]

  2. Афанасьев Б.В., Зубаровская Л.С., Цисская К.О. и др. Результаты трансплантации гемопоэтических предшественников у детей в России и Белоруссии по данным отчета рабочей группы по трансплантации у детей. Педиатрия. 1997;76(4):3.

    [Afanas’ev BV, Zubarovskaya LS, Tsisskaya KO, et al. Results of hematopoietic progenitor cell transplantation in children in Russia and Belorussia according to the report of the working group on transplantation in children. 1997;76(4):3. (In Russ)]

  3. Saliba RM, Couriel DR, Giralt S, et al. Prognostic value of response after upfront therapy for acute GVHD. Bone Marrow Transplant. 2012;47(1):125–31. doi: 10.1038/bmt.2011.41.

  4. Perez-Simon JA, Encinas C, Silva F, et al. Prognostic factors of chronic graft-versus-host disease following allogeneic peripheral blood stem cell transplantation: the National Institutes Health scale plus the type of onset can predict survival rates and the duration of immunosuppressive therapy. Biol Blood Marrow Transplant. 2008;14(10):1163–71. doi: 10.1016/j.bbmt.2008.07.015.

  5. Storb R, Deeg HJ, Pepe M, et al. Methotrexate and cyclosporine versus cyclosporine alone for prophylaxis of graft-versus-host disease in patients given HLA-identical marrow grafts for leukemia: long-term follow-up of a controlled trial. Blood. 1989;73(6):1729–34.

  6. Bacigalupo A, Lamparelli T, Bruzzi P, et al. Antithymocyte globulin for graft-versus-host disease prophylaxis in transplants from unrelated donors: 2 randomized studies from Gruppo Italiano Trapianti Midollo Osseo (GITMO). Blood. 2001;98(10):2942–7. doi: 10.1182/blood.v98.10.2942.

  7. Ruutu T, van Biezen A, Hertenstein B, et al. Prophylaxis and treatment of GVHD after allogeneic haematopoietic SCT: a survey of centre strategies by the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant. 2012;47(11):1459–64. doi: 10.1038/bmt.2012.45.

  8. Storb R, Leisenring W, Anasetti C, et al. Methotrexate and cyclosporine for graft-vs.-host disease prevention: what length of therapy with cyclosporine? Biol Blood Marrow Transplant. 1997;3(4):194–201.

  9. Niederwieser D, Maris M, Shizuru JA, et al. Low-dose total body irradiation (TBI) and fludarabine followed by hematopoietic cell transplantation (HCT) from HLA-matched or mismatched unrelated donors and postgrafting immunosuppression with cyclosporine and mycophenolate mofetil (MMF) can induce durable complete chimerism and sustained remissions in patients with hematological diseases. Blood. 2003;101(4):1620–9. doi: 10.1182/blood-2002-05-1340.

  10. Osunkwo I, Bessmertny O, Harrison L, et al. A pilot study of tacrolimus and mycophenolate mofetil graft-versus-host disease prophylaxis in childhood and adolescent allogeneic stem cell transplant recipients. Biol Blood Marrow Transplant. 2004;10(4):246–58. doi: 10.1016/j.bbmt.2003.11.005.

  11. Neumann F, Graef T, Tapprich C, et al. Cyclosporine A and mycophenolate mofetil vs cyclosporine A and methotrexate for graft-versus-host disease prophylaxis after stem cell transplantation from HLA-identical siblings. Bone Marrow Transplant. 2005;35(11):1089–93. doi: 10.1038/sj.bmt.1704956.

  12. Perkins J, Field T, Kim J, et al. A randomized phase II trial comparing tacrolimus and mycophenolate mofetil to tacrolimus and methotrexate for acute graft-versus-host disease prophylaxis. Biol Blood Marrow Transplant. 2010;16(7):937–47. doi: 10.1016/j.bbmt.2010.01.010.

  13. Yerushalmi R, Shem-Tov N, Danylesko I, et al. The combination of cyclosporine and mycophenolate mofetil is less effective than cyclosporine and methotrexate in the prevention of acute graft-versus host disease after stem-cell transplantation from unrelated donors. Am J Hematol. 2017;92(3):259–68. doi: 10.1002/ajh.24631.

  14. Terakura S, Wake A, Inamoto Y, et al. Exploratory research for optimal GvHD prophylaxis after single unit CBT in adults: short-term methotrexate reduced the incidence of severe GvHD more than mycophenolate mofetil. Bone Marrow Transplant. 2017;52(3):423–30. doi: 10.1038/bmt.2016.255.

  15. Przepiorka D, Weisdorf D, Martin P, et al. 1994 Consensus Conference on Acute GVHD Grading. Bone Marrow Transplant. 1995;15(6):825–8.

  16. Filipovich AH, Weisdorf D, Pavletic S, et al. National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. Diagnosis and staging working group report. Biol Blood Marrow Transplant. 2005;11(12):945–56. doi: 10.1016/j.bbmt.2005.09.004.

  17. Armand P, Kim HT, Logan BR, et al. Validation and refinement of the Disease Risk Index for allogeneic stem cell transplantation. Blood. 2014;123(23):3664–71. doi: 10.1182/blood-2014-01-552984.

  18. Morishima Y, Kawase T, Malkki M, et al. Significance of ethnicity in the risk of acute graft-versus-host disease and leukemia relapse after unrelated donor hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2013;19(8):1197–203. doi: 10.1016/j.bbmt.2013.05.020.

  19. Kofler S, Deutsch MA, Bigdeli AK, et al. Proton pump inhibitor co-medication reduces mycophenolate acid drug exposure in heart transplant recipients. J Heart Lung Transplant. 2009;28(6):605–11. doi: 10.1016/j.healun.2009.03.006.

  20. van Gelder T, Klupp J, Barten MJ, et al. Comparison of the effects of tacrolimus and cyclosporine on the pharmacokinetics of mycophenolic acid. Ther Drug Monit. 2001;23(2):119–28. doi: 10.1097/00007691-200104000-00005.

  21. Maris MB, Sandmaier BM, Storer BE, et al. Unrelated donor granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cell transplantation after nonmyeloablative conditioning: the effect of postgrafting mycophenolate mofetil dosing. Biol Blood Marrow Transplant. 2006;12(4):454–65. doi: 10.1016/j.bbmt.2005.12.030.

  22. Hamad N, Shanavas M, Michelis FV, et al. Mycophenolate-based graft versus host disease prophylaxis is not inferior to methotrexate in myeloablative-related donor stem cell transplantation. Am J Hematol. 2015;90(5):392–9. doi: 10.1002/ajh.23955.

  23. Kiehl MG, Schafer-Eckart K, Kroger M, et al. Mycophenolate mofetil for the prophylaxis of acute graft-versus-host disease in stem cell transplant recipients. Transplant Proc. 2002;34(7):2922–4. doi: 10.1016/s0041-1345(02)03489-9.

  24. Bolwell B, Sobecks R, Pohlman B, et al. A prospective randomized trial comparing cyclosporine and short course with cyclosporine and mycophenolate mofetil for GVHD prophylaxis in myeloablative allogeneic bone marrow transplantation. Bone Marrow Transplant. 2004;34(7):621–5. doi: 10.1038/sj.bmt.1704647.

  25. Russell JA, Woodman RC, Poon MC. Addition of low-dose folinic acid to a methotrexate/cyclosporin A regimen for prevention of acute graft-versus-host disease. Bone Marrow Transplant. 1994;14(3):397–401.

  26. Моисеев И.С., Галанкин Т.Л., Доценко А.А. и др. Фармакоэкономика различных методов лечения стероид-рефрактерной реакции «трансплантат против хозяина»: анализ результатов лечения в одноцентровом исследовании. Ученые записки Санкт-Петербургского государственного медицинского университета имени академика И.П. Павлова. 2018;25(1):35–44. doi: 10.24884/1607-4181-2018-25-1-35-44.

    [Moiseev IS, Galankin TL, Dotsenko AA, et al. Pharmacoeconomic analysis of different methods for the treatment of steroid-refractory graft-versus-host disease: single-center study. The Scientific Notes of the I.P. Pavlov St. Petersburg State Medical University. 2018;25(1):35–44. doi: 10.24884/1607-4181-2018-25-1-35-44. (In Russ)]

  27. Моисеев И.С., Бурмина Е.А., Тараканова Ю.А. и др. Лечение хронической рефрактерной реакции «трансплантат против хозяина» после трансплантации гемопоэтических стволовых клеток с помощью низких доз интерлейкина-2. Ученые записки Санкт-Петербургского государственного медицинского университета имени академика И.П. Павлова. 2015;22(4):44–8. doi: 10.24884/1607-4181-2015-22-4-44-48.

    [Moiseev IS, Burmina EA, Tarakanova YuA, et al. Treatment of refractory chronic graft-versus-host disease after allogeneic hematopoietic stem cell transplantation with low-dose interleukin-2. The Scientific Notes of the I.P. Pavlov St. Petersburg State Medical University. 2015;22(4):44–8. doi: 10.24884/1607-4181-2015-22-4-44-48. (In Russ)]

  28. Luznik L, O’Donnell PV, Symons HJ, et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2008;14(6):641–50. doi: 10.1016/j.bbmt.2008.03.005.

  29. Moiseev IS, Pirogova OV, Babenko EV, et al. Single-agent post-transplantation cyclophosphamide versus calcineurin-based graft-versus-host disease prophylaxis in matched related bone marrow transplantation. Cell Ther Transplant. 2017;6(4):52–9. doi: 10.18620/ctt-1866-8836-2017-6-4-52-59.

