Ph-негативные миелопролиферативные новообразования: проблемы диагностики и терапии в России на примере Санкт-Петербурга

М.О. Иванова, Е.В. Морозова, М.В. Барабанщикова, Б.В. Афанасьев

ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

Для переписки: Мария Олеговна Иванова, канд. мед. наук, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022; e-mail: marilexo@yandex.ru

Для цитирования: Иванова М.О., Морозова Е.В., Барабанщикова М.В., Афанасьев Б.В. Ph-негативные миелопролиферативные новообразования: проблемы диагностики и терапии в России на примере Санкт-Петербурга. Клиническая онкогематология. 2021;14(1):45–52.

DOI: 10.21320/2500-2139-2021-14-1-45-52


РЕФЕРАТ

Ph-негативные миелопролиферативные новообразования (МПН) представляют собой группу редких онкогематологических заболеваний, характеризующихся длительным индолентным течением. Данные об эпидемиологии этих заболеваний в мире значительно варьируют в зависимости от географического региона и сроков исследования. Состоявшийся в начале 2000-х годов прорыв в понимании патогенеза МПН позволил детально разработать подходы к дифференциальной диагностике и лечению пациентов с Ph-негативными МПН, а также значительно улучшить их прогноз. Несмотря на то что эти подходы прописаны в Российских клинических рекомендациях, врачи до сих пор сталкиваются с трудностями при внедрении их в практику. В настоящем обзоре приводится подробное описание и анализ данных литературы об эпидемиологии, патогенезе, принципах диагностики и лечения Ph-негативных МПН. На примере ситуации в Санкт-Петербурге рассматриваются существующие проблемы c ведением пациентов с Ph-негативными МПН в России, а также представлены возможные пути их решения.

Ключевые слова: миелопролиферативные новообразования, истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз.

Получено: 13 августа 2020 г.

Принято в печать: 29 ноября 2020 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Campbell PJ, Green AR. The myeloproliferative disorders. N Engl J Med. 2006;355(23):2452–66. doi: 10.1056/NEJMra063728.
  2. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. doi: 10.1182/blood-2016-03-643544.
  3. Adamson JW, Fialkow PJ, Murphy S, et al. Polycythemia Vera: Stem-Cell and Probable Clonal Origin of the Disease. N Engl J Med. 1976;295(17):913–6. doi: 10.1056/NEJM197610212951702.
  4. Titmarsh GJ, Duncombe AS, Mcmullin MF, et al. How common are myeloproliferative neoplasms? A systematic review and meta-analysis. Am J Hematol. 2014;89(6):581–7. doi: 10.1002/ajh.23690.
  5. Deadmond MA, Smith-Gagen JA. Changing incidence of myeloproliferative neoplasms: trends and subgroup risk profiles in the USA, 1973–2011. J Cancer Res Clin Oncol. 2015;141(12):2131–8. doi: 10.1007/s00432-015-1983-5.
  6. Moulard O, Mehta J, Fryzek J, et al. Epidemiology of myelofibrosis, essential thrombocythemia, and polycythemia vera in the European Union. Eur J Haematol. 2014;92(4):289–97. doi: 10.1111/ejh.12256.
  7. Byun JM, Kim YJ, Youk T, et al. Real world epidemiology of myeloproliferative neoplasms: a population based study in Korea 2004–2013. Ann Hematol. 2017;96(3):373–81. doi: 10.1007/s00277-016-2902-9.
  8. Mehta J, Wang H, Iqbal SU, Mesa R. Epidemiology of myeloproliferative neoplasms in the United States. Leuk Lymphoma. 2014;55(3):595–600. doi: 10.3109/10428194.2013.813500.
  9. Shuvaev V, Martynkevich I, Abdulkadyrova A, et al. Ph-Negative Chronic Myeloproliferative Neoplasms – Population Analysis, a Single Center 10-years’ Experience. Blood. 2014;124(21):5556. doi: 10.1182/blood.v124.21.5556.5556.
  10. Федеральный закон от 21 ноября 2011 г. № 323-ФЗ «Об основах охраны здоровья граждан в Российской Федерации» [электронный документ]. Доступно по: https://minzdrav.gov.ru/documents/7025-federalnyy-zakon-323-fz-ot-21-noyabrya-2011-g. Ссылка активна на10.2020.
    [Federal Law of November 21, 2011 No. 323-FZ “On the fundamentals of public health protection in the Russian Federation”. [Internet] Available from: https://minzdrav.gov.ru/documents/7025-federalnyy-zakon-323-fz-ot-21-noyabrya-2011-g. (accessed 21.10.2020) (In Russ)]
  11. Schischlik F, Kralovics R. Mutations in myeloproliferative neoplasms–their significance and clinical use. Expert Rev Hematol. 2017;10(11):961–73. doi: 10.1080/17474086.2017.1380515.
  12. Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):1779–90. doi: 10.1056/NEJMoa051113.
  13. Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7(4):387–97. doi: 10.1016/j.ccr.2005.03.023.
  14. Baxter EJ, Scott LM, Campbell PJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365(9464):1054–61. doi: 10.1016/s0140-6736(05)71142-9.
  15. James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144–8. doi: 10.1038/nature03546.
  16. Scott LM. The JAK2 exon 12 mutations: A comprehensive review. Am J Hematol. 2011;86(8):668–76. doi: 10.1002/ajh.22063.
  17. Pikman Y, Lee BH, Mercher T, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3(7):1140–51. doi: 10.1371/journal.pmed.0030270.
  18. Pardanani AD, Levine RL, Lasho T, et al. MPL515 mutations in myeloproliferative and other myeloid disorders: A study of 1182 patients. Blood. 2006;108(10):3472–6. doi: 10.1182/blood-2006-04-018879.
  19. Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379–90. doi: 10.1056/NEJMoa1311347.
  20. Nangalia J, Massie CE, Baxter EJ, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369(25):2391–405. doi: 10.1056/NEJMoa1312542.
  21. Harrison CN, Vannucchi AM. Closing the gap: Genetic landscape of MPN. Blood. 2016;127(3):276–8. doi: 10.1182/blood-2015-10-674101.
  22. Barbui T, Thiele J, Gisslinger H, et al. The 2016 WHO classification and diagnostic criteria for myeloproliferative neoplasms: document summary and in-depth discussion. Blood Cancer J. 2018;8(2):15. doi: 10.1038/s41408-018-0054-y.
  23. Меликян А.Л., Ковригина А.М., Суборцева И.Н. и др. Ph-негативные миелопролиферативные заболевания. Клинические рекомендации. 2018 г. [электронный документ]. Доступно по: http://cr.rosminzdrav.ru/#!/recomend/96. Ссылка активна на 21.10.2020.
    [Melikyan AL, Kovrigina AM, Subortseva IN, et al. Ph-negative myeloproliferative neoplasms. Clinical guidelines. 2018. [Internet] Available from: http://cr.rosminzdrav.ru/#!/recomend/96. (accessed 21.10.2020) (In Russ)]
  24. Tefferi A. Primary myelofibrosis: 2019 update on diagnosis, risk-stratification and management. Am J Hematol. 2018;93(12):1551–60. doi: 10.1002/ajh.25230.
  25. Vannucchi AM, Lasho TL, Guglielmelli P, et al. Mutations and prognosis in primary myelofibrosis. Leukemia. 2013;27(9):1861–9. doi: 10.1038/leu.2013.119.
  26. Vannucchi AM, Guglielmelli P, Rotunno G, et al. Mutation-Enhanced International Prognostic Scoring System (MIPSS) for Primary Myelofibrosis: An AGIMM & IWG-MRT Project. Blood. 2014;124(21):405. doi: 10.1182/blood.v124.21.405.405.
  27. Barbui T, Tefferi A, Vannucchi AM, et al. Philadelphia chromosome-negative classical myeloproliferative neoplasms: revised management recommendations from European LeukemiaNet HHS Public Access. Leukemia. 2018;32(5):1057–69. doi: 10.1038/s41375-018-0077-1.
  28. NCCN Clinical Practice Guidelines in Oncology. Myeloproliferative Neoplasms. Version 2.2017. Available from: https://www.nccn.org/store/login/login.aspx?ReturnURL=https://www.nccn.org/professionals/physician_gls/pdf/mpn.pdf (accessed 11.2020).
  29. Vannucchi AM, Barbui T, Cervantes F, et al. Philadelphia Chromosome-Negative Chronic Myeloproliferative neoplasms: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(Suppl 5):v85–v99. doi: 10.1093/annonc/mdv203.
  30. Vannucchi AM, Kiladjian JJ, Griesshammer M, et al. Ruxolitinib versus Standard Therapy for the Treatment of Polycythemia Vera. N Engl J Med. 2015;372(5):426–35. doi: 10.1056/NEJMoa1409002.
  31. Griesshammer M, Saydam G, Palandri F, et al. Ruxolitinib for the treatment of inadequately controlled polycythemia vera without splenomegaly: 80-week follow-up from the RESPONSE-2 trial. Ann Hematol. 2018;97(9):1591–600. doi: 10.1007/s00277-018-3365-y.
  32. Verstovsek S, Passamonti F, Rambaldi A, et al. A phase 2 study of ruxolitinib, an oral JAK1 and JAK2 inhibitor, in patients with advanced polycythemia vera who are refractory or intolerant to hydroxyurea. 2014;120(4):513–20. doi: 10.1002/cncr.28441.
  33. Распоряжение Правительства Российской Федерации от 12 октября 2019 г. № 2406-р [электронный документ]. Доступно по: http://static.government.ru/media/files/K1fPEUszF2gmvwTkw74iPOASarj7KggI.pdf. Ссылка активна на 21.10.2020.
    [Russian Federation government resolution of October 12, 2019 No. 2406-r. [Internet] Available from: http://static.government.ru/media/files/K1fPEUszF2gmvwTkw74iPOASarj7KggI.pdf. (accessed 10.2020) (In Russ)]
  34. Постановление Правительства РФ от 26 апреля 2012 г. № 403 «О порядке ведения Федерального регистра лиц, страдающих жизнеугрожающими и хроническими прогрессирующими редкими (орфанными) заболеваниями, приводящими к сокращению продолжительности жизни граждан или их инвалидности, и его регионального сегмента» (с изменениями и дополнениями) [электронный документ]. Доступно по: http://base.garant.ru/70168888/. Ссылка активна на 21.10.2020.
    [Russian Federation government decree of April 26, 2012 No. 403 “On the rules for Federal Register of persons with life-threatening and chronic progressive rare (orphan) diseases leading to the reduction in life expectancy or disability, and its regional segment” (amended and revised.) [Internet] Available from: http://base.garant.ru/70168888/. (accessed 10.2020) (In Russ)]

Миелоидная саркома женских половых органов: обзор литературы и описание собственного клинического наблюдения

А.А. Шатилова1, Л.Л. Гиршова1, Д.В. Зайцев1, И.Г. Будаева1, Ю.В. Миролюбова1, Д.В. Рыжкова1, Р.В. Грозов1, К.В. Богданов1, Т.С. Никулина1, Д.В. Моторин1, Д.Б. Заммоева1, С.В. Ефремова1, В.В. Иванов1, А.В. Петухов1,2, Ю.А. Алексеева1, А.Ю. Зарицкий1

1 ФГБУ «НМИЦ им. В.А. Алмазова» Минздрава России, ул. Аккуратова, д. 2, Санкт-Петербург, Российская Федерация, 197341

2 ФГБУН «Институт цитологии РАН», Тихорецкий пр-т, д. 4, Санкт-Петербург, Российская Федерация, 194064

Для переписки: Алексина Алексеевна Шатилова, ул. Аккуратова, д. 2, Санкт-Петербург, Российская Федерация, 197341; тел.: +7(911)476-35-58; e-mail: alexina-96@list.ru

Для цитирования: Шатилова А.А., Гиршова Л.Л., Зайцев Д.В. и др. Миелоидная саркома женских половых органов: обзор литературы и описание собственного клинического наблюдения. Клиническая онкогематология. 2021;14(1):31–44.