  30. Balashov D, Shcherbina A, Maschan M, et al. Single-Center Experience of Unrelated and Haploidentical Stem Cell Transplantation with TCRαβ and CD19 Depletion in Children with Primary Immunodeficiency Syndromes. Biol Blood Marrow Transplant. 2015;21(11):1955–62. doi: 10.1016/j.bbmt.2015.07.008.

Профилактическое применение азацитидина у пациентов с острыми миелоидными лейкозами после гаплоидентичной аллоТКМ

Р.Ш. Бадаев, Д.Б. Заммоева, Л.Л. Гиршова, Д.В. Бабенецкая, Н.А. Ильина, Ю.А. Алексеева, А.Ю. Зарицкий, Д.В. Моторин

ФГБУ «НМИЦ им. В.А. Алмазова» Минздрава России, ул. Аккуратова, д. 2, Санкт-Петербург, Российская Федерация, 197341

Для переписки: Дмитрий Васильевич Моторин, канд. мед. наук, ул. Аккуратова, д. 2, Санкт-Петербург, Российская Федерация, 197341; e-mail: almazov-bmt@mail.ru

Для цитирования: Бадаев Р.Ш., Заммоева Д.Б., Гиршова Л.Л. и др. Профилактическое применение азацитидина у пациентов с острыми миелоидными лейкозами после гаплоидентичной аллоТКМ. Клиническая онкогематология. 2019;12(1):37–42.

DOI: 10.21320/2500-2139-2019-12-1-37-42


РЕФЕРАТ

Актуальность. Гаплоидентичная трансплантация костного мозга (ТКМ) может быть подходящей альтернативой в отсутствие полностью совместимого донора. Основные сложности после ТКМ — рецидив основного заболевания, реакция «трансплантат против хозяина» (РТПХ) и инфекции. Азацитидин наряду с антилейкемическим эффектом обладает иммуномодулирующими свойствами и при применении на раннем этапе после ТКМ может приводить к значимому улучшению результатов.

Цель. Изучить влияние азацитидина на результаты гаплоидентичной ТКМ у пациентов с острыми миелоидными лейкозами (ОМЛ) в ранний посттрансплантационный период.

Материалы и методы. В исследование включено 18 пациентов с диагнозом ОМЛ, которым была проведена гаплоидентичная ТКМ в НМИЦ им. В.А. Алмазова. У всех пациентов достигнута МОБ-отрицательная ремиссия на 30-й день после ТКМ. Терапия азацитидином начиналась не ранее 2 мес. после ТКМ при полном приживлении трансплантата и отсутствии активной РТПХ. Азацитидин вводился по схеме 100 мг/сут в Д1–Д5 каждые 28 дней в течение 1 года после ТКМ. При обнаружении молекулярного рецидива дополнительно осуществлялись инфузии донорских лимфоцитов каждый второй цикл.

Результаты. Профилактическую терапию азацитидином получало 11 пациентов, 7 были включены в контрольную группу. Медиана начала терапии азацитидином после гаплоидентичной ТКМ составила 4 мес. (диапазон 2–10 мес.), медиана количества курсов азацитидина — 3,5 (диапазон 1–9). На фоне терапии азацитидином острая РТПХ наблюдалась у 5 (45,4 %) пациентов. У 4 из них наблюдалось обострение ранее развившейся РТПХ (3 — кожная форма, 1 — кишечная форма), и только у 1 пациента имела место острая РТПХ кишечника de novo.

Заключение. Таким образом, применение азацитидина у больных ОМЛ после гаплоидентичной аллоТКМ является безопасным и хорошо переносимым. Профилактика азацитидином у пациентов с ОМЛ после гаплоидентичной ТКМ приводит к улучшению показателей общей выживаемости.

Ключевые слова: гаплоидентичная аллогенная трансплантация костного мозга, азацитидин, острые миелоидные лейкозы.

Получено: 22 июня 2018 г.

Принято в печать: 11 декабря 2018 г.

Читать статью в PDF 


ЛИТЕРАТУРА

  1. Dohner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2016;129(4):424–47. doi: 10.1182/blood-2016-08-733196.

  2. McCurdy SR, Kanakry JA, Showel MM, et al. Risk-stratified outcomes of nonmyeloablative HLA-haploidentical BMT with high-dose posttransplantation cyclophosphamide. Blood. 2015;125(19):3024–31. doi: 10.1182/blood-2015-01-623991.

  3. Ciurea SO, Zhang M-J, Bacigalupo AA, et al. Haploidentical transplant with posttransplant cyclophosphamide vs matched unrelated donor transplant for acute myeloid leukemia. Blood. 2015;126(8):1033–40. doi: 10.1182/blood-2015-04-639831.

  4. Bashey A, Zhang X, Jackson K, et al. Comparison of Outcomes of Hematopoietic Cell Transplants from T-Replete Haploidentical Donors Using Post-Transplantation Cyclophosphamide with 10 of 10 HLA-A, -B, -C, -DRB1, and -DQB1 Allele-Matched Unrelated Donors and HLA-Identical Sibling Donors: A Multivariable Analysis Including Disease Risk Index. Biol Blood Marrow Transplant. 2016;22(1):125–33. doi: 10.1016/j.bbmt.2015.09.002.

  5. Dombret H, Seymour JF, Butrym A, et al. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood. 2015;126(3):291–9. doi: 10.1182/blood-2015-01-621664.

  6. Pozzi S, Geroldi S, Tedone E, et al. Leukaemia relapse after allogeneic transplants for acute myeloid leukaemia: predictive role of WT1 expression. Br J Haematol. 2013;160(4):503–9. doi: 10.1111/bjh.12181.

  7. Glucksberg H, Storb R, Fefer A, et al. Clinical manifestations of graft-versus-host disease in human recipients of marrow from HL-A-matched sibling donors. Transplantation. 1974;18(4):295–304. doi: 10.1097/00007890-197410000-00001.

  8. Filipovich AH, Weisdorf D, Pavletic S, et al. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: I. Diagnosis and Staging Working Group Report. Biol Blood Marrow Transplant. 2005;11(12):945–56. doi: 10.1016/j.bbmt.2005.09.004.

  9. Chang Y-J, Wang Y, Liu Y-R, et al. Haploidentical allograft is superior to matched sibling donor allograft in eradicating pre-transplantation minimal residual disease of AML patients as determined by multiparameter flow cytometry: a retrospective and prospective analysis. J Hematol Oncol. 2017;10(1):134. doi: 10.1186/s13045-017-0502-3.

  10. Frassoni F, Barrett AJ, Granena A, et al. Relapse after allogeneic bone marrow transplantation for acute leukaemia: a survey by the E.B.M.T. of 117 cases. Br J Haematol. 1988;70(3):317–20. doi: 10.1111/j.1365-2141.1988.tb02488.x.

  11. Bosi A, Laszlo D, Labopin M, et al. Second Allogeneic Bone Marrow Transplantation in Acute Leukemia: Results of a Survey by the European Cooperative Group for Blood and Marrow Transplantation. J Clin Oncol. 2001;19(16):3675–84. doi: 10.1200/jco.2001.19.16.3675.

  12. Verdonck L, Petersen E, Lokhorst H, et al. Donor leukocyte infusions for recurrent hematologic malignancies after allogeneic bone marrow transplantation: impact of infused and residual donor T cells. Bone Marrow Transplant. 1998;22(11):1057–63. doi: 10.1038/sj.bmt.1701496.

  13. Collins RH, Shpilberg O, Drobyski WR, et al. Donor leukocyte infusions in 140 patients with relapsed malignancy after allogeneic bone marrow transplantation. J Clin Oncol. 1997;15(2):433–44. doi: 10.1200/jco.1997.15.2.433.

  14. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, et al. Azacitidine Prolongs Overall Survival Compared With Conventional Care Regimens in Elderly Patients With Low Bone Marrow Blast Count Acute Myeloid Leukemia. J Clin Oncol. 2010;28(4):562–9. doi: 10.1200/jco.2009.23.8329.

  15. Maurillo L, Venditti A, Spagnoli A, et al. Azacitidine for the treatment of patients with acute myeloid leukemia. Cancer. 2011;118(4):1014–22. doi: 10.1002/cncr.26354.

  16. Schroeder T, Czibere A, Platzbecker U, et al. Azacitidine and donor lymphocyte infusions as first salvage therapy for relapse of AML or MDS after allogeneic stem cell transplantation. Leukemia. 2013;27(6):1229–35. doi: 10.1038/leu.2013.7.

  17. Tessoulin B, Delaunay J, Chevallier P, et al. Azacitidine salvage therapy for relapse of myeloid malignancies following allogeneic hematopoietic SCT. Bone Marrow Transplant. 2014;49(4):567–71. doi: 10.1038/bmt.2013.233.

  18. Craddock C, Labopin M, Robin M, et al. Clinical activity of azacitidine in patients who relapse after allogeneic stem cell transplantation for acute myeloid leukemia. Haematologica. 2016;101(7):879–83. doi: 10.3324/haematol.2015.140996.

  19. Schroeder T, Rachlis E, Bug G, et al. Treatment of Acute Myeloid Leukemia or Myelodysplastic Syndrome Relapse after Allogeneic Stem Cell Transplantation with Azacitidine and Donor Lymphocyte Infusions—A Retrospective Multicenter Analysis from the German Cooperative Transplant Study Group. Biol Blood Marrow Transplant. 2015;21(4):653–60. doi: 10.1016/j.bbmt.2014.12.016.

  20. Platzbecker U, Wermke M, Radke J, et al. Azacitidine for treatment of imminent relapse in MDS or AML patients after allogeneic HSCT: results of the RELAZA trial. Leukemia. 2011;26(3):381–9. doi: 10.1038/leu.2011.234.

  21. Schroeder T, Frobel J, Cadeddu R-P, et al. Salvage therapy with azacitidine increases regulatory T cells in peripheral blood of patients with AML or MDS and early relapse after allogeneic blood stem cell transplantation. Leukemia. 2013;27(9):1910–3. doi: 10.1038/leu.2013.64.

  22. Goodyear OC, Dennis M, Jilani NY, et al. Azacitidine augments expansion of regulatory T cells after allogeneic stem cell transplantation in patients with acute myeloid leukemia (AML). Blood. 2012;119(14):3361–9. doi: 10.1182/blood-2011-09-377044.

  23. Choi J, Ritchey J, Prior JL, et al. In vivo administration of hypomethylating agents mitigate graft-versus-host disease without sacrificing graft-versus-leukemia. Blood. 2010;116(1):129–39. doi: 10.1182/blood-2009-12-257253.

  24. Cooper ML, Choi J, Karpova D, et al. Azacitidine Mitigates Graft-versus-Host Disease via Differential Effects on the Proliferation of T Effectors and Natural Regulatory T Cells In Vivo. J Immunol. 2017;198(9):3746–54. doi: 10.4049/jimmunol.1502399.

  25. Garcia-Delgado R, de Miguel D, Bailen A, et al. Effectiveness and safety of different azacitidine dosage regimens in patients with myelodysplastic syndromes or acute myeloid leukemia. Leuk Res. 2014;38(7):744–50. doi: 10.1016/j.leukres.2014.03.004.

  26. Lyons RM, Cosgriff TM, Modi SS, et al. Hematologic Response to Three Alternative Dosing Schedules of Azacitidine in Patients With Myelodysplastic Syndromes. J Clin Oncol. 2009;27(11):1850–6. doi: 10.1200/jco.2008.17.1058.

  27. Jabbour E, Giralt S, Kantarjian H, et al. Low-dose azacitidine after allogeneic stem cell transplantation for acute leukemia. Cancer. 2009;115(9):1899–905. doi: 10.1002/cncr.24198.

  28. Jabbour E, Short NJ, Montalban-Bravo G, et al. Randomized phase 2 study of low-dose decitabine vs low-dose azacitidine in lower-risk MDS and MDS/MPN. Blood. 2017;130(13):1514–22. doi: 10.1182/blood-2017-06-788497.

Факторы, связанные с эффективной заготовкой и приживлением аутотрансплантата у пациентов с множественной миеломой

И.И. Кострома, А.А. Жернякова, Ж.В. Чубукина, Н.Ю. Семенова, И.М. Запреева, С.А. Тиранова, С.С. Бессмельцев, А.В. Чечеткин, С.В. Грицаев

ФГБУ «Российский НИИ гематологии и трансфузиологии ФМБА», ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024

Для переписки: Иван Иванович Кострома, канд. мед. наук, ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024; тел.: +7(921)784-82-82; e-mail: obex@rambler.ru

Для цитирования: Кострома И.И., Жернякова А.А., Чубукина Ж.В. и др. Факторы, связанные с эффективной заготовкой и приживлением аутотрансплантата у пациентов со множественной миеломой. Клиническая онкогематология. 2019;12(1):32–6.

DOI: 10.21320/2500-2139-2019-12-1-32-36


РЕФЕРАТ

Актуальность. Успех трансплантации аутологичных гемопоэтических стволовых клеток (аутоТГСК) зависит от скорости приживления трансплантата, которая, в свою очередь, определяется количеством заготовленных и перелитых больному гемопоэтических стволовых клеток (ГСК).

Цель. Определить предикторы эффективности аутоТГСК у больных множественной миеломой (ММ) в условиях применения новых лекарственных средств на этапе индукции и мобилизации ГСК.

Материалы и методы. Проведен ретроспективный анализ результатов заготовки аутотрансплантата у 75 больных ММ и его приживления при выполнении 112 аутоТГСК. Для заготовки аутотрансплантата использовался циклофосфамид и винорелбин в комбинации с гранулоцитарным колониестимулирующим фактором (Г-КСФ) без дополнительного введения плериксафора. В качестве режима кондиционирования назначался мелфалан в дозе 200 или 140 мг/м2, а также комбинация тиотепы с мелфаланом. Все больные в посттрансплантационный период получали подкожные инъекции Г-КСФ. Приживление трансплантата определяли по достижению абсолютного числа нейтрофилов 0,5 × 109/л и более, тромбоцитов — 20 × 109/л и более.

Результаты. Установлено, что предикторами большого количества клеток CD34+ в аутотрансплантате являются одна предшествующая схема индукционной терапии (p = 0,0315) и использование циклофосфамида в режиме мобилизации (р = 0,0001). Сроки приживления трансплантата определяются порядковым номером аутоТГСК и количеством перелитых клеток CD34+. Укорочение сроков восстановления гемопоэза после второй аутоТГСК обусловлено значимым увеличением случаев с использованием схемы Mel140 (р = 0,001).

Заключение. Качество аутотрансплантата и сроки его приживления у больных ММ определяются преимущественно эффективностью индукционной терапии, а также интенсивностью режима мобилизации ГСК. В связи с этим выбор интенсивности индукционной терапии и режима мобилизации должен быть адаптирован к конкретному больному, прогностическому варианту ММ, вероятности ответа на стандартные индукционные схемы и числу планируемых аутоТГСК.

Ключевые слова: множественная миелома, трансплантация аутологичных гемопоэтических стволовых клеток, предикторы эффективности аутоТГСК, трансплантат, приживление.

Получено: 14 мая 2018 г.

Принято в печать: 2 декабря 2018 г.

Читать статью в PDF 


ЛИТЕРАТУРА

  1. Бессмельцев С.С., Абдулкадыров К.М. Множественная миелома: руководство для врачей. М.: СИМК, 2016. 512 с.

    [Bessmeltsev SS, Abdulkadyrov KM. Mnozhestvennaya mieloma: rukovodstvo dlya vrachei. (Multiple myeloma: manual for physicians.) Moscow: SIMK Publ.; 2016. 512 p. (In Russ)]

  2. Менделеева Л.П., Вотякова О.М., Покровская О.С. и др. Национальные клинические рекомендации по диагностике и лечению множественной миеломы. Гематология и трансфузиология. 2016;61(1, прил. 2):1–24. doi: 10.18821/0234-5730-2016-61-1(Прил.2).

    [Mendeleeva LP, Votyakova OM, Pokrovskaya OS, et al. National clinical guidelines on diagnosis and treatment of multiple myeloma. Gematologiya i transfuziologiya. 2016;61(1, Suppl 2):1–24. doi: 10.18821/0234-5730-2016-61-1(Прил.2). (In Russ)

  3. Child JA, Morgan GJ, Davies FE, et al. High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma. N Engl J Med. 2003;348(19):1875–83. doi: 10.1056/NEJMoa022340.

  4. Palumbo A, Gay F, Spencer A, et al. A phase III study of ASCT vs cyclophosphamide lenalidomide dexamethasone and lenalidomide prednisone maintenance vs lenalidomide alone in newly diagnosed myeloma patients. Blood. 2013;122(21):763, abstract.

  5. Dhakal B, Szabo A, Chhabra S, et al. Autologous transplantation for newly diagnosed multiple myeloma in the era of novel agent induction: a systematic review and meta-analysis. JAMA Oncol. 2018;4(3):343–50. doi: 10.1001/jamaoncol.2017.4600.

  6. Sola C, Maroto P, Salazar R, et al. Bone Marrow Transplantation: prognostic factors of peripheral blood stem cell mobilization with cyclophosphamide and filgrastim (r-metHuG-CSF): the CD34+ cell dose positively affects the time to hematopoietic recovery and supportive requirements after high-dose chemotherapy. Hematology. 1999;4(3):195–209. doi: 10.1080/10245332.1999.11746443.

  7. Duggan PR, Guo D, Luider J, et al. Predictive factors for long term engraftment of autologous blood stem cells. Bone Marrow Transplant. 2000;26(12):1299–304. doi: 10.1038/sj.bmt.1702708.

  8. Wallington-Beddoe CT, Gottlieb DJ, Garvin F, et al. Failure to achieve a threshold dose of CD34+CD110+ progenitor cells in the graft predicts delayed platelet engraftment after autologous stem cell transplantation for multiple myeloma. Biol Blood Marrow Transplant. 2009;15(11):1386–93. doi: 10.1016/j.bbmt.2009.06.018.

  9. Stiff PJ, Micallef I, Nademanee AP, et al. Transplanted CD34+ cell dose is associated with long-term platelet count recovery following autologous peripheral blood stem cell transplant in patients with non-Hodgkin lymphoma or multiple myeloma. Biol Blood Marrow Transplant. 2011;17(8):1146–53. doi: 10.1016/j.bbmt.2010.11.021.

  10. Asfour I, Afify H, Elkourashy S, et al. CXCR4 (CD184) expression on stem cell harvest and CD34+ cells post-transplant. Hematol Oncol Stem Cell Ther. 2017;10(2):63–9. doi: 10.1016/j.hemonc.2017.01.002.

  11. Кострома И.И., Жернякова А.А., Чубукина Ж.В. и др. Заготовка гемопоэтических стволовых клеток у больных множественной миеломой: влияние предшествующей аутоТГСК терапии леналидомидом и режима мобилизации. Клиническая онкогематология. 2018;11(2):192–7. doi: 10.21320/2500-2139-2018-11-2-192-197.