DOI: 10.21320/2500-2139-2021-14-1-31-44


РЕФЕРАТ

Миелоидная саркома (известная как хлорома или гранулоцитарная саркома) представляет собой редкое заболевание и характеризуется пролиферацией незрелых миелоидных клеток в экстрамедуллярных очагах поражения. Хлорома чаще развивается у пациентов с острыми миелоидными лейкозами, другими миелопролиферативными новообразованиями или миелодиспластическим синдромом, однако также может манифестировать в виде изолированной опухоли. Хотя миелоидная саркома может развиваться в различных органах и тканях, все же наиболее часто встречается поражение лимфатических узлов, мягких тканей и костей. Миелоидная саркома с первичным поражением женских половых органов описывается крайне редко. В литературе есть клинические наблюдения поражения шейки матки. В настоящей статье суммированы имеющиеся литературные данные, затрагивающие различные аспекты диагностики и лечения миелоидной саркомы. Обсуждается роль химиотерапии, лучевой терапии, хирургического вмешательства и трансплантации костного мозга в лечении данной злокачественной опухоли. Представляется, что оптимальным вариантом лечения миелоидной саркомы независимо от первичной локализации опухоли остается химиотерапия и трансплантация аллогенного костного мозга (аллоТКМ). Перспективным направлением в терапии является использование новых таргетных препаратов, способных улучшить результаты лечения. Мы представляем клиническое наблюдение пациентки с миелоидной саркомой шейки матки и сопутствующим вовлечением костного мозга, описываем особенности клинического течения, диагностики и лечения. Пациентка получила химиотерапию с последующей аллоТКМ. Проведенный объем предтрансплантационной терапии позволил выполнить аллоТКМ при максимально глубоком ответе. У пациентки достигнута ПЭТ- и МОБ-отрицательная полная ремиссия миелоидной саркомы шейки матки и костного мозга.

Ключевые слова: миелоидная саркома шейки матки, женские половые органы, острые миелоидные лейкозы.

Получено: 12 августа 2020 г.

Принято в печать: 4 декабря 2020 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Злокачественные новообразования в России в 2018 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена, 2019. С. 10, 34, 125.
    [Kaprin AD, Starinskii VV, Petrova GV, eds. Zlokachestvennye novoobrazovaniya v Rossii v 2018 godu (zabolevaemost i smertnost). (Malignant neoplasms in Russia in 2018: incidence and mortality.) Moscow: MNIOI im. P.A. Gertsena Publ.; 2019. pp. 10, 34, 125. (In Russ)]
  2. Michelle SР, Karen JK, Ursula AM. Gynecologic Tumors and Malignancies. In: Atlas of Diagnostic Oncology. 4th edition. Philadelphia: Mosby Elsevier; рр. 278–324.
  3. Онкогинекология: национальное руководство. Под ред. А.А. Каприна. М.: ГЭОТАР-Медиа, 2019. С. 27–31, 114–115, 161.
    [Kaprin AD, ed. Onkoginekologiya: natsionalnoe rukovodstvo. (Oncogynecology: national guide.) Moscow: GEOTAR-Media Publ.; 2019. pp. 27–31, 114–115, 161. (In Russ)]
  4. Kurman RJ, Carcangiu ML, Herrington CS, et al. WHO Classification of Tumours of Female Reproductive Organs. Lyon: IARC Press; 2014.
  5. Almond L, Charalampakis M, Ford S, et al. Myeloid Sarcoma: Presentation, Diagnosis, and Treatment. Clin Lymphoma Myel Leuk. 2017;17(5):263–7. doi: 10.1016/j.clml.2017.02.027.
  6. Swerdlow SH. WHO Classification Of Tumours Of Haematopoietic And Lymphoid Tissues. Lyon: IARC Press; 2017. рр. 167–8.
  7. Kawamoto K, Miyoshi H, Yoshida N, et al. Clinicopathological, Cytogenetic, and Prognostic Analysis of 131 Myeloid Sarcoma Patients. Am J Surg Pathol. 2016;40(11):1473–83. doi: 10.1097/PAS.0000000000000727.
  8. Campidelli C, Agostinelli C, Stitson R, et al. Myeloid sarcoma: extramedullary manifestation of myeloid disorders. Am J Clin Pathol. 2009;132(3):426–37. doi: 10.1309/AJCP1ZA7HYZKAZHS.
  9. Byrd JC, Edenfield WJ, Shields DJ, et al. Extramedullary myeloid cell tumors in acute nonlymphocytic leukemia: a clinical review. J Clin Oncol. 1995;13(7):1800–16. doi: 10.1200/JCO.1995.13.7.1800.
  10. Goyal G, Bartley AC, Patnaik MM, et al. Clinical features and outcomes of extramedullary myeloid sarcoma in the United States: analysis using a national data set. Blood Cancer J. 2017;7(8):e592. doi: 10.1038/bcj.2017.79.
  11. Bakst RL, Tallman MS, Douer D, et al. How I treat extramedullary acute myeloid leukemia. Blood. 2011;118(14):3785–93. doi: 10.1182/blood-2011-04-347229.
  12. Shahin O, Ravandi F. Myeloid sarcoma. Curr Opin Hematol. 2020;27(2):88–94. doi: 10.1097/moh.0000000000000571.
  13. Avni B, Koren-Michowitz M. Myeloid sarcoma: current approach and therapeutic options. Ther Adv Hematol. 2011;2(5):309–16. doi: 10.1177/2040620711410774.
  14. Claerhout H, Van Aelst S, Melis C, et al. Clinicopathological characteristics of de novo and secondary myeloid sarcoma: A monocentric retrospective study. Eur J Haematol. 2018;100(6):603–12. doi: 10.1111/ejh.13056.
  15. Pathak B, Bruchim I, Brisson ML, et al. Granulocytic sarcoma presenting as tumors of the cervix. Gynecol Oncol. 2005;98(3):493–7. doi: 10.1016/j.ygyno.2005.04.028.
  16. Gui W, Li J, Zhang Z, et al. Primary hematological malignancy of the uterine cervix: A case report. Oncol Lett. 2019;18(3):3337–41. doi: 10.3892/ol.2019.10652.
  17. Pileri SA, Ascani S, Cox MC, et al. Myeloid sarcoma: clinico-pathologic, phenotypic and cytogenetic analysis of 92 adult patients. Leukemia. 2007;21(2):340–50. doi: 10.1038/sj.leu.2404491.
  18. Sharma V, Dora T, Patel M, et al. Case Report of Diffuse Large B Cell Lymphoma of Uterine Cervix Treated at a Semiurban Cancer Centre in North India. Case Rep Hematol. 2016;2016:1–4. doi: 10.1155/2016/3042531.
  19. Lee J, Kim Y, Min Y, et al. Granulocytic sarcoma of the uterine cervix. Int J Gynecol Cancer. 2004;14(3):553–7. doi: 10.1111/j.1048-891x.2004.014321.x.
  20. Yu Y, Qin X, Yan S, et al. Non-leukemic myeloid sarcoma involving the vulva, vagina, and cervix: a case report and literature review. Onco Targets Ther. 2015;8:3707–13. doi: 10.2147/OTT.S92815.
  21. Kaur V, Swami A, Alapat D, et al. Clinical characteristics, molecular profile and outcomes of myeloid sarcoma: a single institution experience over 13 years. Hematology. 2018;23(1):17–24. doi: 10.1080/10245332.2017.1333275.
  22. Kashofer K, Gornicec M, Lind K, et al. Detection of prognostically relevant mutations and translocations in myeloid sarcoma by next generation sequencing. Leuk Lymphoma. 2018;59(2):501–4. doi: 10.1080/10428194.2017.1339879.
  23. Dohner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453–74. doi: 10.1182/blood-2009-07-235358.
  24. Савченко В.Г., Паровичникова Е.Н., Афанасьев Б.В. и др. Клинические рекомендации российских экспертов по лечению больных острыми миелоидными лейкозами в возрасте моложе 60 лет. Терапевтический архив. 2014;86(7):4–13.
    [Savchenko VG, Parovichnikova EN, Afanasyev BV, et al. Russian experts’ clinical guidelines for acute myeloid leukemia treatment in patients less than 60 years of age. Terapevticheskii arkhiv. 2014;86(7):4–13. (In Russ)]
  25. Гиршова Л.Л., БудаеваИ.Г., Овсянникова Е.Г. и др. Прогностическое значение и корреляция динамики гиперэкспрессии гена WT1 и мутации гена NPM1 у пациентов с острым миелобластным лейкозом. Клиническая онкогематология. 2017;10(4):485–93. doi: 10.21320/2500-2139-2017-10-4-485-493.
    [Girshova LL, Budaeva IG, Ovsyannikova EG, et al. Prognostic Value and Correlation Between WT1 Overexpression and NPM1 Mutation in Patients with Acute Myeloblastic Leukemia. Clinical oncohematology. 2017;10(4):485–93. doi: 10.21320/2500-2139-2017-10-4-485-493. (In Russ)]
  26. Adams HJ, Kwee TC. Prognostic value of pretransplant FDG-PET in refractory/relapsed Hodgkin lymphoma treated with autologous stem cell transplantation: systematic review and meta-analysis. Ann Hematol. 2016;95(5):695–706. doi: 10.1007/s00277-016-2619-9.
  27. Aschoff P, Hantschel M, Oksuz M, et al. Integrated FDG-PET/CT for detection, therapy monitoring and follow-up of granulocytic sarcoma. Initial results. Nuklearmedizin. 2009;48(5):185–91. doi: 10.3413/nukmed-0236.
  28. NCCN Clinical Practice Guidelines in Oncology. Acute Myeloid Leukemia. Version 3.2020. Available from: https://www.nccn.org/professionals/physician_gls/pdf/aml_blocks.pdf. (accessed 12.11.2020).
  29. Kahn RM, Gordhandas S, Chapman-Davis E, et al. Acute Myeloid Leukemia Presenting as Myeloid Sarcoma with a Predisposition to the Gynecologic Tract. Case Rep Oncol Med. 2019;2019:1–5. doi: 10.1155/2019/4189275.
  30. Modi G, Madabhavi I, Panchal H, et al. Primary vaginal myeloid sarcoma: a rare case report and review of the literature. Case Rep Obstet Gynecol. 2015;2015:1–4. doi: 10.1155/2015/957490.
  31. Hernandez J-A, Navarro J-T, Rozman M, et al. Primary myeloid sarcoma of the gynecologic tract: a report of two cases progressing to acute myeloid leukemia. Leuk Lymphoma. 2002;43(11):2151–3. doi: 10.1080/1042819021000016096.
  32. Ucar M, Guryildirim M. Granulocytic Sarcoma of the Uterus: A Rare Presentation of Extramedullary Relapse of AML and Importance of MRI. Case Rep Radiol. 2014;2014:1–4. doi: 10.1155/2014/501342.
  33. Garcia MG, Deavers MT, Knoblock RJ, et al. Myeloid sarcoma involving the gynecologic tract: a report of 11 cases and review of the literature. Am J Clin Pathol. 2006;125(5):783–90. doi: 10.1309/H9MM-21FP-T7YB-L3PW.
  34. Kim SCН, Natarajan-Ame S, Lioure B, et al. Successful treatment of a granulocytic sarcoma of the uterine cervix in complete remission at six-year follow-up. J Oncol. 2010;2010:1–3. doi: 10.1155/2010/812424.
  35. Gill H, Loong F, Mak V, et al. Myeloid sarcoma of the uterine cervix presenting as missed abortion. Arch Gynecol Obstet. 2012;286(5):1339–41. doi: 10.1007/s00404-012-2454-8.
  36. Weingertner AS, Wilt M, Atallah I, et al. Myeloid Sarcoma of the Uterine Cervix as Presentation of Acute Myeloid Leukaemia after Treatment with Low-Dose Radioiodine for Thyroid Cancer: A Case Report and Review of the Literature. Case Rep Oncol. 2009;2(1):1–6. doi: 10.1159/000191215.
  37. Bao H, Gao J, Chen YH, et al. Rare myeloid sarcoma with KMT2A (MLL)-ELL fusion presenting as a vaginal wall mass. Diagn Pathol. 2019;14(1):26. doi: 10.1186/s13000-019-0804-6.
  38. Otoukesh S, Zhang J, Nakamura R, et al. The efficacy of venetoclax and hypomethylating agents in acute myeloid leukemia with extramedullary involvement. Leuk Lymphoma. 2020;61(8):2020–3. doi: 10.1080/10428194.2020.1742908.
  39. Kanate AS, Vos J, Chargualaf MJ. Venetoclax for Refractory Myeloid Sarcoma. J Oncol Pract. 2019;15(7):413–5. doi: 10.1200/JOP.18.00753.
  40. Girshova L, Romanova E, Kholopova I, et al. Isolated Myeloid Sarcoma Involving the Breast. Blood. 2012;120(21):4345. doi: 10.1182/blood.v120.21.4345.4345.
  41. Chevallier P, Labopin M, Cornelissen J, et al. Allogeneic hematopoietic stem cell transplantation for isolated and leukemic myeloid sarcoma in adults: a report from the Acute Leukemia Working Party of the European group for Blood and Marrow Transplantation. Haematologica. 2011;96(9):1391–4. doi: 10.3324/haematol.2011.041418.
  42. Lachowiez C, DiNardo CD, Konopleva M. Venetoclax in acute myeloid leukemia – current and future directions. Leuk Lymphoma. 2020;61(6):1313–22. doi: 10.1080/10428194.2020.1719098.
  43. Neiman RS, Barcos M, Berard C, et al. Granulocytic sarcoma: a clinicopathologic study of 61 biopsied cases. Cancer. 1981;48(6):1426–37. doi: 10.1002/1097-0142(19810915)48:6<1426::aid-cncr2820480626>3.0.co;2-g.
  44. Meyer HJ, Ponisch W, Schmidt SA, et al. Clinical and imaging features of myeloid sarcoma: a German multicenter study. BMC Cancer. 2019;19(1):1150. doi: 10.1186/s12885-019-6357-y.
  45. Wang HQ, Li J. Clinicopathological features of myeloid sarcoma: Report of 39 cases and literature review. Pathol Res Pract. 2016;212(9):817–24. doi: 10.1016/j.prp.2016.06.014.