    [Kostroma II, Zhernyakova AA, Chubukina ZhV, et al. Hematopoietic Stem Cell Collection in Multiple Myeloma Patients: Influence of the Lenalidomide-Based Therapy and Mobilization Regimen Prior to Auto-HSCT. Clinical oncohematology. 2018;11(2);192–7. doi: 10.21320/2500-2139-2018-11-2-192-197. (In Russ)]

  12. Stewart DA, Guo D, Morris D, et al. Superior autologous blood stem cell mobilization from dose-intensive cyclophosphamide, etoposide, cisplatin plus G-CSF than from less intensive chemotherapy regimens. Bone Marrow Transplant. 1999;23(2):111–7. doi: 10.1038/sj.bmt.1701536.

  13. Corso A, Caberlon S, Pagnucco G, et al. Blood stem cell collections in multiple myeloma: definition of a scoring system. Bone Marrow Transplant. 2000;26(3):283–6. doi: 10.1038/sj.bmt.1702514.

  14. Morris CL, Siegel E, Barlogie B, et al. Mobilization of CD34+ cells in elderly patients (≥70 years) with multiple myeloma: influence of age, prior therapy, platelet count and mobilization regimen. Br J Haematol. 2003;120(3):413–23. doi: 10.1046/j.1365-2141.2003.04107.x.

  15. Pusic I, Jiang SY, Landua S, et al. Impact of mobilization and remobilization strategies on achieving sufficient stem cell yields for autologous transplantation. Biol Blood Marrow Transplant. 2008;14(9):1045–56. doi: 10.1016/j.bbmt.2008.07.004.

  16. Lee JL, Kim SB, Lee GW, et al. Collection of peripheral blood progenitor cells: analysis of factors predicting the yields. Transfus Apher Sci. 2003;29(1):29–37. doi: 10.1016/S1473-0502(03)00097-1.

  17. Kumar S, Dispenzieri A, Lacy MQ, et al. Impact of lenalidomide therapy on stem cell mobilization and engraftment post-peripheral blood stem cell transplantation in patients with newly diagnosed myeloma. Leukemia. 2007;21(9):2035–42. doi: 10.1038/sj.leu.2404801.

  18. Mark T, Stern J, Furst JR, et al. Stem cell mobilization with cyclophosphamide overcomes the suppressive effect of lenalidomide therapy on stem cell collection in multiple myeloma. Biol Blood Marrow Transplant. 2008;14(7):795–8. doi: 10.1016/j.bbmt.2008.04.008.

  19. DiPersio JF, Stadtmauer EA, Nademanee A, et al. Plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma. Blood. 2009;113(23):5720–6. doi: 10.1182/blood-2008-08-174946.

  20. Popat U, Saliba R, Thandi R, et al. Impairment of filgrastim-induced stem cell mobilization after prior lenalidomide in patients with multiple myeloma. Biol Blood Marrow Transplant. 2009;15(6):718–23. doi: 10.1016/j.bbmt.2009.02.011.

  21. Ruiz-Delgado GJ, Lopez-Otero A, Hernandez-Arizpe A, et al. Poor hematopoietic stem cell mobilizers in multiple myeloma: a single institution experience. Medit J Hemat Infect Dis. 2010;2(2):e2010016. doi: 10.4084/MJHID.2010.016.

  22. Mohty M, Hubel K, Kroger N, et al. Autologous haematopoietic stem cell mobilization in multiple myeloma and lymphoma patients: a position statement from the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant. 2014;49(7):865–72. doi: 10.1038/bmt.2014.39.

  23. Silvennoinen R, Anttila P, Saily M, et al. A randomized phase II study of stem cell mobilization with cyclophosphamide + G-CSF or G-CSF alone after lenalidomide-based induction in multiple myeloma. Bone Marrow Transplant. 2016:51(3):372–6. doi: 10.1038/bmt.2015.236.

  24. Sarmiento M, Ramirez P, Parody R, et al. Advantages of non-cryopreserved autologous hematopoietic stem cell transplantation against a cryopreserved strategy. Bone Marrow Transplant. 2018;53(8):960–6. doi: 10.1038/s41409-018-0117-5.

  25. Кучер M.A., Моталкина М.С., Климова О.У. и др. Плериксафор у пациентов со сниженной мобилизационной способностью аутологичных гемопоэтических стволовых клеток. Клиническая онкогематология. 2016;9(2):155–61. doi: 10.21320/2500-2139-2016-9-2-155-161.

    [Kucher MA, Motalkina MS, Klimova OU, et al. Plerixafor in Patients with Decreased Mobilizing Ability of Autologous Hematopoietic Stem Cells. Clinical oncohematology. 2016;9(2):155–61. doi: 10.21320/2500-2139-2016-9-2-155-161. (In Russ)]

  26. Грицаев C.В., Кострома И.И., Чубукина Ж.В. и др. Сравнительная эффективность винорелбина и циклофосфана в режиме мобилизации для заготовки аутотрансплантата. Medline.ru. 2017;18:409–24.

    [Gritsaev SV, Kostroma II, Chubukina ZhV, et al. Comparative efficacy of vinorelbine and cyclophosphamide in mobilization regimen for auto-transplant harvesting. Medline.ru. 2017;18:409–24. (In Russ)]

  27. Грицаев С.В., Кузяева А.А., Кострома И.И. и др. Первый опыт мобилизации гемопоэтических стволовых клеток в периферическую кровь винорелбином у больных лимфопролиферативными заболеваниями. Медицина экстремальных ситуаций. 2017;62(4):30–5.

    [Gritsaev SV, Kuzyaeva AA, Kostroma II, et al. The first attempt to use vinorelbine for mobilization of hematopoietic stem cells into the peripheral blood in patients with lymphoproliferative disoders. Meditsina ekstremal’nykh situatsii. 2017;62(4):30–5. (In Russ)]

Корреляция гемопоэтических стволовых клеток CD34+ и колониеобразующих единиц в продуктах афереза периферической крови у пациентов со злокачественными лимфопролиферативными заболеваниями до и после криоконсервирования перед аутоТГСК

В.А. Балашова, В.И. Ругаль, С.С. Бессмельцев, С.В. Грицаев, Н.Ю. Семенова, С.В. Волошин, Ж.В. Чубукина, А.В. Шмидт, А.Д. Гарифуллин, И.М. Запреева, А.А. Кузяева, И.И. Кострома, А.Ю. Кувшинов, А.В. Чечеткин

ФГБУ «Российский НИИ гематологии и трансфузиологии ФМБА», ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024

Для переписки: Валентина Андреевна Балашова, канд. мед. наук, ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024; тел.: +7(812)717-19-37; e-mail: vbspb37@mail.ru

Для цитирования: Балашова В.А., Ругаль В.И., Бессмельцев С.С. и др. Корреляция гемопоэтических стволовых клеток CD34+ и колониеобразующих единиц в продуктах афереза периферической крови у пациентов со злокачественными лимфопролиферативными заболеваниями до и после криоконсервирования перед аутоТГСК. Клиническая онкогематология. 2018;11(4):368–77.

DOI: 10.21320/2500-2139-2018-11-4-368-377


РЕФЕРАТ

Цель. Определить корреляцию между числом аутологичных гемопоэтических стволовых клеток (ГСК) CD34+ и колониеобразующих единиц (КОЕ) в одних и тех же образцах продукта афереза периферической крови до и после криоконсервирования у больных множественной миеломой и лимфомами; оценить клиническую значимость этих показателей.

Материалы и методы. Изучены образцы клеток цитаферезного продукта периферической крови и клеточные культуры до и после криоконсервирования у 32 больных множественной миеломой и 25 больных лимфомами, которым была выполнена трансплантация аутологичных ГСК. В работе с материалом использовались культуральные методы и метод проточной цитометрии.

Результаты. Представлены данные о зависимости числа CD34+ ГСК, полученных с помощью проточной цитометрии, и КОЕ в культуре клеток, полученных путем цитафереза одного и того же образца периферической крови. Обнаружена прямая связь между числом клеток CD34+ и всех КОЕ до и после криоконсервирования у больных лимфомами. Выявлена корреляция числа клеток CD34+ и гранулоцитарно-макрофагальных КОЕ до криоконсервирования у больных множественной миеломой и лимфомами.

Заключение. Показатель колониеобразующей способности клеток, используемый для учета функционально-активных ГСК, является не менее надежным критерием оценки состояния пролиферативного пула аутотрансплантата, чем клетки CD34+. Для оценки количественного и качественного состояния аутотрансплантата больных множественной миеломой и лимфомами необходимо применять оба метода исследования.

Ключевые слова: клетки CD34+, КОЕ, ГМ-КОЕ, корреляция, лимфома, множественная миелома, аферез, аутоТГСК.

Получено: 11 апреля 2018 г.

Принято в печать: 28 июля 2018 г.

Читать статью в PDF 


ЛИТЕРАТУРА

  1. Lansdorp PM. Self-renewal of stem cells. Biol Blood Marrow Transplant. 1997;3(4):171–8.

  2. Bryder D, Rossi DJ, Weissman IL. Hematopoietic stem cells: the paradigmatic tissue specific stem cell. Am J Pathol. 2006;169(2):338–46. doi: 10.2353/ajpath.2006.060312.

  3. Wodnar-Filipowicz A. Biological properties of haematopoietic stem cells. The EBMT Handbook, 6th edition; 2012. pp. 61–72.

  4. Moreb JS, Salmosinia D, Hsu J, et al. Long-term outcome after autologous stem cell transplantation with adequate peripheral blood stem cell mobilization using plerixafor and G-CSF in poor mobilizer lymphoma and myeloma patients. Adv Hematol. 2011;2011:1–8. doi: 10.1155/2011/517561.