Сравнительный анализ результатов лечения миелофиброза руксолитинибом либо руксолитинибом с последующей трансплантацией аллогенных гемопоэтических стволовых клеток

М.В. Барабанщикова, Е.В. Морозова, Ю.Ю. Власова, T.Л. Гиндина, А.В. Евдокимов, И.M. Бархатов, В.В. Байков, И.О. Иванова, T.A. Рудакова, Е.А. Бакин, И.С. Моисеев, A.Д. Кулагин

НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой, ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

Для переписки: Мария Владимировна Барабанщикова, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022; тел.: +7(911)164-01-57; e-mail: maria.barabanshikova.spb@gmail.com

Для цитирования: Барабанщикова М.В., Морозова Е.В., Власова Ю.Ю. и др. Сравнительный анализ результатов лечения миелофиброза руксолитинибом либо руксолитинибом с последующей трансплантацией аллогенных гемопоэтических стволовых клеток. Клиническая онкогематология. 2021;14(1):22–30.

DOI: 10.21320/2500-2139-2021-14-1-22-30


РЕФЕРАТ

Цель. Сравнительный анализ результатов лечения миелофиброза руксолитинибом либо руксолитинибом с последующей трансплантацией аллогенных гемопоэтических стволовых клеток (аллоТГСК), а также оценка эффективности применения руксолитиниба в пред- и посттрансплантационный периоды.

Материалы и методы. В исследование включено 78 пациентов с миелофиброзом, которые направлялись в НИИ ДОГиТ им. Р.М. Горбачевой для определения показаний к проведению аллоТГСК. АллоТГСК выполнена у 33 больных, в т. ч. у 32 с предтрансплантационной подготовкой руксолитинибом (группа руксолитиниба + аллоТГСК). Использовался режим кондиционирования cо сниженной интенсивностью доз (флударабин 180 мг/м2, бусульфан 10 мг/кг). Профилактика реакции «трансплантат против хозяина» (РТПХ) включала циклофосфамид 50 мг/кг в Д+3, Д+4, руксолитиниб 10 мг/сут в Д+5–Д+100 (n = 31), кроличий антитимоцитарный глобулин, такролимус и микофенолата мофетил (n = 2). Терапия руксолитинибом без аллоТГСК использовалась у 45 больных (группа руксолитиниба). Статистически значимых различий по полу, возрасту, диагнозу и молекулярно-генетическому варианту между группами не наблюдалось.

Результаты. Медиана длительности терапии в группе руксолитиниба составила 16 мес. (диапазон 2–78 мес.). У 2 (4 %) пациентов получен частичный ответ, у 8 (20 %) — клиническое улучшение (КУ), у 16 (39 %) — зафиксирована стабилизация (СЗ), у 15 (37 %) — прогрессирование (ПЗ). У 8 (20 %) больных удалось достичь уменьшения размеров селезенки по сравнению с исходными, у 16 (39 %) — уменьшения симптомов заболевания. Кумулятивная 3-летняя частота прогрессирования составила 44 % (95%-й доверительный интервал [95% ДИ] 27–60 %). В группе руксолитиниба + аллоТГСК медиана длительности терапии руксолитинибом составила 7 мес. (диапазон 3–22 мес.). В 9 (28 %) случаях наблюдалось КУ, в 17 (53 %) — С3, в 6 (19 %) — ПЗ. Острая РТПХ II–IV степени зарегистрирована у 5 (20 %) пациентов, острая РТПХ III–IV степени — у 3 (12 %), хроническая РТПХ средней степени тяжести — у 6 (24 %). Летальность, не связанная с рецидивом, в течение 1-го года составила 28 % (95% ДИ 14–44 %). Кумулятивная 3-летняя частота рецидивов в группе руксолитиниба + аллоТГСК была 12 % (95% ДИ 3–28 %). 3-летняя общая выживаемость пациентов с аллоТГСК по результатам ландмарк-анализа за 6 мес. от даты обращения в центр составила 80 %, тогда как в группе руксолитиниба — 41 % (= 0,022); за 12 мес. — 77 и 43 % (= 0,028), за 18 мес. — 86 и 46 % (= 0,015) в этих группах соответственно.

Заключение. Несмотря на эффективность терапии ингибитором JAK1/2 руксолитинибом, риск прогрессирования миелофиброза остается существенным. В связи с этим требуется своевременное решение вопроса о выполнении аллоТГСК у пациентов с промежуточным-2 и высоким риском по DIPSS.

Ключевые слова: миелофиброз, руксолитиниб, трансплантация аллогенных гемопоэтических стволовых клеток.

Получено: 28 сентября 2020 г.

Принято в печать: 15 декабря 2020 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Arber D, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. doi: 10.1182/blood-2016-03-643544.
  2. Cervantes F. How I treat myelofibrosis. Blood. 2014;124(17):2635–42. doi: 10.1182/blood-2014-07-575373.
  3. Меликян А.Л., Ковригина А.М., Суборцева И.Н. и др. Национальные клинические рекомендации по диагностике и терапии Ph-негативных миелопролиферативных заболеваний (истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз) (редакция 2018 г.). Гематология и трансфузиология. 2018;63(3):275–315.
    [Melikyan AL, Kovrigina AM, Subortseva IN, et al. National clinical recommendations for diagnosis and therapy of Ph-negative myeloproliferative neoplasms (polycythemia vera, essential thrombocythemia, primary myelofibrosis) (edition of 2018). Gematologiya i transfuziologiya. 2018;63(3):275–315. (In Russ)]
  4. Verstovsek S, Mesa R, Gotlib J, et al. A Double-Blind, Placebo-Controlled Trial of Ruxolitinib for Myelofibrosis. N Engl J Med. 2012;366(9):799–807. doi: 10.1056/nejmoa1110557.
  5. Verstovsek S, Gotlib J, Mesa RA, et al. Long-term survival in patients treated with ruxolitinib for myelofibrosis: COMFORT-I and -II pooled analyses. J Hematol Oncol. 2017;10(1):156. doi: 10.1186/s13045-017-0527-7.
  6. Morozova E, Barabanshikova M, Gindina T, et al. Hematopoietic stem cell transplantation and other therapeutic options in primary myelofibrosis: a review and two case reports. Cell Ther Transplant. 2016;5(2):21–32. doi: 10.18620/1866-8836-2016-5-2-21-32.
  7. Kroger N, Giorgino T, Scott B, et al. Impact of allogeneic stem cell transplantation on survival of patients less than 65 years of age with primary myelofibrosis. Blood. 2015;125(21):3347–50. doi: 10.1182/blood-2014-10-608315.
  8. Passamonti F, Cervantes F, Vannucchi A, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood. 2010;115(9):1703–8. doi: 10.1182/blood-2009-09-245837.
  9. Kroger N, Holler E, Kobbe G, et al. Allogeneic stem cell transplantation after reduced-intensity conditioning in patients with myelofibrosis: a prospective, multicenter study of the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Blood. 2009;114(26):5264–70. doi: 10.1182/blood-2009-07-234880.
  10. Morozova E, Barabanshikova M, Moiseev I, et al. A Prospective Pilot Study of Graft-versus-Host Disease Prophylaxis with Post-Transplantation Cyclophosphamide and Ruxolitinib in Patients with Myelofibrosis. Acta Haematologica. 2020:1–8. doi: 10.1159/000506758.
  11. Thiele J, Kvasnicka HM, Facchetti F, et al. European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica. 2005;90(8):1128–32.
  12. Tefferi A, Cervantes F, Mesa R, et al. Revised response criteria for myelofibrosis: International Working Group-Myeloproliferative Neoplasms Research and Treatment (IWG-MRT) and European LeukemiaNet (ELN) consensus report. Blood. 2013;122(8):1395–8. doi: 10.1182/blood-2013-03-488098.
  13. Singer M, Deutschman C, Seymour C, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801. doi: 10.1001/jama.2016.0287.
  14. De Pauw B, Walsh TJ, Donnelly JP, et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis. 2008;46(12):1813–21. doi: 10.1086/588660.
  15. McDonald GB, Hinds MS, Fisher LD, et al. Veno-occlusive disease of the liver and multiorgan failure after bone marrow transplantation: a cohort study of 355 patients. Ann Intern Med. 1993;118(4):255–67. doi: 10.7326/0003-4819-118-4-199302150-00003.
  16. Gowin K, Ballen K, Ahn K, et al. Survival following allogeneic transplant in patients with myelofibrosis. Blood Adv. 2020;4(9):1965–73. doi: 10.1182/bloodadvances.2019001084.
  17. Dafni U. Landmark Analysis at the 25-Year Landmark Point. Circ Cardiovasc Qual Outcomes. 2011;4(3):363–71. doi: 10.1161/circoutcomes.110.957951.
  18. Барабанщикова М.В. Клинико-морфологические особенности и факторы прогноза при Ph-негативных хронических миелопролиферативных заболеваниях: Автореф. дис. … мед. наук. СПб., 2016.
    [Barabanshchikova MV. Kliniko-morfologicheskie osobennosti i faktory prognoza pri Ph-negativnykh khronicheskikh mieloproliferativnykh zabolevaniyakh. (Clinical morphological characteristics and prognostic factors in Ph-negative chronic myeloproliferative diseases.) [dissertation] Saint Petersburg; (In Russ)]
  19. Gowin K, Ballen K, Ahn K, et al. Survival following allogeneic transplant in patients with myelofibrosis. Blood Adv. 2020;4(9):1965–73. doi: 10.1182/bloodadvances.2019001084.
  20. Ruggiu M, Cassinat B, Kiladjian J, et al. Should Transplantation Still Be Considered for Ph1-Negative Myeloproliferative Neoplasms in Transformation? Biol Blood Marrow Transplant. 2020;26(6):1160–70. doi: 10.1016/j.bbmt.2020.02.019.
  21. Shanavas M, Popat U, Michaelis L, et al. Outcomes of Allogeneic Hematopoietic Cell Transplantation in Patients with Myelofibrosis with Prior Exposure to Janus Kinase 1/2 Inhibitors. Biol Blood Marrow Transplant. 2016;22(3):432–40. doi: 10.1016/j.bbmt.2015.10.005.
  22. Alchalby H, Yunus D, Zabelina T, et al. Incidence and risk factors of poor graft function after allogeneic stem cell transplantation for myelofibrosis. Bone Marrow Transplant. 2016;51(9):1223–7. doi: 10.1038/bmt.2016.98.
  23. Рудакова Т.А., Кулагин А.Д., Климова О.У. и др. Тяжелая гипофункция трансплантата после аллогенной трансплантации гемопоэтических стволовых клеток у взрослых пациентов: частота, факторы риска, исходы. Клиническая онкогематология. 2019;12(3):309–18. doi: 10.21320/2500-2139-2019-12-3-309-318.
    [Rudakova TA, Kulagin AD, Klimova OU, et al. Severe “Poor Graft Function” after Allogeneic Hematopoietic Stem Cell Transplantation in Adult Patients: Incidence, Risk Factors, and Outcomes. Clinical oncohematology. 2019;12(3):309–18. doi: 10.21320/2500-2139-2019-12-3-309-318. (In Russ)]
  24. Rashidi A, Hamadani M, Zhang M, et al. Outcomes of haploidentical vs matched sibling transplantation for acute myeloid leukemia in first complete remission. Blood Adv. 2019;3(12):1826–36. doi: 10.1182/bloodadvances.2019000050.
  25. Gupta V, Kosiorek HE, Mead A, et al. Ruxolitinib Therapy Followed by Reduced-Intensity Conditioning for Hematopoietic Cell Transplantation for Myelofibrosis: Myeloproliferative Disorders Research Consortium 114 Study. Biol Blood Marrow Transplant. 2019;25(2):256–64. doi: 10.1016/j.bbmt.2018.09.001.
  26. Zeiser R, von Bubnoff N, Butler J, et al. Ruxolitinib for Glucocorticoid-Refractory Acute Graft-versus-Host Disease. N Engl J Med. 2020;382(19):1800–10. doi: 10.1056/nejmoa1917635.
  27. Pu JJ, Poulose J, Malysz J, et al. Impact of ruxolitinib on myelofibrosis patients post allogeneic stem cell transplant—a pilot study. Br J Haematol. 2019;186(5):е130–е133. doi: 10.1111/bjh.15967.
  28. Kroger N, Shahnaz Syed Abd Kadir S, Zabelina T, et al. Peritransplantation Ruxolitinib Prevents Acute Graft-versus-Host Disease in Patients with Myelofibrosis Undergoing Allogenic Stem Cell Transplantation. Biol Blood Marrow Transplant. 2018;24(10):2152–6. doi: 10.1016/j.bbmt.2018.05.023.
  29. Choi J, Cooper ML, Alahmari B, et al. Pharmacologic blockade of JAK1/JAK2 reduces GvHD and preserves the graft-versus-leukemia effect. PLoS ONE. 2014;9(10):e109799. doi: 10.1371/journal.pone.0109799.

Выявление мутаций генов эпигенетической регуляции генома IDH1/2, DNMT3A, ASXL1 и их сочетания с мутациями FLT3, NPM1, RUNX1 у пациентов с острыми миелоидными лейкозами

Е.В. Белоцерковская1,2, Е.К. Зайкова1,2, А.В. Петухов1,2,3, О.Н. Демидов2, К.А. Левчук1, И.Г. Будаева1, Д.В. Зайцев1, Ю.Д. Роговая1, А.А. Шатилова1, К.В. Богданов1, Ю.В. Миролюбова1, Т.С. Никулина1, А.Ю. Зарицкий1, Л.Л. Гиршова1

1 ФГБУ «НМИЦ им. В.А. Алмазова» Минздрава России, ул. Аккуратова, д. 2, Санкт-Петербург, Российская Федерация, 197341

2 ФГБУН «Институт цитологии РАН», Тихорецкий пр-т, д. 4, Санкт-Петербург, Российская Федерация, 194064

3 НТУ «Сириус», Олимпийский пр-т, д. 1, Сочи, Российская Федерация, 354340

Для переписки: Екатерина Васильевна Белоцерковская, канд. биол. наук, ул. Аккуратова, д. 2, Санкт-Петербург, Российская Федерация, 197341; e-mail: belotserkovskaya.ev@gmail.com

Для цитирования: Белоцерковская Е.В., Зайкова Е.К., Петухов А.В. и др. Выявление мутаций генов эпигенетической регуляции генома IDH1/2, DNMT3A, ASXL1 и их сочетания с мутациями FLT3, NPM1, RUNX1 у пациентов с острыми миелоидными лейкозами. Клиническая онкогематология. 2021;14(1):13–21.

DOI: 10.21320/2500-2139-2021-14-1-13-21


РЕФЕРАТ

Цель. Выявление мутаций генов IDH1/IDH2, DNMT3A и ASXL1, ответственных за эпигенетическую регуляцию генома, при впервые диагностированных острых миелоидных лейкозах (ОМЛ) у взрослых и их сочетания с мутациями генов FLT3, NPM1, RUNX1.

Материалы и методы. В исследование включено 56 пациентов с впервые выявленным ОМЛ, проходивших лечение в ФГБУ «НМИЦ им. В.А. Алмазова» Минздрава России. Среди них было 34 мужчины и 22 женщины в возрасте 18–76 лет (медиана 46 лет). Мутационный статус генов эпигенетической регуляции IDH1, IDH2, DNMT3A и ASXL1 определяли методом секвенирования по Сэнгеру. Молекулярно-генетический анализ генов FLT3, NPM1, RUNX1-RUNX1T1 выполняли с использованием коммерческих наборов.

Результаты. Мутации генов эпигенетической регуляции обнаружены у 14 (25 %) из 56 пациентов. Распространенность мутаций не была связана с группами риска (= 0,072). Мутации IDH1/2 выявлены у 15,6 % пациентов и статистически значимо чаще обнаруживались одновременно с мутациями NPM1 (62,5 %; = 0,01) по сравнению с пациентами с диким типом IDH1/2. У большинства пациентов мутации IDH1/2 были связаны с нормальным кариотипом (= 0,002). Мутация DNMT3A (R882) определена у 4 (7,1 %) из 56 пациентов анализируемой группы. У 6 (11,1 %) пациентов были идентифицированы мутации ASXL1, которые сочетались мутациями с RUNX1-RUNX1T1 и FLT3-ITD.

Заключение. Мутации генов эпигенетической регуляции часто обнаруживаются у пациентов с ОМЛ и могут сочетаться с нарушениями в генах NPM1, FLT3 и RUNX1.

Ключевые слова: острые миелоидные лейкозы, гены эпигенетической регуляции IDH1, IDH2, DNMT3A и ASXL1, эпигенетические факторы.

Получено: 20 августа 2020 г.