  5. Птушкин В.В., Жуков Н.В., Миненко С.В. и др. Роль высокодозной химиотерапии с трансплантацией стволовых кроветворных клеток у больных с неходжкинскими лимфомами. Онкогематология. 2006;1–2:86–96.

    [Ptushkin VV, Zhukov NV, Minenko SV, et al. Role of high-dose chemotherapy with hematopoietic stem cell transplantation in patients with non-Hodgkin’s lymphomas. Onkogematologiya. 2006;1–2:86–96. (In Russ)]

  6. Avet-Loiseau H, Attal M, Moreau P, et al. Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroup Francophone du Myeloma. Blood. 2007;109(8):3489–95. doi: 10.1182/blood-2006-08-040410.

  7. Avet-Loiseau H, Soulier J, Fermand JP, et al. Impact of high-risk cytogenetics and prior therapy on outcomes in patients with advanced relapsed or refractory multiple myeloma treated with lenalidomide plus dexamethasone. 2010;24(3):623–8. doi: 10.1038/leu.2009.273.

  8. Dabusti M, Lanza F, Campioni D, et al. CXCR4 expression on bone marrow CD34+ cells prior to mobilization can predict mobilization adequacy in patients with hematological malignancy. J Hematother Stem Cell Res. 2003;12(4):425–34. doi: 10.1089/152581603322286051.

  9. Ratip S. Mobilization failure in hematopoietic stem cell transplantation. XXXIX Ulusal Hematoloji Kongresi. Antalya, Turkey; 2013. рр. 106–10.

  10. Артюхина З.Е., Семенова Н.Ю., Балашова В.А. и др. Кроветворная ткань и стромальное микроокружение больных множественной миеломой. Вестник гематологии. 2017;13(1):15–8.

    [Artyukhina ZE, Semenova NYu, Balashova VA, et al. Hematopoietic tissue and stromal microenvironment in patients with multiple myeloma. Vestnik gematologii. 2017;13(1):15–8. (In Russ)]

  11. Бессмельцев С.С., Абдулкадыров К.М. Множественная миелома: руководство для врачей. М.: МК, 2016. 504 с.

    [Bessmel’tsev SS, Abdulkadyrov KM. Mnozhestvennaya mieloma: rukovodstvo dlya vrachei. (Multiple myeloma: manual for doctors.) Moscow: MK Publ.; 2016. 504 p. (In Russ)]

  12. Покровская О.С., Менделеева Л.П., Гальцева И.В. и др. Мобилизация гемопоэтических клеток крови у больных миеломной болезнью. Проблемы гематологии и переливания крови. 2003;2:55–65.

    [Pokrovskaya OS, Mendeleeva LP, Gal’tseva IV, et al. Mobilization of hematopoietic cells in myeloma patients. Problemy gematologii i perelivaniya krovi. 2003;2:55–65. (In Russ)]

  13. Покровская О.С. Кроветворная ткань и стромальное микроокружение в процессе интенсивной терапии и мобилизации гемопоэтических стволовых клеток у больных множественной миеломой: Автореф. дис.… канд. мед. наук. М., 2011.

    [Pokrovskaya OS. Krovetvornaya tkan’ i stromal’noe mikrookruzhenie v protsesse intensivnoi terapii i mobilizatsii gemopoeticheskikh stvolovykh kletok u bol’nykh mnozhestvennoi mielomoi. (Hematopoietic tissue and stromal microenvironment in intensive treatment and mobilization of hematopoietic stem cells in multiple myeloma ) [dissertation] Moscow; 2011. (In Russ)]

  14. Haizmann M, O’Meara AC, Moosmann PR, et al. Efficient mobilization of PBSC with vinorelbine/G-CSF in patients with malignant lymphoma. Bone Marrow Transplant. 2009;44(2):75–9. doi: 10.1038/bmt.2008.434.

  15. Haverkos BM, McBride A, O’Donnell L, et al. An effective mobilization strategy for lymphoma patients after failed upfront mobilization with plerixafor. Bone Marrow Transplant. 2014;49(8):1052–5. doi: 10.1038/bmt.2014.90.

  16. Lansdorp PM, Sutherland HJ, Eaves CJ. Selective expression of CD45 isoforms on functional subpopulations of CD34+ hemopoietic cells from human bone marrow. J Exp Med. 1990;172(1):363–6. doi: 10.1084/jem.172.1.363.

  17. Fritsch G, Buchinger P, Printz D, et al. Rapid discrimination of early CD34+ myeloid progenitors using CD45-RA analysis. Blood. 1993;1(9):2301–9.

  18. Fritsch G, Buchinger P, Printz D. Use of flow cytometric CD34 analysis to quantify hematopoietic progenitor cells. Leuk Lymphoma. 1993;10(6):443–51. doi: 10.3109/10428199309148201.

  19. Nissen-Druey C, Tichelli A, Mayer-Monard S. Human hematopoietic colonies in health and disease. Acta Haematol. 2005;113(1):5–10. doi: 10.1159/000081987.

  20. Takano H, Ema H, Sudo K, et al. Asymmetric division and lineage commitment at the level of hematopoietic stem cells: Inference from differentiation in daughter cell and granddaughter cell pairs. J Exp Med. 2004;199(3):295–302. doi: 10.1084/jem.20030929.

  21. Sieburg HB, Cho RH, Dykstra B, et al. The hematopoietic stem compartment consists of a limited number of discrete stem cell subsets. Blood. 2006;107(6):2311–6. doi: 10.1182/blood-2005-07-2970.

  22. Guo Y, Lubbert M, Engelhard M. CD34-hematopoietic stem cells: current concepts and controversies. Stem Cell. 2003;21(1):15–20. doi: 10.1634/stemcells.21-1-15.

  23. Donahue RE, Yang YC, Clark SC. Human P40 T-cell growth factor (interleukin-9) supports erythroid colony formation. Blood. 1990;75(12):2271–5.

  24. Ema H, Suda T, Miura Y, Nakauchi H. Colony formation of clone-sorted human haematopoietic progenitors. Blood. 1990;75(10):1941–6.

  25. Serke S, Sauberlich S, Huhn D. Multiparameter flow-cytometrical quantitation of circulating CD34+ cells: correlation to the quantitation of circulating haemopoietic progenitor cells by in vitro colony-assay. Br J Haematol. 2008;77(4):453–9. doi: 10.1111/j.1365-2141.1991.tb08609.x.

  26. Bensinger WI, Longin K, Appelbaum F, et al. Peripheral blood stem cells (PBSCs) collected after recombinant granulocyte colony stimulating factor (rhG-CSF): An analysis of factors correlating with the tempo of engraftment after transplantation. Br J Haematol. 1994;87(4):825–31. doi: 10.1111/j.1365-2141.1994.tb06744.x.

  27. Bensinger WI, Appelbaum F, Rowley S, et al. Factors that influence collection and engraftment of autologous peripheral blood stem cells. J Clin Oncol. 1995;13(10):2547–55. doi: 10.1200/jco.1995.13.10.2547.

  28. Weaver CH, Haselton B, Birch R, et al. An analysis of engrafment kinetics as a function of the CD34 content of peripheral blood progenitor cell collections in 692 patients after administration of myeloablative chemotherapy. Blood. 1995;86(10):3961–9.

  29. Weaver CH, Potz J, Redmond J, et al. Engraftment and outcomes of patients receiving myeloablative therapy followed by autologous peripheral blood cells with a low CD34+ cell content. Bone Marrow Transplant. 1997;19(11):1103–10. doi: 10.1038/sj.bmt.1700808.

  30. Watts MJ, Sullivan AM, Jamieson E, et al. Progenitor-cell mobilization after low-dose cyclophosphamide and granulocyte colony-stimulating factor, an analysis of progenitor-cell quantity and quality and factors predicting for these parameters in 101 pretreated patients with malignant lymphoma. J Clin Oncol. 1997;15(2):535–46. doi: 10.1200/jco.1997.15.2.535.

  31. Serke S, Watts M, Knudsen LM, et al. In-vitro clonogenity of mobilized peripheral blood CD34 expressing cells: inverse correlation to both relative and absolute number of CD34-expressing cells. Br J Haematol. 1996;95(2):234–40. doi: 10.1046/j.1365-2141.1996.d01-1918.x.

  32. Fritsch G, Emminger W, Buchinger P, et al. CD34-positive cell proportions in peripheral blood correlate with colony-forming capacity. Exp Hematol. 1991;19(11):1079–83.

  33. Fritsch G, Emminger W, Buchinger P, et al. CD34 analysis in peripheral blood correlates with colony-forming capacity. Progr Clin Biol Res. 1992;377:531–6.

  34. Scott MA, Ager S, Apperley JF, et al. Peripheral blood progenitor cell harvesting in multiple myeloma and malignant lymphoma. Leuk Lymphoma. 1995;19(5–6):479–84. doi: 10.3109/10428199509112208.

  35. Buzzi M, Granchi D, Bacci G, et al. CD34+ cells and clonogenicity of peripheral blood stem cells during chemotherapy treatment in association with granulocyte colony stimulating factor in osteosarcoma. J Chemother. 1999;11(4):293–300. doi: 10.1179/joc.1999.11.4.293.

  36. Андреева Л.Ю., Тупицын Н.Н., Овумян Г.Ш. и др. Гемопоэтические предшественники в крови онкологических больных: взаимосвязь колониеобразования и экспрессии CD Вестник РОНЦ им. Н.Н. Блохина РАМН. 2000;11(1):5–10.

    [Andreeva LYu, Tupitsyn NN, Ovumyan GSh, et al. Hematopoietic progenitors in blood of cancer patients: relationship between colony formation and CD34 expression. Vestnik RONTs im NN Blokhina RAMN. 2000;11(1):5–10. (In Russ)]

  37. Healy LE, Nirsimloo N, Scott M, et al. In vitro proliferation by cells mobilized into the peripheral blood for collection and autologous transplantation. Exp Hematol. 1994;22(13):1278–82.