Принято в печать: 2 декабря 2020 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Wang M, Yang C, Zang L, et al. Molecular mutations and their cooccurrences in cytogenetically normal Acute Myeloid Leukemia. Stem Cells Int. 2017;2017:1–11. doi: 10.1155/2017/6962379.
  2. Dohner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–47. doi: 1182/blood-2016-08-733196.
  3. Gambacorta V, Gnani D, Vago L, et al. Epigenetic Therapies for Acute Myeloid Leukemia and Their Immune-Related Effects. Front Cell Dev Biol. 2019;7:207. doi: 10.3389/fcell.2019.00207.
  4. Santini Hypomethylating agents in the treatment of acute myeloid leukemia: A guide to optimal use. Crit Rev Oncol Hemat. 2009;140:1–7. doi: 10.1016/j.critrevonc.2019.05.013.
  5. Kim Enasidenib: First Global Approval. Drugs. 2017;77(15):1705–11. doi: 10.1007/s40265-017-0813-2.
  6. Liu X, Gong Y. Isocitrate dehydrogenase inhibitors in acute myeloid leukemia. Biomark Res. 2019;7(1):22. doi: 10.1186/s40364-019-0173-z.
  7. Cai SF, Levine RL. Genetic and epigenetic determinants of AML pathogenesis. Semin Hematol. 2018;56(2):84–9. doi: 10.1053/j.seminhematol.2018.08.001.
  8. Steensma DP, Bejar R, Jaiswal S, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126(1):9–16. doi: 10.1182/blood-2015-03-631747.
  9. Genovese G, Kahler AK, Handsaker RE, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371(26):2477. doi: 10.1056/nejmoa1409405.
  10. Bowman RL, Busque L, Levine RL. Clonal Hematopoiesis and Evolution to Hematopoietic Malignancies. Cell Stem Cell. 2018;22(2):157–70. doi: 10.1016/j.stem.2018.01.011.
  11. Jaiswal S, Natarajan P, Silver AJ, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med. 2017;377(2):111–21. doi: 10.1056/nejmoa1701719.
  12. Buscarlet M, Provost S, Zada YF, et al. DNMT3A and TET2 dominate clonal hematopoiesis and demonstrate benign phenotypes and different genetic predispositions. Blood. 2017;130(6):753–62. doi: 10.1182/blood-2017-04-777029.
  13. Yuan X, Peng L, Zeng W, et al. DNMT3A R882 Mutations Predict a Poor Prognosis in AML. Medicine. 2016;95(18):e3519. doi: 10.1097/md.0000000000003519.
  14. Marcucci G, Maharry K, Wu Y, et al. IDH1 and IDH2 Gene Mutations Identify Novel Molecular Subsets Within De Novo Cytogenetically Normal Acute Myeloid Leukemia: A Cancer and Leukemia Group B Study. J Clin Oncol. 2010;28(14):2348–55. doi: 10.1200/JCO.2009.27.3730.
  15. Schnittger S, Eder C, Jeromin S, et al. ASXL1 exon 12 mutations frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcome. Leukemia. 2013;27(1):82–91. doi: 1038/leu.2012.262.
  16. Pratcorona M, Abbas S, Sanders MA, et al. Acquired mutations in ASXL1 in acute myeloid leukemia: prevalence and prognostic value. Haematologica. 2012;97(3):388. doi: 10.3324/haematol.2011.051532.
  17. Wagner K, Damm F, Gohring G, et al. Impact of IDH1 R132 mutations and an IDH1 single nucleotide polymorphism in cytogenetically normal acute myeloid leukemia: SNP rs11554137 is an adverse prognostic factor. J Clin Oncol. 2010;28(14):2356–64. doi: 10.1200/jco.2009.27.6899.
  18. Dinardo CD, Ravandi F, Agresta S, et al. Characteristics, clinical outcome, and prognostic significance of IDH mutations in AML. Am J Hematol. 2015;90(8):732–6. doi: 10.1002/ajh.24072.
  19. Brunetti L, Gundry MC, Goodell MA. DNMT3A in Leukemia. Cold Spring Harb Perspect Med. 2017;7(2):a030320. doi: 10.1101/cshperspect.a030320.
  20. Park SH, Choi JC, Kim SY, et al. Incidence and Prognostic Impact of DNMT3A Mutations in Korean Normal Karyotype Acute Myeloid Leukemia Patients. BioMed Res Int. 2015;2015:1–11. doi: 10.1155/2015/723682.
  21. Chotirat S, Thongnoppakhun W, Promsuwicha O, et al. Molecular alterations of isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) metabolic genes and additional genetic mutations in newly diagnosed acute myeloid leukemia patients. J Hematol Oncol. 2012;5(1):5. doi: 10.1186/1756-8722-5-5.
  22. Petrova L, Vrbacky F, Lanska M, et al. IDH1 and IDH2 mutations in patients with acute myeloid leukemia: Suitable targets for minimal residual disease monitoring? Clin Biochem. 2018;61:34–9. doi: 10.1016/j.clinbiochem.2018.08.012.
  23. Waitkus MS, Diplas BH, Yan H. Biological Role and Therapeutic Potential of IDH Mutations in Cancer. Cancer Cell. 2018;34(2):186–95. doi: 10.1016/j.ccell.2018.04.011.
  24. Clark O, Yen K, Mellinghoff IK. Molecular Pathways: Isocitrate Dehydrogenase Mutations in Cancer. Clin Cancer Res. 2016;22(8):1837–42. doi: 1158/1078-0432.CCR-13-1333.
  25. Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 Mutations in Gliomas. N Engl J Med 2009;360(8):765–73. doi: 10.1056/NEJMoa0808710.
  26. Parsons DW, Jones S, Zhang X, et al. An Integrated Genomic Analysis of Human Glioblastoma Multiforme. 2008;321(5897):1807–12. doi: 10.1126/science.1164382.
  27. Whitehall VLJ, Dumenil TD, McKeone DM, et al. Isocitrate dehydrogenase 1 R132C mutation occurs exclusively in microsatellite stable colorectal cancers with the CpG island methylator phenotype. Epigenetics. 2014;9(11):1454–60. doi: 10.4161/15592294.2014.971624.
  28. Mardis ER, Ding L, Dooling DJ, et al. Recurring Mutations Found by Sequencing an Acute Myeloid Leukemia Genome. N Engl J Med. 2009;361(11):1058–66. doi: 10.1056/NEJMoa0903840.
  29. Green CL, Evans CM, Zhao L, et al. The prognostic significance of IDH2 mutations in AML depends on the location of the mutation. Blood. 2011;118(2):409–12. doi: 10.1182/blood-2010-12-322479.
  30. Berenstein R, Blau IW, Kar A, et al. Comparative examination of various PCR-based methods for DNMT3A and IDH1/2 mutations identification in acute myeloid leukemia. J Exp Clin Cancer Res. 2014;33(1):44. doi: 10.1186/1756-9966-33-44.
  31. Mizuta S, Yamane N, Komai T, et al. Investigation of screening method for DNMT3A mutations by high‐resolution melting analysis in acute myeloid leukemia. Int J Lab Hematol. 2019;41(5):593–600. doi: 10.1111/ijlh.13056.
  32. МотыкоЕ.В., Блау О.В., Полушкина Л.Б. и др. Прогностическое значение генетических мутаций у больных острыми миелоидными лейкозами: результаты совместного исследования гематологических клиник Санкт-Петербурга (Россия) и клиники Шарите (Германия). Клиническая онкогематология. 2019;12(2):211–9. doi: 10.21320/2500-2139-2019-12-2-211-219.
    [Motyko EV, Blau OV, Polushkina LB, et al. Prognostic Value of Genetic Mutations in Patients with Acute Myeloid Leukemias: Results of a Cooperative Study of Hematology Clinics of Saint Petersburg (Russia) and Charite Clinic (Germany). Clinical oncohematology. 2019;12(2):211–9. doi: 10.21320/2500-2139-2019-12-2-211-219. (In Russ)]
  33. ElNahass YH, Badawy RH, ElRefaey FA, et al. IDH Mutations in AML Patients; A higher Association with Intermediate Risk Cytogenetics. Asian Pacif J Cancer Prev. 2020;21(3):721–5. doi: 10.31557/APJCP.2020.21.3.721.
  34. Ferret Y, Boissel N, Helevaut N, et al. Clinical Relevance Of IDH1/2 Mutant Allele Burden During Follow-Up In Acute Myeloid Leukemia. A Study By The French ALFA Group. Haematologica. 2018;103(5):822–9. doi: 10.3324/haematol.2017.183525.
  35. Brambati C, Galbiati S, Xue E, et al. Droplet digital polymerase chain reaction for DNMT3A and IDH1/2 mutations to improve early detection of acute myeloid leukemia relapse after allogeneic hematopoietic stem cell transplantation. Haematologica. 2016;101(4):e157–e161. doi: 10.3324/haematol.2015.135467.
  36. Patel KP, Ravandi F, Ma D, et al. Acute myeloid leukemia with IDH1 or IDH2 mutation: frequency and clinicopathologic features. Am J Clin Pathol. 2011;135(1):35–45. doi: 10.1309/AJCPD7NR2RMNQDVF.
  37. Zou Y, Bai HX, Wang Z, Yang L. Comparison of immunohistochemistry and DNA sequencing for the detection of IDH1 mutations in gliomas. Neuro Oncol. 2015;17(3):477–8. doi: 10.1093/neuonc/nou351.
  38. Petiti J, Rosso V, Croce E, et al. Highly Sensitive Detection of IDH2 Mutations in Acute Myeloid Leukemia. J Clin Med. 2020;9(1):271. doi: 10.3390/jcm9010271.
  39. Aref S, Kamel AS, Abdel AMF, et al. Prevalence and clinical effect of IDH1 and IDH2 mutations among cytogenetically normal acute myeloid leukemia patients. Clin Lymphoma Myel Leuk. 2015;15(9):550–5. doi: 10.1016/j.clml.2015.05.009.
  40. Boissel N, Nibourel O, Renneville A, et al. Prognostic Impact of Isocitrate Dehydrogenase Enzyme Isoforms 1 and 2 Mutations in Acute Myeloid Leukemia: A Study by the Acute Leukemia French Association Group. J Clin Oncol. 2010;28(23):3717–23. doi: 10.1200/jco.2010.28.2285.
  41. Xu Q, Li Y, Lv N, et al. Correlation between isocitrate dehydrogenase gene aberrations and prognosis of patients with acute myeloid leukemia: A systematic review and meta-analysis. Clin Cancer Res. 2017;23(15):4511–22. doi: 10.1158/1078-0432.ccr-16-2628.
  42. Montalban-Bravo G, DiNardo CD. The role of IDH mutations in acute myeloid leukemia. Future Oncol. 2018;10(14):979–93. doi: 10.2217/fon-2017-0523.
  43. Amatangelo MD, Quek L, Shih A, et al. Enasidenib induces acute myeloid leukemia cell differentiation to promote clinical response. Blood. 2017;130(6):732–42. doi: 10.1182/blood-2017-04-779447.
  44. Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet. 1998;19(3):219–20. doi: 10.1038/890.
  45. Ley TJ, Ding L, Walter MJ, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363(25):2424–33. doi: 10.1056/NEJMoa1005143.
  46. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059–74. doi: 1056/NEJMoa1301689.
  47. Блау О.В. Мутации генов при острых миелоидных лейкозах. Клиническая онкогематология. 2016;9(3):245–56. doi: 10.21320/2500-2139-2016-9-3-245-256.
    [Blau OV. Genetic Mutations in Acute Myeloid Leukemia. Clinical oncohematology. 2016;9(3):245–56. doi: 10.21320/2500-2139-2016-9-3-245-256. (In Russ)]
  48. Guryanova OA, Shank K, Spitzer B, et al. DNMT3A mutations promote anthracycline resistance in acute myeloid leukemia via impaired nucleosome remodeling. Nat Med. 2016;22(12):1488–95. doi: 10.1038/nm.4210.
  49. Hou HA, Kuo YY, Liu CY, et al. DNMT3A mutations in acute myeloid leukemia: stability during disease evolution and clinical implications. Blood. 2012;119(2):559–68. doi: 10.1182/blood-2011-07-369934.
  50. Ploen GG, Nederby L, Guldberg P, et al. Persistence of DNMT3A mutations at long-term remission in adult patients with AML. Br J Haematol. 2014;167(4):478–86. doi: 10.1111/bjh.13062.
  51. Rothenberg-Thurley M, Amler S, Goerlich D, et al. Persistence of pre-leukemic clones during first remission and risk of relapse in acute myeloid leukemia. Leukemia. 2018;32(7):1598–608. doi: 10.1038/s41375-018-0034-z.
  52. Gale RE, Lamb K, Allen C, et al. Simpson’s Paradox and the Impact of Different DNMT3A Mutations on Outcome in Younger Adults With Acute Myeloid Leukemia. J Clin Oncol. 2015;33(18):2072–83. doi: 10.1200/jco.2014.59.2022.
  53. Gaidzik VI, Schlenk RF, Paschka P, et al. Clinical impact of DNMT3A mutations in younger adult patients with acute myeloid leukemia: Results of the AML Study Group (AMLSG). Blood. 2013;121(23):4769–77. doi: 10.1182/blood-2012-10-461624.
  54. Elsayed GM, Fahmi AEA, Shafiket NF, et al. Study of DNA methyl transferase 3A mutation in acute myeloid leukemic patients. Egypt J Med Hum Genet. 2018;19(4):315–9. doi: 10.1016/j.ejmhg.2018.05.005.
  55. Berenstein R, Blau IW, Suckert N, et al. Quantitative detection of DNMT3A R882H mutation in acute myeloid leukemia. J Exp Clin Cancer Res. 2015;34(1):55. doi: 10.1186/s13046-015-0173-2.
  56. Young AL, Challen GA, Birmann BM, et al. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat Commun. 2016;7(1):12484. doi: 10.1038/ncomms12484.
  57. Asada S, Fujino T, Goyama S, et al. The role of ASXL1 in hematopoiesis and myeloid malignancies. Cell Mol Life Sci. 2019;76(13):2511–23 doi: 10.1007/s00018-019-03084-7.
  58. Chou WC, Huang HH, Hou HA, et al. Distinct clinical and biological features of de novo acute myeloid leukemia with additional sex comb-like 1 (ASXL1) mutations. Blood. 2010;116(20):4086–94. doi: 10.1182/blood-2010-05-283291.
  59. Molenaar RJ, Thota S, Nagata Y, et al. Clinical and biological implications of ancestral and non-ancestral IDH1 and IDH2 mutations in myeloid neoplasms. Leukemia. 2015;29(11):2134–42. doi: 10.1038/leu.2015.91.
  60. Asada S, Kitamura T. Aberrant histone modifications induced by mutant ASXL1 in myeloid neoplasms. Int J Hematol. 2019;110(2):179–86. doi: 10.1007/s12185-018-2563-7.
  61. Shivarov V, Ivanova M, Naumova E. Rapid Detection of DNMT3A R882 Mutations in Hematologic Malignancies Using a Novel Bead-Based Suspension Assay with BNA(NC) Probes. PLoS ONE. 2014;9(6):e99769. doi: 10.1371/journal.pone.0099769.
  62. Gelsi-Boyer V, Trouplin V, Adelaide J, et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol. 2009;145(6):788–800. doi: 10.1111/j.1365-2141.2009.07697.x.
  63. Abbas S, Lugthart S, Kavelaars F, et al. Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value. Blood. 2010;116(12):2122–6. doi: 10.1182/blood-2009-11-250878.
  64. Dunlap JB, Leonard J, Rosenberg M, et al. The combination of NPM1, DNMT3A, and IDH1/2 mutations leads to inferior overall survival in AML. Am J Hematol. 2019;94(8):913–20. doi: 10.1002/ajh.25517.
  65. Virijevic M, Karan-Djurasevic T, Marjanovic I, et al. Somatic mutations of isocitrate dehydrogenases 1 and 2 are prognostic and follow-up markers in patients with acute myeloid leukaemia with normal karyotype. Radiol Oncol. 2016;50(4):385–93. doi: 10.1515/raon-2016-0044.
  66. Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209–21. doi: 10.1056/NEJMoa1516192.
  67. Boddu P, Takahashi K, Pemmaraju N, et al. Influence of IDH on FLT3ITD status in newly diagnosed AML. Leukemia. 2017;31(11):2526– doi: 10.1038/leu.2017.244.
  68. Yan X-J, Xu J, Gu Z-H, et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet. 2011;43(4):309–15. doi: 10.1038/ng.788.
  69. Abdel-Wahab O, Adli M, Saunders L, et al. ASXL1 Mutations Promote Myeloid Transformation Through Inhibition of PRC2-Mediated Gene Repression. Blood. 2011;118(21):405. doi: 10.1182/blood.v118.21.405.405.
  70. Inoue D, Matsumoto M, Nagase R. Truncation mutants of ASXL1 observed in myeloid malignancies are expressed at detectable protein levels. Exp Hematol. 2016;44(3):172–6.e1. doi: 10.1016/j.exphem.2015.11.011.
  71. Gelsi-Boyer V, Brecqueville M, Devillier R, et al. Mutations in ASXL1 are associated with poor prognosis across the spectrum of malignant myeloid diseases. J Hematol Oncol. 2012;5(1):12. doi: 10.1186/1756-8722-5-12.
  72. Paschka P, Schlenk RF, Gaidzik VI. ASXL1 mutations in younger adult patients with acute myeloid leukemia: a study by the German Austrian Acute Myeloid Leukemia Study Group. Haematologica. 2015;100(3):324–30. doi: 10.3324/haematol.2014.114157.

Факторы сохранения молекулярной ремиссии после прекращения терапии ингибиторами тирозинкиназ у пациентов с хроническим миелолейкозом: результаты нерандомизированного проспективного клинического исследования

О.А. Шухов, А.Н. Петрова, Е.Ю. Челышева, А.В. Быкова, И.С. Немченко, А.Г. Туркина

ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167

Для переписки: Олег Александрович Шухов, канд. мед. наук, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167; тел.: +7(495)612-16-36, +7(985)2871269; e-mail: shuhov@list.ru

Для цитирования: Шухов О.А., Петрова А.Н., Челышева Е.Ю. и др. Факторы сохранения молекулярной ремиссии после прекращения терапии ингибиторами тирозинкиназ у пациентов с хроническим миелолейкозом: результаты нерандомизированного проспективного клинического исследования. Клиническая онкогематология. 2021;14(1):1–12.

DOI: 10.21320/2500-2139-2021-14-1-1-12


РЕФЕРАТ

Цель. Изучить влияние различных клинических и биологических факторов на сохранение молекулярной ремиссии после отмены терапии ингибиторами тирозинкиназ (ИТК) у пациентов с хроническим миелолейкозом (ХМЛ) со стабильным глубоким молекулярным ответом (МО).

Материалы и методы. С 2015 по 2019 г. в проспективное многоцентровое исследование по оценке стабильности молекулярной ремиссии после прекращения приема ИТК включено 98 пациентов с ХМЛ. В исследование включали пациентов в хронической фазе ХМЛ, с длительностью терапии ИТК ≥ 3 лет и стабильным глубоким МО (≤ МО4; BCR-ABL < 0,01 %) в течение по крайней мере 2 лет. Молекулярный мониторинг проводили ежемесячно в течение первых 6 мес. после отмены ИТК, каждые 2 мес. в течение 0,5–1 года и каждые 3 мес. после 1 года наблюдения. Возобновление лечения требовалось в случае потери большого МО (BCR-ABL > 0,1 %).

Результаты. 3-летняя выживаемость без молекулярного рецидива составила 51 % (95%-й доверительный интервал 41–61 %) во всей группе, 25 % у пациентов с неудачной попыткой отмены терапии в анамнезе и 53 % у пациентов, прекративших прием ИТК впервые. По результатам однофакторного анализа статистически значимыми оказались следующие факторы: длительность глубокого МО, длительность терапии и глубина МО. Показано, что длительность терапии ИТК, а не длительность глубокого МО имеет независимое прогностическое значение для российской популяции пациентов с ХМЛ. Не выявлено статистически значимых различий в 3-летней выживаемости без молекулярного рецидива в группах пациентов, получавших только иматиниб (55 %), по сравнению с пациентами, получавшими ИТК 2-го поколения (ИТК2) в первую (70 %; = 0,26) и вторую линии лечения (39 %; = 0,09). Тем не менее длительность терапии у пациентов, получавших ИТК2 в качестве первой линии, была более чем в 2 раза меньше, чем у пациентов, получавших иматиниб в первой линии (медиана 41,5 vs 96,4 мес. соответственно; < 0,0001).