  38. Magagnoli M, Spina M, Balzarotti M, et al. IGEV regimen and a fixed dose of lenograstim: an effective mobilization regimen in pretreated Hodgkin’s lymphoma patients. Bone Marrow Transplant. 2007;40(11):1019–25. doi: 10.1038/sj.bmt.1705862.

  39. Koutna I, Peterkova M, Simara P, et al. Proliferation and differentiation potential CD133+ and CD34+ populations from the bone marrow and mobilized peripheral blood. Ann Hematol. 2011;90(2):127–37. doi: 10.1007/s00277-010-1058-2.

  40. Балашова В.А., Ругаль В.И., Грицаев С.В. и др. Колониеобразующая способность гемопоэтических стволовых клеток мобилизованной периферической крови больных множественной миеломой до и после криоконсервирования. Трансфузиология. 2016;17(4):63–70.

    [Balashova VA, Rugal’ VI, Gritsaev SV, et al. Colony-forming capacity of hematopoietic stem cells of mobilized peripheral blood in multiple myeloma patients before and after cryopreservation. Transfuziologiya. 2016;17(4):63–70. (In Russ)]

  41. Балашова В.А., Ругаль В.И., Бессмельцев С.С. и др. Колониеобразующая способность гемопоэтических стволовых клеток мобилизованной периферической крови больных злокачественными лимфомами до и после криоконсервирования. Medline. 2018;19(3):45–54.

    [Balashova VA., Rugal VI., Bessmeltsev SS. et al. Colonyforming capacity of hematopoietic stem cells of mobilized peripheral blood in patients with malignant lymphomas before and after cryopreservation. Medline. 2018;19(3):45–54. (In Russ)]

Магнитно-резонансная томография костного мозга и ее результаты как критерий назначения поддерживающей терапии после аутоТГСК при множественной миеломе

М.В. Соловьев, Л.П. Менделеева, Г.А. Яцык, Н.С. Луцик, М.В. Фирсова, Э.Г. Гемджян, В.Г. Савченко

ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167

Для переписки: Максим Валерьевич Соловьев, Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167; тел.: +7(495)612-31-92; е-mail: maxsolovej@mail.ru

Для цитирования: Соловьев М.В., Менделеева Л.П., Яцык Г.А. и др. Магнитно-резонансная томография костного мозга и ее результаты как критерий назначения поддерживающей терапии после аутоТГСК при множественной миеломе. Клиническая онкогематология. 2018;11(4):360–7.

DOI: 10.21320/2500-2139-2018-11-4-360-367


РЕФЕРАТ

Цель. Оценить эффективность поддерживающей терапии у больных множественной миеломой (ММ) после трансплантации аутологичных гемопоэтических стволовых клеток (аутоТГСК) по результатам МРТ костного мозга.

Материалы и методы. В исследование включено 32 больных ММ в возрасте 36–66 лет (медиана 57 лет), у которых достигнута полная ремиссия в результате одной аутоТГСК. С целью определить характер поражения костного мозга и объем опухолевой ткани на 100-й день после аутоТГСК выполняли МРТ позвоночника и костей таза. В качестве поддерживающей терапии после аутоТГСК 14 больным назначали леналидомид в дозе 15 мг/сут с 1-го по 21-й день 28-дневного курса в течение 1 года. Наблюдение без поддерживающего лечения осуществлялось за 18 больными. Статистический анализ включал определение выживаемости без прогрессирования (ВБП) и зависимости риска рецидивов от клинико-лабораторных параметров.

Результаты. МРТ-положительный статус (объем опухоли более 1 см3) выявлен у 20 больных. Отсутствие изменений МР-сигнала от костного мозга или обнаружение опухоли менее 1 см3 расценивались как МРТ-отрицательный ответ, что было зафиксировано у 12 больных. При достижении МРТ-отрицательного статуса отмечались наилучшие показатели 2-летней ВБП: 100 % при назначении поддерживающей терапии и 84 % без таковой. ВБП 2-летняя в группе пациентов с определяемой при МРТ опухолевой массой статистически значимо (= 0,03) различалась в зависимости от проведения поддерживающей терапии и составила 80 % в группе с поддерживающим лечением vs 33 % в группе без такового. Назначение поддерживающей терапии при выявлении на МР-томограммах остаточной опухолевой массы на 100-й день после аутоТГСК оказывает положительное влияние на показатели ВБП. Многофакторный анализ подтвердил, что наиболее важным параметром, от которого зависела ВБП, оказалось наличие остаточной опухоли на МР-томограммах костного мозга.

Заключение. МРТ-отрицательный статус после аутоТГСК является благоприятным прогностическим фактором, определяющим продолжительный (> 2 лет) период без признаков ММ, несмотря на отсутствие поддерживающей терапии.

Ключевые слова: множественная миелома, магнитно-резонансная томография (МРТ), трансплантация аутологичных гемопоэтических стволовых клеток (аутоТГСК), поддерживающая терапия, минимальная остаточная болезнь.

Получено: 11 мая 2018 г.

Принято в печать: 29 августа 2018 г.

Читать статью в PDF 


ЛИТЕРАТУРА

  1. Менделеева Л.П., Вотякова О.М., Покровская О.С. и др. Национальные клинические рекомендации по диагностике и лечению множественной миеломы. Гематология и трансфузиология. 2016;61(1, прил. 2):1–24. doi: 10.18821/0234-5730-2016-61-1(Прил.2). [Mendeleeva LP, Votyakova OM, Pokrovskaya OS, et al. National clinical guidelines on diagnosis and treatment of multiple myeloma. Gematologiya i transfuziologiya. 2016;61(1, Suppl. 2):1–24. doi: 10.18821/0234-5730-2016-61-1(Прил.2). (In Russ)]

  2. Kumar SK, Rajkumar SV, Dispenzieri A, et Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008;111(5):2516–20. doi: 10.1182/blood-2007-10-116129.

  3. Mendeleeva LP, Solovev MV, Alexeeva A, at al. Multiple Myeloma in Russia (First Results of the Registration Trial). Blood. 2017;130(Suppl 1):5408.

  4. Passweg JR, Baldomero H, Bader Р, et al. Is the use of unrelated donor transplantation leveling off in Europe? The 2016 European Society for Blood and Marrow Transplant activity survey report. Bone Marrow Transplant. 2018. doi: 10.1038/s41409-018-0153-1. [Epub ahead of print]

  5. Passweg JR, Baldomero H, Bader P, et al. Hematopoietic stem cell transplantation in Europe 2014: more than 40 000 transplants annually. Bone Marrow Transplant. 2016;51(6):786–92. doi: 10.1038/bmt.2016.20.

  6. Gay F, Oliva S, Petrucci MT, et al. Autologous transplant vs oral chemotherapy and lenalidomide in newly diagnosed young myeloma patients: a pooled analysis. Leukemia. 2017;31(8):1727–34. doi: 10.1038/leu.2016.381.

  7. Roussel M, Lauwers-Cances V, Robillard N, et al. Front-Line Transplantation Program With Lenalidomide, Bortezomib, and Dexamethasone Combination As Induction and Consolidation Followed by Lenalidomide Maintenance in Patients With Multiple Myeloma: A Phase II Study by the Intergroupe Francophone du Myelome. J Clin Oncol. 2014;32(25):2712–7. doi: 10.1200/JCO.2013.54.8164.

  8. Moreau P, San Miguel J, Sonneveld P, et al. Multiple myeloma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(Suppl 4):iv52–61. doi: 10.1093/annonc/mdx096.

  9. Syed YY. Lenalidomide: A Review in Newly Diagnosed Multiple Myeloma as Maintenance Therapy After ASCT. Drugs. 2017;77(13):1473–80. doi: 10.1007/s40265-017-0795-0.

  10. Goldschmidt H, Lokhorst HM, Mai EK, et al. Bortezomib before and after high-dose therapy in myeloma: long-term results from the phase III HOVON-65/GMMG-HD4 trial. Leukemia. 2018;32(2):383–90. doi: 10.1038/leu.2017.211.

  11. Rosinol L, Oriol A, Teruel AI, et al. Bortezomib and thalidomide maintenance after stem cell transplantation for multiple myeloma: a PETHEMA/GEM trial. Leukemia. 2017;31(9):1922–7. doi: 10.1038/leu.2017.35.

  12. Mellqvist UH, Gimsing P, Hjertner O, et al. Bortezomib consolidation after autologous stem cell transplantation in multiple myeloma: a Nordic Myeloma Study Group randomized phase 3 trial. Blood. 2013;121(23):4647–54. doi: 10.1182/blood-2012-11-464503.

  13. Sonneveld P, Schmidt-Wolf IG, van der Holt B, et al. Bortezomib induction and maintenance treatment in patients with newly diagnosed multiple myeloma: results of the randomized phase III HOVON-65/GMMG-HD4 trial. J Clin Oncol. 2012;30(24):2946–55. doi: 10.1200/JCO.2011.39.6820.

  14. McCarthy PL, Owzar K, Hofmeister C, et al. Lenalidomide after stem-cell transplantation for multiple myeloma. N Engl J Med. 2012;366(19):1770–81. doi: 10.1056/NEJMoa1114083.

  15. Attal M, Lauwers-Cances V, Marit G, et al. Lenalidomide Maintenance after Stem-Cell Transplantation for Multiple Myeloma. N Engl J Med. 2012;366(19):1782–91. doi: 10.1056/NEJMoa1114138.