Заключение. Более длительная продолжительность лечения и глубина МО (≤ MО4.5) до отмены ИТК увеличивают вероятность сохранения ремиссии без лечения. Наше исследование показало, что выживаемость без молекулярного рецидива значимо не увеличивается при применении ИТК2 в первой линии по сравнению с иматинибом. Тем не менее терапия ИТК2 в качестве первой линии позволяет сократить вдвое длительность лечения, необходимого для достижения сопоставимых показателей выживаемости без молекулярного рецидива по сравнению с иматинибом.

Ключевые слова: хронический миелолейкоз, ингибиторы тирозинкиназ, глубокий молекулярный ответ, ремиссия без лечения.

Получено: 30 июля 2020 г.

Принято в печать: 1 декабря 2020 г.

Читать статью в PDF

Статистика Plumx русский

ЛИТЕРАТУРА

  1. Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood. 2000;96(10):3343–56.
  2. Branford S, Kim DDH, Apperley JF, et al. Laying the foundation for genomically-based risk assessment in chronic myeloid leukemia. Leukemia. 2019;33(8):1835–50. doi: 10.1038/s41375-019-0512-y.
  3. Swerdlow SH. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press; 2017.
  4. Druker BJ, Guilhot F, O’Brien SG, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355(23):2408–17. doi: 10.1056/NEJMoa062867.
  5. Saussele S, Krauss MP, Hehlmann R, et al. Impact of comorbidities on overall survival in patients with chronic myeloid leukemia: results of the randomized CML study IV. Blood. 2015;126(1):42–9. doi: 10.1182/blood-2015-01-617993.
  6. Hochhaus A, Saglio G, Hughes TP, et al. Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia. 2016;30(5):1044–54. doi: 10.1038/leu.2016.5.
  7. Cortes JE, Saglio G, Kantarjian HM, et al. Final 5-Year Study Results of DASISION: The Dasatinib Versus Imatinib Study in Treatment-Naive Chronic Myeloid Leukemia Patients Trial. J Clin Oncol. 2016;34(20):2333–40. doi: 10.1200/JCO.2015.64.8899.
  8. Lipton JH, Chuah C, Guerci-Bresler A, et al. Ponatinib versus imatinib for newly diagnosed chronic myeloid leukaemia: an international, randomised, open-label, phase 3 trial. Lancet Oncol. 2016;17(5):612–21. doi: 10.1016/S1470-2045(16)00080-2.
  9. Hochhaus A, Larson RA, Guilhot F, et al. Long-Term Outcomes of Imatinib Treatment for Chronic Myeloid Leukemia. N Engl J Med. 2017;376(10):917–27. doi: 10.1056/NEJMoa1609324.
  10. Goldman J, Gordon M. Why do chronic myelogenous leukemia stem cells survive allogeneic stem cell transplantation or imatinib: does it really matter?. Leuk Lymphoma. 2006;47(1):1–7. doi: 10.1080/10428190500407996.
  11. Baccarani M, Castagnetti F, Gugliotta G, et al. The proportion of different BCR-ABL1 transcript types in chronic myeloid leukemia. An international overview. Leukemia. 2019;33(5):1173–83. doi: 10.1038/s41375-018-0341-4.
  12. Hughes T, Deininger M, Hochhaus A, et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood. 2006;108(1):28–37. doi: 10.1182/blood-2006-01-0092.
  13. Branford S, Seymour JF, Grigg A, et al. BCR-ABL messenger RNA levels continue to decline in patients with chronic phase chronic myeloid leukemia treated with imatinib for more than 5 years and approximately half of all first-line treated patients have stable undetectable BCR-ABL using strict sensitivity criteria. Clin Cancer Res. 2007;13(23):7080–5. doi: 10.1158/1078-0432.CCR-07-0844.
  14. Branford S, Cross NC, Hochhaus A, et al. Rationale for the recommendations for harmonizing current methodology for detecting BCR-ABL transcripts in patients with chronic myeloid leukaemia. Leukemia. 2006;20(11):1925–30. doi: 10.1038/sj.leu.2404388.
  15. Cross NC, White HE, Colomer D, et al. Laboratory recommendations for scoring deep molecular responses following treatment for chronic myeloid leukemia. Leukemia. 2015;29(5):999–1003. doi: 10.1038/leu.2015.29.
  16. Hehlmann R, Muller MC, Lauseker M, et al. Deep molecular response is reached by the majority of patients treated with imatinib, predicts survival, and is achieved more quickly by optimized high-dose imatinib: results from the randomized CML-study IV. J Clin Oncol. 2014;32(5):415–23. doi: 10.1200/JCO.2013.49.9020.
  17. Rousselot P, Huguet F, Rea D, et al. Imatinib mesylate discontinuation in patients with chronic myelogenous leukemia in complete molecular remission for more than 2 years. Blood. 2007;109(1):58–60. doi: 10.1182/blood-2006-03-011239.
  18. NCCN Clinical Practice Guidelines in Oncology. Chronic Myeloid Leukemia. Version 3.2020. Available from: https://www.nccn.org/professionals/physician_gls/pdf/aml_blocks.pdf. (accessed 23.10.2020).
  19. Hochhaus A, Saussele S, Rosti G, et al. Chronic myeloid leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(Suppl 4):iv41–iv51. doi: 10.1093/annonc/mdx219.
  20. Hughes TP, Ross DM. Moving treatment-free remission into mainstream clinical practice in CML. Blood. 2016;128(1):17–23. doi: 10.1182/blood-2016-01-694265.
  21. Mahon FX, Rea D, Guilhot J, et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol. 2010;11(11):1029–35. doi: 10.1016/S1470-2045(10)70233-3.
  22. Etienne G, Guilhot J, Rea D, et al. Long-Term Follow-Up of the French Stop Imatinib (STIM1) Study in Patients With Chronic Myeloid Leukemia. J Clin Oncol. 2017;35(3):298–305. doi: 10.1200/JCO.2016.68.2914.
  23. Ross DM, Branford S, Seymour JF, et al. Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: results from the TWISTER study. Blood. 2013;122(4):515–22. doi: 10.1182/blood-2013-02-483750.
  24. Ross DM, Pagani IS, Shanmuganathan N, et al. Long-term treatment-free remission of chronic myeloid leukemia with falling levels of residual leukemic cells. Leukemia. 2018;32(12):2572–9. doi: 10.1038/s41375-018-0264-0.
  25. Rousselot P, Charbonnier A, Cony-Makhoul P, et al. Loss of major molecular response as a trigger for restarting tyrosine kinase inhibitor therapy in patients with chronic-phase chronic myelogenous leukemia who have stopped imatinib after durable undetectable disease. J Clin Oncol. 2014;32(5):424–30. doi: 10.1200/JCO.2012.48.5797.
  26. Mori S, Vagge E, le Coutre P, et al. Age and dPCR can predict relapse in CML patients who discontinued imatinib: the ISAV study. Am J Hematol. 2015;90(10):910–4. doi: 10.1002/ajh.24120.
  27. Takahashi N, Tauchi T, Kitamura K, et al. Deeper molecular response is a predictive factor for treatment-free remission after imatinib discontinuation in patients with chronic phase chronic myeloid leukemia: the JALSG-STIM213 study. Int J Hematol. 2018;107(2):185–93. doi: 10.1007/s12185-017-2334-x.
  28. Clark RE, Polydoros F, Apperley JF, et al. De-escalation of tyrosine kinase inhibitor dose in patients with chronic myeloid leukaemia with stable major molecular response (DESTINY): an interim analysis of a non-randomised, phase 2 trial. Lancet Haematol. 2017;4(7):e310–e316. doi: 10.1016/S2352-3026(17)30066-
  29. Clark RE, Polydoros F, Apperley JF, et al. De-escalation of tyrosine kinase inhibitor therapy before complete treatment discontinuation in patients with chronic myeloid leukaemia (DESTINY): a non-randomised, phase 2 trial. Lancet Haematol. 2019;6(7):e375–e383. doi: 10.1016/S2352-3026(19)30094-8.
  30. Lee SE, Choi SY, Song HY, et al. Imatinib withdrawal syndrome and longer duration of imatinib have a close association with a lower molecular relapse after treatment discontinuation: the KID study. Haematologica. 2016;101(6):717–23. doi: 10.3324/haematol.2015.139899.
  31. Saussele S, Richter J, Guilhot J, et al. Discontinuation of tyrosine kinase inhibitor therapy in chronic myeloid leukaemia (EURO-SKI): a prespecified interim analysis of a prospective, multicentre, non-randomised, trial. Lancet Oncol. 2018;19(6):747–57. doi: 10.1016/S1470-2045(18)30192-X.
  32. Claudiani S, Apperley JF, Gale RP, et al. E14a2 BCR-ABL1 transcript is associated with a higher rate of treatment-free remission in individuals with chronic myeloid leukemia after stopping tyrosine kinase inhibitor therapy. Haematologica. 2017;102(8):e297–e299. doi: 10.3324/haematol.2017.168740.
  33. Sokal JE, Cox EB, Baccarani M, et al. Prognostic discrimination in “good-risk” chronic granulocytic leukemia. Blood. 1984;63(4):789–99. doi: 10.1182/blood.V63.4.789.789.
  34. Nicolini FE, Dulucq S, Boureau L, et al. Evaluation of Residual Disease and TKI Duration Are Critical Predictive Factors for Molecular Recurrence after Stopping Imatinib First-line in Chronic Phase CML Patients. Clin Cancer Res. 2019;25(22):6606–13. doi: 10.1158/1078-0432.CCR-18-3373.
  35. Kumagai T, Nakaseko C, Nishiwaki K, et al. Dasatinib cessation after deep molecular response exceeding 2 years and natural killer cell transition during dasatinib consolidation. Cancer Sci. 2018;109(1):182–92. doi: 10.1111/cas.13430.
  36. Takahashi N, Nishiwaki K, Nakaseko C, et al. Treatment-free remission after two-year consolidation therapy with nilotinib in patients with chronic myeloid leukemia: STAT2 trial in Japan. Haematologica. 2018;103(11):1835–42. doi: 10.3324/haematol.2018.194894.
  37. Benjamini O, Kantarjian H, Rios MB, et al. Patient-driven discontinuation of tyrosine kinase inhibitors: single institution experience. Leuk Lymphoma. 2014;55(12):2879–86. doi: 10.3109/10428194.2013.831092.
  38. Hochhaus A, Masszi T, Giles FJ, et al. Treatment-free remission following frontline nilotinib in patients with chronic myeloid leukemia in chronic phase: results from the ENESTfreedom study. Leukemia. 2017;31(7):1525–31. doi: 10.1038/leu.2017.63.
  39. Ross DM, Masszi T, Casares GMT, et al. Durable treatment-free remission in patients with chronic myeloid leukemia in chronic phase following frontline nilotinib: 96-week update of the ENESTfreedom study. J Cancer Res Clin Oncol. 2018;144(5):945–54. doi: 10.1007/s00432-018-2604-x.
  40. Mahon FX, Boquimpani C, Kim DW, et al. Treatment-Free Remission After Second-Line Nilotinib Treatment in Patients With Chronic Myeloid Leukemia in Chronic Phase: Results From a Single-Group, Phase 2, Open-Label Study. Ann Intern Med. 2018;168(7):461–70. doi: 10.7326/M17-1094.
  41. Kimura S, Imagawa J, Murai K, et al. Treatment-free remission after first-line dasatinib discontinuation in patients with chronic myeloid leukaemia (first-line DADI trial): a single-arm, multicentre, phase 2 trial. Lancet Haematol. 2020;7(3):e218–e225. doi: 10.1016/S2352-3026(19)30235-2.
  42. Imagawa J, Tanaka H, Okada M, et al. Discontinuation of dasatinib in patients with chronic myeloid leukaemia who have maintained deep molecular response for longer than 1 year (DADI trial): a multicentre phase 2 trial. Lancet Haematol. 2015;2(12):e528–e535. doi: 10.1016/s2352-3026(15)00196-9.
  43. Okada M, Imagawa J, Tanaka H, et al. Final 3-year Results of the Dasatinib Discontinuation Trial in Patients With Chronic Myeloid Leukemia Who Received Dasatinib as a Second-line Treatment. Clin Lymphoma Myel Leuk. 2018;18(5):353–60.e1. doi: 10.1016/j.clml.2018.03.004.
  44. Rea D, Nicolini FE, Tulliez M, et al. Discontinuation of dasatinib or nilotinib in chronic myeloid leukemia: interim analysis of the STOP 2G-TKI study. Blood. 2017;129(7):846–54. doi: 10.1182/blood-2016-09-742205.
  45. Baccarani M, Saglio G, Goldman J, et al. Evolving concepts in the management of chronic myeloid leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood. 2006;108(6):1809–20. doi: 10.1182/blood-2006-02-005686.
  46. Baccarani M, Cortes J, Pane F, et al. Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. J Clin Oncol. 2009;27(35):6041–51. doi: 10.1200/JCO.2009.25.0779.
  47. Baccarani M, Deininger MW, Rosti G, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122(6):872–84. doi: 10.1182/blood-2013-05-501569.
  48. Radich JP, Hochhaus A, Giles FJ, et al. Analyses of Predictors of Durable Treatment-Free Remission in Patients with Chronic Myeloid Leukemia in Chronic Phase Following Frontline or Second-Line Nilotinib. 2019;134(Suppl_1):2932. doi: 10.1182/blood-2019-129393.
  49. D’Adda M, Farina M, Schieppati F, et al. The e13a2 BCR-ABL transcript negatively affects sustained deep molecular response and the achievement of treatment-free remission in patients with chronic myeloid leukemia who receive tyrosine kinase inhibitors. Cancer. 2019;125(10):1674–82. doi: 10.1002/cncr.31977.
  50. Legros L, Nicolini FE, Etienne G, et al. Second tyrosine kinase inhibitor discontinuation attempt in patients with chronic myeloid leukemia. Cancer. 2017;123(22):4403–10. doi: 10.1002/cncr.30885.
  51. Shih YT, Cortes JE, Kantarjian HM. Treatment value of second-generation BCR-ABL1 tyrosine kinase inhibitors compared with imatinib to achieve treatment-free remission in patients with chronic myeloid leukaemia: a modelling study. Lancet Haematol. 2019;6(8):e398–e408. doi: 10.1016/S2352-3026(19)30087-0.
  52. Шуваев В.А., Абдулкадыров К.М., МартынкевичИ.С., Фоминых М.С. Выбор терапии первой линии хронического миелолейкоза: моделирование клинико-экономических факторов. Клиническая онкогематология. 2015;8(1):78–83. doi: 10.21320/2500-2139-2015-8-1-78-83.
    [Shuvaev VA, Abdulkadyrov KM, Martynkevich IS, Fominykh MS. First Line Treatment Choice for Chronic Myelogenous Leukemia: Modeling of Clinical and Economic Factors. Clinical oncohematology. 2015;8(1):78–83. doi: 10.21320/2500-2139-2015-8-1-78-83. (In Russ)]
  53. Рубрикатор клинических рекомендаций. Хронический миелолейкоз [электронный документ]. Доступно по: http://cr.rosminzdrav.ru/#!/recomend/120. Ссылка активна на 23.10.2020.
    [List of clinical guidelines. Chronic myeloid leukemia. [Internet] Available from: http://cr.rosminzdrav.ru/#!/recomend/120. (accessed 10.2020) (In Russ)]
  54. Hochhaus A, Baccarani M, Silver RT, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020;34(4):966–84. doi: 10.1038/s41375-020-0776-2.

Фармакокинетика, безопасность и переносимость первого отечественного дженерика анагрелида в сравнении с референтным препаратом

С.К. Зырянов1,2, В.В. Чистяков1, О.И. Бутранова1, Е.С. Степанова1, О.Г. Потанина1, Р.А. Абрамович1

1 ФГАОУ ВО «Российский университет дружбы народов», ул. Миклухо-Маклая, д. 6, Москва, Российская Федерация, 117198

2 ГБУЗ «Городская клиническая больница № 24 ДЗМ», ул. Писцовая, д. 10, Москва, Российская Федерация, 127015

Для переписки: Ольга Игоревна Бутранова, канд. мед. наук, ул. Миклухо-Маклая, д. 6, Москва, Российская Федерация, 117198; тел.: +7(903)376-71-40; e-mail: butranova-oi@rudn.ru, butranovaolga@mail.ru

Для цитирования: Зырянов С.К., Чистяков В.В., Бутранова О.И. и др. Фармакокинетика, безопасность и переносимость первого отечественного дженерика анагрелида в сравнении с референтным препаратом. Клиническая онкогематология. 2020;13(3):346–53.

DOI: 10.21320/2500-2139-2020-13-3-346-353


РЕФЕРАТ

Актуальность. Анагрелид используется для лечения эссенциальной тромбоцитемии. Препарат оказывает селективное воздействие на тромбоциты и не вызывает выраженной миелосупрессии, что обеспечивает удовлетворительный профиль безопасности.

Цель. Сравнение фармакокинетики и оценка биоэквивалентности двух препаратов анагрелида для приема внутрь у здоровых добровольцев.

Материалы и методы. Открытое рандомизированное двухпериодное перекрестное исследование в двух последовательностях по сравнительному изучению фармакокинетики и биоэквивалентности анагрелида включало 30 добровольцев. Участники исследования однократно получали тестируемый либо референтный препарат в зависимости от периода исследования. Серийные образцы крови для фармакокинетического анализа собирали в течение 12 ч после приема препарата. Концентрацию анагрелида в плазме определяли путем высокоэффективной жидкостной хроматографии и масс-спектрометрии. Фармакокинетические параметры анализировались некомпартментным методом. Для оценки различий между средними значениями фармакокинетических параметров AUC0-t, AUC0-∞ и Cmax при уровне значимости 5 % использовался дисперсионный анализ ANOVA.

Результаты. Средние значения максимальной концентрации (Сmax) после однократного приема анагрелида составили 12,68 ± 2,99 и 12,46 ± 3,15 нг/мл для тестируемого и референтного препаратов соответственно. Степень относительной биодоступности составила 1,16 ± 0,18. Средние значения параметра AUC0-12, рассчитанные по концентрации анагрелида после однократного приема тестируемого и референтного препаратов, составили 30,38 ± 7,0 и 28,78 ± 7,50 нг • ч/мл соответственно, а средние значения AUC0-∞ — 31,13 ± 7,15 и 29,55 ± 7,61 нг • ч/мл соответственно. Оценка основных жизненно важных функций и лабораторных параметров не выявила значимого влияния препаратов на состояние участников исследования.

Заключение. Фармакокинетический профиль тестируемого препарата (дженерика анагрелида) не имел существенных отличий по сравнению с референтным, что свидетельствует о его биоэквивалентности in vivo. Оценка безопасности препаратов показала удовлетворительную переносимость, серьезных нежелательных явлений не зарегистрировано.

Ключевые слова: анагрелид, дженерик, биоэквивалентность, эссенциальная тромбоцитемия, безопасность, переносимость.

Получено: 19 февраля 2020 г.

Принято в печать: 25 мая 2020 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Меликян А.Л., Ковригина А.М., Суборцева И.Н. и др. Национальные клинические рекомендации по диагностике и терапии Ph-негативных миелопролиферативных заболеваний (истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз) (редакция 2018 г.). Гематология и трансфузиология. 2018;63(3):275–315. doi: 10.25837/HAT.2019.51.88.001.[Melikyan AL, Kovrigina AM, Subortseva IN, et al. National clinical recommendations for diagnosis and therapy of Ph-negative myeloproliferative neoplasms (polycythemia vera, essential thrombocythemia, primary myelofibrosis) (edition 2018). Russian Journal of Hematology and Transfusiology. 2018;63(3):275–315. doi: 25837/HAT.2019.51.88.001. (In Russ)]

  2. Mesa RA, Jamieson C, Bhatia R, et al. NCCN Guidelines Insights: Myeloproliferative Neoplasms, Version 2.2018. J Natl Compr Canc Netw. 2017;15(10):1193–207. doi: 10.6004/jnccn.2017.0157.

  3. Rungjirajittranon T, Owattanapanich W, Ungprasert P, et al. A systematic review and meta-analysis of the prevalence of thrombosis and bleeding at diagnosis of Philadelphia-negative myeloproliferative neoplasms. BMC Cancer. 2019;19(1):184. doi: 10.1186/s12885-019-5387-9.

  4. Tefferi A, Barbui T. Polycythemia vera and essential thrombocythemia: 2017 update on diagnosis, risk-stratification, and management. Am J Hematol. 2017;92(1):94–108. doi: 10.1002/ajh.24607.

  5. Tefferi A, Vannucchi AM, Barbui T. Essential thrombocythemia treatment algorithm 2018. Blood Cancer J. 2018;8(1):2. doi: 10.1038/s41408-017-0041-8.

  6. Ianotto JC, Curto-Garcia N, Lauermanova M, et al. Characteristics and outcomes of patients with essential thrombocythemia or polycythemia vera diagnosed before 20 years of age: a systematic review. Haematologica. 2019;104(8):1580–8. doi: 10.3324/haematol.2018.200832.

  7. Tefferi A, Barbui T. Polycythemia vera and essential thrombocythemia: 2019 update on diagnosis, risk‐stratification and management. Am J Hematol. 2019;94(1):133–43. doi: 10.1002/ajh.25303.

  8. Barbui T, Tefferi A, Vannucchi AM, et al. Philadelphia chromosome-negative classical myeloproliferative neoplasms: revised management recommendations from European LeukemiaNet. Leukemia. 2018;32(5):1057–69. doi: 10.1038/s41375-018-0077-1.

  9. Gisslinger H, Gotic M, Holowiecki J, et al. Anagrelide compared with hydroxyurea in WHO-classified essential thrombocythemia: the ANAHYDRET Study, a randomized controlled trial. Blood. 2013;121(10):1720–8. doi: 10.1182/blood-2012-07-443770.

  10. Samuelson B, Chai-Adisaksopha C, Garcia D. Anagrelide compared with hydroxyurea in essential thrombocythemia: a meta-analysis. J Thromb Thrombolysis. 2015;40(4):474–9. doi: 10.1007/s11239-015-1218-2.

  11. Ito T, Hashimoto Y, Tanaka Y, et al. Efficacy and safety of anagrelide as a first-line drug in cytoreductive treatment-naive essential thrombocythemia patients in a real-world setting. Eur J Haematol. 2019;103(2):116–23. doi: 10.1111/ejh.13265.

  12. Besses C, Zeller W, Alvarez-Larran A, et al. Pharmacokinetics and tolerability of anagrelide hydrochloride in young (18–50 years) and elderly (≥ 65 years) patients with essential thrombocythemia. Int J Clin Pharmacol Ther. 2012;50(11):787–96. doi: 10.5414/CP201711.

  13. Petrides PE, Schoergenhofer C, Widmann R, et al. Pharmacokinetics of a Novel Anagrelide Extended-Release Formulation in Healthy Subjects: Food Intake and Comparison With a Reference Product. Clin Pharmacol Drug Dev. 2018;7(2):123–31. doi: 10.1002/cpdd.340.

  14. Petrides PE, Gisslinger H, Steurer M, et al. Pharmacokinetics, bioequivalence, tolerability, and effects on platelet counts of two formulations of anagrelide in healthy volunteers and patients with thrombocythemia associated with chronic myeloproliferation. Clin Ther. 2009;31(2):386–98. doi: 10.1016/j.clinthera.2009.02.008.

  15. Okamoto S, Miyakawa Y, Smith J, et al. Open-label, dose-titration and continuation study to assess efficacy, safety, and pharmacokinetics of anagrelide in treatment-naive Japanese patients with essential thrombocythemia. Int J Hematol. 2013;97(3):360–8. doi: 10.1007/s12185-013-1265-4.