  16. Palumbo A, Cavallo F, Gay F, et al. Autologous transplantation and maintenance therapy in multiple myeloma. N Engl J Med. 2014;371(10):895–905. doi: 10.1056/NEJMoa1402888.

  17. Solovev MV, Mendeleeva LP, Pokrovskaya OS, et al. Maintenance Therapy after Autologous Haematopoietic Stem Cell Transplantation (auto-HSCT) in Multiple Myeloma Patients with and without Minimal Residual Disease (MRD). Blood. 2016;128(22):2260.

  18. Solovev MV, Mendeleeva LP, Pokrovskaya OS, et al. The Duration of MRD-Negative Status in Multiple Myeloma (MM) Patients after Auto-HSCT Is a Criterion for Prolonged Remission without Maintenance Therapy. Blood. 2017;130(Suppl 1):3294.

  19. Dutoit JC, Verstraete KL. Whole-body MRI, dynamic contrast-enhanced MRI, and diffusion-weighted imaging for the staging of multiple myeloma. Skelet Radiol. 2017;46(6):733–50. doi: 10.1007/s00256-017-2609-6.

  20. Latifoltojar A, Hall‐Craggs M, Rabin N, et al. Whole body magnetic resonance imaging in newly diagnosed multiple myeloma: early changes in lesional signal fat fraction predict disease response. Br J Haematol. 2017;176(2):222–33. doi: 10.1111/bjh.14401.

  21. Lasocki A, Gaillard F, Harrison SJ. Multiple myeloma of the spine. Neuroradiol J. 2017;30(3):259–68. doi: 10.1177/1971400917699426.

  22. Bray TJ, Singh S, Latifoltojar A, et al. Diagnostic utility of whole body Dixon MRI in multiple myeloma: A multi-reader study. PLoS One. 2017;12(7):e0180562. doi: 10.1371/journal.pone.0180562.

  23. Sabour S. Whole-body ultra-low dose computed tomography in comparison with spinal magnetic resonance imaging in the assessment of disease in multiple myeloma; Methodological issues on Diagnostic value. Br J Haematol. 2017. doi: 10.1111/bjh.14849. [Epub ahead of print]

  24. Chantry A, Kazmi M, Barrington S, et al. Guidelines for the use of imaging in the management of patients with myeloma. Br J Haematol. 2017;178(3):380–93. doi: 10.1111/bjh.14827.

  25. Moulopoulos LA, Gika D, Anagnostopoulos A, et al. Prognostic significance of magnetic resonance imaging of bone marrow in previously untreated patients with multiple myeloma. Ann Oncol. 2005;16(11):1824–8. doi: 10.1093/annonc/mdi362.

  26. Mai EK, Hielscher T, Kloth JK, et al. Association between magnetic resonance imaging patterns and baseline disease features in multiple myeloma: analyzing surrogates of tumour mass and biology. Eur Radiol. 2016;26(11):3939–48. doi: 10.1007/s00330-015-4195-0.

  27. Walker R, Barlogie B, Haessler J, et al. Magnetic resonance imaging in multiple myeloma: diagnostic and clinical implications. J Clin Oncol. 2007;25(9):1121–8. doi: 10.1200/JCO.2006.08.5803.

  28. Richardson PG, Holstein SA, Schlossman RL, et al. Lenalidomide in combination or alone as maintenance therapy following autologous stem cell transplant in patients with multiple myeloma: a review of options for and against. Expert Opin Pharmacother. 2017;18(18):1975–85. doi: 10.1080/14656566.2017.1409207.

  29. Pulte ED, Dmytrijuk A, Nie L, et al. FDA Approval Summary: Lenalidomide as Maintenance Therapy After Autologous Stem Cell Transplant in Newly Diagnosed Multiple Myeloma. Oncologist. 2018;23(6):734–9. doi: 10.1634/theoncologist.2017-0440.

  30. Sengsayadeth S, Malard F, Savani BN, et al. Posttransplant maintenance therapy in multiple myeloma: the changing landscape. Blood Cancer J. 2017;7(3):e545. doi: 10.1038/bcj.2017.23.

  31. McCarthy PL, Holstein SA, Petrucci MT, et al. Lenalidomide Maintenance After Autologous Stem-Cell Transplantation in Newly Diagnosed Multiple Myeloma: A Meta-Analysis. J Clin Oncol. 2017;35(29):3279–89. doi: 10.1200/JCO.2017.72.6679.

  32. Sonneveld P, Avet-Loiseau H, Lonial S, et al. Treatment of multiple myeloma with high-risk cytogenetics: a consensus of the International Myeloma Working Group. Blood. 2016;127(24):2955–62. doi: 10.1182/blood-2016-01-631200.

  33. Sivaraj D, Green MM, Li Z, et al. Outcomes of Maintenance Therapy with Bortezomib after Autologous Stem Cell Transplantation for Patients with Multiple Myeloma. Biol Blood Marrow Transplant. 2017;23(2):262–8. doi: 10.1016/j.bbmt.2016.11.010.

  34. Jackson GH, Davies FE, Pawlyn C, et al. Lenalidomide Is a Highly Effective Maintenance Therapy in Myeloma Patients of All Ages; Results of the Phase III Myeloma XI Study. Blood. 2016;128(22):1143.

  35. Neben K, Lokhorst HM, Jauch A, et al. Administration of bortezomib before and after autologous stem cell transplantation improves outcome in multiple myeloma patients with deletion 17p. Blood. 2012;119(4):940–8. doi: 10.1182/blood-2011-09-379164.

  36. Jackson GH, Davies FE, Pawlyn C, et al. Lenalidomide Maintenance Significantly Improves Outcomes Compared to Observation Irrespective of Cytogenetic Risk: Results of the Myeloma XI Trial. Blood. 2017;130(Suppl 1):436.

  37. Mellqvist UH, Gimsing P, Hjertner O, et al. Bortezomib consolidation after autologous stem cell transplantation in multiple myeloma: a Nordic Myeloma Study Group randomized phase 3 trial. Blood. 2013;121(23):4647–54. doi: 10.1182/blood-2012-11-464503.

  38. Phase III Studies Present Additional Evidence for REVLIMID® (lenalidomide) as Maintenance Therapy in Multiple Myeloma. Available from: http://ir.celgene.com/releasedetail.cfm?releaseid=1003026 (accessed 2.05.2018).

  39. Соловьев М.В., Менделеева Л.П., Покровская О.С. и др. Множественная миелома: поддерживающая терапия после трансплантации аутологичных гемопоэтических стволовых клеток в зависимости от минимальной остаточной болезни. Терапевтический архив. 2017;89(7):25–31. doi: 10.17116/terarkh201789725-31.

    [Solovyev MV, Mendeleeva LP, Pokrovskaya OS, et al. Multiple myeloma: Maintenance therapy after autologous hematopoietic stem cell transplantation, depending on minimal residual disease. Terapevticheskii arkhiv. 2017;89(7):25–31. doi: 10.17116/terarkh201789725-31. (In Russ)]

Результаты молекулярного мониторинга в посттрансплантационный период с помощью серийного исследования уровня экспрессии гена WT1 у больных острыми миелоидными лейкозами

Я.В. Гудожникова, Н.Н. Мамаев, И.М. Бархатов, В.А. Катерина, Т.Л. Гиндина, А.И. Шакирова, С.Н. Бондаренко, О.А. Слесарчук, Е.И. Дарская, О.В. Паина, Л.С. Зубаровская, Б.В. Афанасьев

НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой, ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова», ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

Для переписки: Николай Николаевич Мамаев, д-р мед. наук, профессор, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022; тел.: +7(812)233-12-43; e-mail: nikmamaev524@gmail.com

Для цитирования: Гудожникова Я.В., Мамаев Н.Н., Бархатов И.М. и др. Результаты молекулярного мониторинга в посттрансплантационный период с помощью серийного исследования уровня экспрессии гена WT1 у больных острыми миелоидными лейкозами. Клиническая онкогематология. 2018;11(3):241-51.

DOI: 10.21320/2500-2139-2018-11-3-241-251


РЕФЕРАТ

Цель. Показать значение серийного измерения уровня экспрессии гена WTу больных острыми миелоидными лейкозами (ОМЛ), которым выполнена трансплантация аллогенных гемопоэтических стволовых клеток (аллоТГСК).

Материалы и методы. В исследование включено 88 больных ОМЛ в возрасте 2–68 лет (медиана 30 лет). Лиц женского пола было 38 (43 %), мужского — 50 (57 %). Всем пациентам проведена аллоТГСК. Аспираты костного мозга забирались до ТГСК (Д0) и после нее (Д+30, Д+60 и Д+100).

Результаты. По результатам однофакторного анализа выявлены статистически значимые различия 2-летней общей выживаемости в группах с наличием или отсутствием ремиссии на момент ТГСК (< 0,001) и хронической реакции «трансплантат против хозяина» (хРТПХ) (= 0,002), а также с первичным или вторичным (из МДС) ОМЛ (= 0,028), уровнем экспрессии гена WT1 < и > 250 копий до ТГСК (< 0,001) во временных точках Д+60 (= 0,012) и Д+100 (< 0,001). При многофакторном анализе статистическая значимость различий сохранилась у больных с ТГСК, выполненной в ремиссии (= 0,041), и с наличием хРТПХ (= 0,03). По данным однофакторного анализа, статистически значимые различия 2-летней бессобытийной выживаемости (БСВ) были выявлены: а) у больных с аллоТГСК в ремиссии или без таковой (< 0,001); б) при использовании в качестве источника трансплантата ГСК крови, а не костного мозга (< 0,026); в) при нормальном или повышенном уровне экспрессии гена WTна этапе ТГСК (< 0,001) и в контрольной точке Д+100 (< 0,001); г) при использовании ГСК от родственного или неродственного донора (= 0,006); д) у больных с хРТПХ (= 0,05). При многофакторном анализе независимое положительное влияние на БСВ сохранилось только у больных с нормальной экспрессией гена WT1 в Д+100 (= 0,011) и при наличии хРТПХ (= 0,038). Кумулятивная частота посттрансплантационных рецидивов (ПТР) у больных ОМЛ, имевших к моменту ТГСК нормальный или повышенный уровень экспрессии гена WTза 2-летний период наблюдения, статистически значимо различалась (28,2 vs 58,9 %; = 0,002), в т. ч. при измерении этого параметра в Д+60 и Д+100 (= 0,015 и < 0,001 соответственно). У 1/4 пациентов цитологические рецидивы (цПТР) существенно отставали от молекулярных (мПТР) (на 13–489 дней, медиана 35 дней), что объясняется рано начатой превентивной терапией, направленной на предупреждение цПТР в условиях уже документированного мПТР. По нашим данным, ведущую роль в сдерживании цПТР призвана играть РТПХ.

Заключение. Феномен нормализации уровня экспрессии гена WTпосле аллоТГСК у больных ОМЛ имеет важное диагностическое и прогностическое значение. Внедрение такого подхода в практику работы онкогематологических центров страны следует признать целесообразным.

Ключевые слова: острые миелоидные лейкозы, аллоТГСК, посттрансплантационные рецидивы, диагностика и лечение в условиях молекулярного мониторинга WT1, реакция «трансплантат против хозяина».

Получено: 20 января 2018 г.

Принято в печать: 18 апреля 2018 г.

Читать статью в PDF 

ЛИТЕРАТУРА

  1. Cilloni D, Gottardi E, De Micheli D, et al. Quantitative assessment of WT1 expression by real time quantitative PCR may be a useful tool for monitoring minimal residual disease in acute leukemia patients. Leukemia. 2002;16(10):2115–21. doi: 10:1038/sj.leu.2402675.
  2. Cilloni D, Gottardi E, Fava M, et al. Usefulness of quantitative assessment of the WT1 gene transcript as a marker for minimal residual disease detection. Blood. 2003;102(2);773–4. doi: 1182/blood-2003-03-0980.
  3. Ogawa H, Tamaki H, Ikegame K, et al. The usefulness of monitoring WT1 gene transcripts for the prediction and management of relapse following allogeneic stem cell transplantation in acute type leukemia. Blood. 2003;101(5):1698–704. doi: 1182/blood-2002-06-1831.
  4. Zhao X-S, Jin S, Zhu H-H, et al. Wilms’ tumor gene 1 expression: an independent acute leukemia prognostic indicator following allogeneic hematopoietic SCT. Bone Marrow Transplant. 2011;47(4):499–507. doi: 10.1038/bmt.2011.121.
  5. Мамаев Н.Н., Горбунова А.В., Бархатов И.М. и др. Молекулярный мониторинг течения острых миелоидных лейкозов по уровню экспрессии гена WT1 после аллогенной трансплантации гемопоэтических стволовых клеток. Клиническая онкогематология. 2015;8(3):309–20. doi: 10.21320/2500-2139-2015-8-3-309-320. [Mamaev NN, Gorbunova AV, Barkhatov IM, et al. Molecular Monitoring of WT1 Gene Expression Level in Acute Myeloid Leukemias after Allogeneic Hematopoietic Stem Cell Transplantation. Clinical oncohematology. 2015;8(3):309–20. doi: 10.21320/2500-2139-2015-8-3-309-320. (In Russ)]
  6. Мамаев Н.Н., Гудожникова Я.В., Горбунова А.В.  Гиперэкспрессия гена WT1при злокачественных опухолях системы крови: теоретические и клинические аспекты (обзор литературы). Клиническая онкогематология. 2016;9(3):257–64. doi: 10.21320/2500-2139-2016-9-3-257-264. [Mamaev NN, Gudozhnikova YaV, Gorbunova AV. WT1 Gene Overexpression in Oncohematological Disorders: Theoretical and Clinical Aspects (Literature Review). Clinical oncohematology. 2016;9(3):257–64. doi: 10.21320/2500-2139-2016-9-3-257-264. (In Russ)]
  7. Call KM, Gieser T, Ito CI, et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor gene locus. Cell. 1990;60(3):509–20. doi: 10:1016/0092-8674(90)90601-a.
  8. Rose EA, Glaser T, Jones C, et al. Complete physical map of the WAGR region of 11p13 localizes a candidate Wilms’ tumor gene. 1990;60(3):495–508. doi: 10.1016/0092-8674(90)90600-j.
  9. Miwa H, Beran M, Saunders GF. Expression of the Wilms’ tumor gene (WT1) in human leukemias. Leukemia. 1992;6(5):405–9.
  10. Inoue K, Sugiyama H, Ogava H, et al. WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood. 1994;84(9):3071–9.
  11. Inoue K, Ogawa H, Sonoda Y, et al. Aberrant overexpression of the Wilms’ tumor gene (WT1) in human leukemia. Blood. 1997;88(4):1405–12.
  12. Cilloni D, Gottardi E, Messa F, et al. Significant correlation between the degree of WT1 expression and the International Scoring System score in patients with myelodysplastic syndromes. J Clin Oncol. 2003;21(10):1988–95. doi: 10.1200/jco.2003.10.503.
  13. Alonso-Domingues JM, Tenorio M, Velasco D, et al. Correlation of WT1 expression with the burden of total and residual leukemic blasts in bone marrow samples of acute myeloid leukemia patients. Cancer Genet. 2012;205(4):190–1. doi: 10.1016/j.cancergen.2012.02.008.
  14. Cilloni D, Messa F, Arruga F, et al. Early prediction of treatment outcome in acute myeloid leukemia by measurement of WT1 transcript levels in peripheral blood samples collected after chemotherapy. Haematologica. 2008;93(6):921–4. doi: 10.3324/haematol.12165.
  15. Ogava H, Ikegame K, Kawakami M, Tamaki H. WT1 gene transcript assay for relapse in acute myeloid leukemia after transplantation. Leuk Lymphoma. 2004;45(9):1747–53. doi: 10.1080/10428190410001687503.
  16. Pozzi S, Geroldi S, Tedone E, et al. Leukemia relapse after allogeneic transplant for acute myeloid leukemia: predictive role of WT1 expression. Br J Haematol. 2013;160(4);503–9. doi: 10.1111/bjh.12181.
  17. Nendedeu J, Esquirol A, Carricondo M, et al. Bone marrow WT1 levels in allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia and myelodysplasia: Clinically relevant time-points and 100 copies threshold value. Biol Blood Marrow Transplant. 2017;24(1):55–63. doi: 10.1016/j.bbmt.2017.09.001.
  18. Cilloni D, Saglio G, Gottardi E, et al. WT1 as universal marker for minimal residual disease detection and quantification in myeloid leukemias and in myelodysplastic syndrome. Acta Hematol. 2004;112(1–2):79–84. doi: 10.1159/000077562.
  19. Candoni A, Toffoletti E, Galina R, et al. Monitoring of minimal residual disease by quantitative WT1 gene expression following reduced intensity conditioning allogeneic stem cell transplantation in acute myeloid leukemia. Clin Transpl. 2011;25(2):308–16. doi: 10.1111/j.1399-0012.2010.01251.x.
  20. Kwon M, Martinez-Laperche C, Infante M, et al. Evaluation of minimal residual disease by real-time quantitative PCR of Wilms’ Tumor 1 expression in patients with acute myelogenous leukemia after allogeneic stem cell transplantation: Correlation with flow cytometry and chimerism. Biol Blood Marrow Transplant. 2012;18(8):1235–42. doi: 10.1016/j.bbmt.2012.01.012.
  21. Polak J, Hajkova H, Haskovec C, et al. Quantitative monitoring of WT1 expression in peripheral blood before and after allogeneic stem cell transplantation for acute myeloid leukemia – a useful tool for early detection of minimal residual disease. Neoplasma. 2013;60(01):74–82. doi: 10.4149/neo_2013_011.
  22. Lapillone H, Renneville A, Auvrignon A, et al. High WT1 expression after induction therapy predicts high risk or relapse and death in pediatric acute myeloid leukemia. J Clin Oncol. 2006;24(10):1507–15. doi: 10.1200/jco.2005.03.5303.
  23. Messina C, Sala E, Carrabba M, et al. Early post-allogeneic transplantation WT1 transcript positivity predicts AML relapse. 40th EBMT Meeting. 30 March – 2 April; Milan, Italy; 2014: Abstract P239.
  24. Mear J-B, Salaun V, Dina N, et al. WT1 and flow cytometry minimal residual disease follow-up after allogeneic transplantation in practice. 40th EBMT Meeting. 30 March – 2 April; Milan, Italy; 2014: Abstract P655.
  25. Capelli D, Attolico I, Saraceli F, et al. Early cumulative incidence of relapse in 80 acute myeloid leukemia patients after chemotherapy and transplant post-consolidation treatment prognostic role of post-induction WT1. 40th EBMT Meeting. 30 March – 2 April; Milan, Italy; 2014: Abstract P287.
  26. Rossi G, Carella AM, Minervini MM, et al. Optimal time-points for minimal residual disease monitoring change on the basis of the method used in patients with acute myeloid leukemia who underwent allogeneic stem cell transplantation: A comparison between multiparameter flow cytometry and Wilms’ tumor 1 expression. Leuk Res. 2015;39(2):138–43. doi: 1016/j.leukres.2014.11.011.