Ранний ответ и отдаленные результаты терапии миелофиброза руксолитинибом: многоцентровое ретроспективное исследование в 10 центрах Российской Федерации

Е.Г. Ломаиа1, Н.Т. Сиордия1, О.М. Сендерова2, О.Е. Очирова3, Э.Б. Жалсанова3, А.Ю. Фуртовская1, Г.П. Димов4, М.Г. Позина4, О.Ю. Ли5, К.Б. Тризна6, М.А. Михалев7, Е.В. Сокурова8, А.А. Отморская9, А.С. Хазиева10, В.В. Устьянцева11, Ю.Д. Роговая1, А.Ю. Зарицкий1

1 ФГБУ «НМИЦ им. В.А. Алмазова» Минздрава России, ул. Аккуратова, д. 2, Санкт-Петербург, Российская Федерация, 197341

2 ГБУЗ «Иркутская ордена “Знак Почета” областная клиническая больница», микрорайон Юбилейный, д. 100, Иркутск, Российская Федерация, 664049

3 ГАУЗ «Республиканская клиническая больница им. Н.А. Семашко», ул. Павлова, д. 12, Улан-Удэ, Российская Федерация, 670031

4 МАУЗ «ОТКЗ Городская клиническая больница № 1», ул. Воровского, д. 16, Челябинск, Российская Федерация, 454048

5 ГБУЗ «Сахалинская областная клиническая больница», пр-т Мира, д. 430, Южно-Сахалинск, Российская Федерация, 693004

6 ОГAУЗ «Томская областная клиническая больница», ул. И. Черных, д. 96, Томск, Российская Федерация, 634063

7 КГБУЗ «Красноярская межрайонная клиническая больница № 7», ул. Академика Павлова, д. 4, Красноярск, Российская Федерация, 660003

8 КГБУЗ «Владивостокская поликлиника № 4», ул. Воропаева, д. 5, Владивосток, Российская Федерация, 690000

9 КГБУЗ «Краевая клиническая больница», ул. Ляпидевского, д. 1, Барнаул, Российская Федерация, 656024

10 Красноярская краевая клиническая больница, ул. Партизана Железняка, д. 3А, Красноярск, Российская Федерация, 660022

11 НУЗ «Дорожная клиническая больница на ст. Челябинск ОАО «РЖД», ул. Цвиллинга, д. 41, Челябинск, Российская Федерация, 454000

Для переписки: Надия Тамазовна Сиордия, ул. Аккуратова, д. 2, Санкт-Петербург, Российская Федерация, 197341; e-mail: siordian@list.ru

Для цитирования: Ломаиа Е.Г., Сиордия Н.Т., Сендерова О.М. и др. Ранний ответ и отдаленные результаты терапии миелофиброза руксолитинибом: многоцентровое ретроспективное исследование в 10 центрах Российской Федерации. Клиническая онкогематология. 2020;13(3):335–45.

DOI: 10.21320/2500-2139-2020-13-3-335-345


РЕФЕРАТ

Цель. Оценить эффективность таргетной терапии руксолитинибом у пациентов с миелофиброзом в реальной клинической практике в России. Определить прогностическое значение динамики уменьшения размеров селезенки в ранние сроки лечения руксолитинибом и его влияние на общую выживаемость.

Материалы и методы. Настоящий ретроспективный анализ проведен по данным 10 центров России. В исследование включено 56 пациентов с миелофиброзом (первичным или постполицитемическим и посттромбоцитемическим), получавших руксолитиниб. Медиана возраста пациентов составила 56 лет (диапазон 26–76 лет). Большинство из них (59 %) были с промежуточной-1 группой риска по шкале DIPSS, имели массивную спленомегалию (80 %) и конституциональные симптомы (86 %). Исходная доза препарата составляла 30 мг в сутки в 64 % случаев. При этом уровень тромбоцитов ≥ 200 × 109/л наблюдался у 61 % пациентов. Размеры селезенки оценивались пальпаторно.

Результаты. К началу сбора данных большинство пациентов (79 %) продолжали лечение руксолитинибом. Ни в одном случае причиной прекращения терапии не была токсичность препарата. На фоне приема руксолитиниба конституциональные симптомы были купированы у 70, 87 и 98 % пациентов к 1, 3 и 6 мес. терапии соответственно. Уменьшение размеров селезенки на ≥ 50 % отмечено у 36 и 46 % пациентов к 3 и 6 мес. лечения соответственно. Всего в 31 и 27 % случаев размеры селезенки сократились на менее 25 % к 3 и 6 мес. терапии соответственно. Не удалось выявить факторы, влияющие на динамику изменения размеров селезенки. Вероятность общей выживаемости к 2 и 5 годам наблюдения составила 97 и почти 70 % соответственно. На этот показатель статистически значимо влияла степень уменьшения размеров селезенки к 3 мес. наблюдения, а также ее исходные размеры.

Заключение. Руксолитиниб демонстрирует высокую эффективность в отношении как уменьшения общих симптомов миелофиброза, так и сокращения размеров селезенки. Степень редукции размеров селезенки является важным прогностическим фактором. У пациентов с недостаточным сокращением размеров селезенки целесообразно увеличение дозы препарата. При невозможности этого необходим поиск альтернативных методов лечения.

Ключевые слова: миелофиброз, руксолитиниб, динамика изменения размеров селезенки, конституциональные симптомы, общая выживаемость.

Получено: 31 января 2020 г.

Принято в печать: 15 мая 2020 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Tefferi A, Lasho TL, Jimma T, et al. One Thousand Patients With Primary Myelofibrosis: The Mayo Clinic Experience. Mayo Clin Proc. 2012;87(1):25–33. doi: 10.1016/j.mayocp.2011.11.001.

  2. Patriarca F, Bacigalupo A, Sperotto A, et al. Allogeneic hematopoietic stem cell transplantation in myelofibrosis: the 20-year experience of the Gruppo Italiano Trapianto di Midollo Osseo (GITMO). Haematologica. 2008;93(10):1514–22. doi: 10.3324/haematol.12828.

  3. Harrison CN, Mesa RA, Kiladjian JJ, et al. Health-related quality of life and symptoms in patients with myelofibrosis treated with ruxolitinib versus best available therapy. Br J Haematol. 2013;162(2):229–39. doi: 10.1111/bjh.12375.

  4. Verstovsek S, Mesa RA, Gotlib I, et al. A Double-Blind, Placebo-Controlled Trial of Ruxolitinib for Myelofibrosis. N Engl J Med. 2012;366(9):799–807. doi: 10.1056/NEJMoa1110557.

  5. Verstovsek S, Mesa RA, Gotlib I, et al. Long-term treatment with ruxolitinib for patients with myelofibrosis: 5-year update from the randomized, double-blind, placebo-controlled, phase 3 COMFORT-I trial. J Hematol Oncol. 2017;10(1):55. doi: 10.1186/s13045-017-0417-z.

  6. Miller CB, Komrokji RS, Mesa RA, et al. Practical Measures of Clinical Benefit With Ruxolitinib Therapy: An Exploratory Analysis of COMFORT-I. Clin Lymphoma Myel Leuk. 2017;17(8):479–87. doi: 10.1016/j.clml.2017.05.015.

  7. Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937–51. doi: 10.1182/blood-2009-03-209262.

  8. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. doi: 10.1182/blood-2016-03-643544.

  9. Tefferi A, Cervantes F, Mesa R, et al. Revised response criteria for myelofibrosis: International Working Group-Myeloproliferative Neoplasms Research and Treatment (IWG-MRT) and European LeukemiaNet (ELN) consensus report. 2013;122(8):1395–8. doi: 10.1182/blood-2013-03-488098.

  10. Джакави® (инструкция по медицинскому применению). Novartis Pharma, AG (Швейцария). Доступно по: https://www.vidal.ru/drugs/jakavi Ссылка активна на 15.05.2020.[Jakavi® (package insert). Novartis Pharma, AG, Switzerland. Available from: https://www.vidal.ru/drugs/jakavi__38878. (accessed 15.05.2020) (In Russ)]

  11. Verstovsek S, Kantarjian HM, Estrov Z, et al. Long-term outcomes of 107 patients with myelofibrosis receiving JAK1/JAK2 inhibitor ruxolitinib: survival advantage in comparison to matched historical controls. Blood. 2012;120(6):1202–9. doi: 10.1182/blood-2012-02-414631.

  12. Vannucchi AM, Kantajian HM, Kiladjian JJ, et al. A pooled analysis of overall survival in COMFORT-I and COMFORT-II, 2 randomized phase III trials of ruxolitinib for the treatment of myelofibrosis. Haematologica. 2015;100(9):1139–45. doi: 10.3324/haematol.2014.119545.

  13. Mesa RA, Verstovsek S, Gupta V, et al. Effects of ruxolitinib treatment on metabolic and nutritional parameters in patients with myelofibrosis from COMFORT-I. Clin Lymphoma Myel Leuk. 2015;15(4):214–21.e1. doi: 10.1016/j.clml.2014.12.008.

  14. Palandri F, Palumbo GA, Bonifacio M, et al. Baseline factors associated with response to ruxolitinib: an independent study on 408 patients with myelofibrosis. Oncotarget. 2017;8(45):79073–86. doi: 10.18632/oncotarget.18674.

  15. Palandri F, Tiribelli M, Benevolo G, et al. Efficacy and safety of ruxolitinib in intermediate-1 IPSS risk myelofibrosis patients: Results from an independent study. Hematol Oncol. 2018;36(1):285–90. doi: 10.1002/hon.2429.

  16. Palandri F, Catani L, Bonifacio M, et al. Ruxolitinib in elderly patients with myelofibrosis: impact of age and genotype. A multicentre study on 291 elderly patients. Br J Haematol. 2018;183(1):35–46. doi: 10.1111/bjh.15497.

  17. Harrison CN, Schaap N, Vannucchi A, et al. Fedratinib (FEDR) in myelofibrosis (MF) patients previously treated with ruxolitinib (RUX): A reanalysis of the JAKARTA-2 study. HemaSphere. 2019;3:671–72. doi: 10.1097/01.hs9.0000564100.83392.c9.

  18. Al-Ali HK, Griesshammer M, le Coutre P, et al. Safety and efficacy of ruxolitinib in an open-label, multicenter, single-arm phase 3b expanded-access study in patients with myelofibrosis: a snapshot of 1144 patients in the JUMP trial. 2016;101(9):1065–73. doi: 10.3324/haematol.2016.143677.

Разработка и результаты апробации русской версии опросника MPN10 для оценки симптомов у пациентов с миелопролиферативными новообразованиями с учетом международных рекомендаций

Т.И. Ионова1,2, О.Ю. Виноградова3,4,5, Е.В. Ефремова6, А.Е. Керсилова6, Т.П. Никитина1,2, М.М. Панкрашкина3, Н.М. Порфирьева2, А.-П.А. Пошивай6, М.С. Фоминых6,7, Д.И. Шихбабаева3, В.А. Шуваев6

1 Клиника высоких медицинских технологий им. Н.И. Пирогова, ФГБОУ ВО «Санкт-Петербургский государственный университет», Университетская наб., д. 7-9, Санкт-Петербург, Российская Федерация, 199034

2 РОО «Межнациональный центр исследования качества жизни», ул. Артиллерийская, д. 1, Санкт-Петербург, Российская Федерация, 191014

3 ГБУЗ «Городская клиническая больница им. С.П. Боткина» ДЗМ, 2-й Боткинский пр-д, д. 5, Москва, Российская Федерация, 125284

4 ФГБУ «НМИЦ детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России, ул. Саморы Машела, д. 1, Москва, Российская Федерация, 117997

5 ФГАОУ ВО «РНИМУ им. Н.И. Пирогова» Минздрава России, ул. Островитянова, д. 1, Москва, Российская Федерация, 117997

6 ФГБУ «Российский НИИ гематологии и трансфузиологии ФМБА России», ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024

7 ФГБОУ ВО «Санкт-Петербургский государственный университет», Университетская наб., д. 7-9, Санкт-Петербург, Российская Федерация, 199034

Для переписки: Татьяна Павловна Никитина, канд. мед. наук, ул. Артиллерийская, д. 1, Санкт-Петербург, Российская Федерация, 191014; тел.: +7(962)710-17-12; e-mail: qolife@mail.ru

Для цитирования: Ионова Т.И., Виноградова О.Ю., Ефремова Е.В. и др. Разработка и результаты апробации русской версии опросника MPN10 для оценки симптомов у пациентов с миелопролиферативными новообразованиями с учетом международных рекомендаций. Клиническая онкогематология. 2020;13(2):176–84.

DOI: 10.21320/2500-2139-2020-13-2-176-184


РЕФЕРАТ

Цель. Разработать русскую версию опросника MPN10 для пациентов с миелопролиферативными новообразованиями (МПН) с учетом международных рекомендаций.

Материалы и методы. В исследование включено 57 пациентов, проходивших лечение в 2019 г. в Московском городском гематологическом центре ГКБ им. С.П. Боткина (n = 30) и в ФГБУ «Российский НИИ гематологии и трансфузиологии ФМБА России» (n = 27). Согласно диагнозу больные распределялись следующим образом: миелофиброз — 36, истинная полицитемия — 9, эссенциальная тромбоцитемия — 12. Средний возраст больных составил 54,6 года (стандартное отклонение 15,9 года; диапазон возраста 20–79 лет). Соотношение мужчин/женщин — 23/34 (40,4/59,6 %). Длительность основного заболевания — от 1 мес. до 33 лет (в среднем 7 лет; стандартное отклонение 8,6 года).

Результаты. Продемонстрированы устойчивая структура опросника, высокое внутреннее постоянство и воспроизводимость его как инструмента, подтверждена конвергентная и дискриминантная валидность, а также удовлетворительная чувствительность к изменениям в состоянии больного.

Заключение. Русская версия опросника MPN10 может использоваться для оценки симптомов у больных с МПН в клинической практике и научных исследованиях.

Ключевые слова: опросник оценки симптомов, миелопролиферативные новообразования, психометрические свойства опросника, валидация.

Получено: 15 января 2020 г.

Принято в печать: 29 марта 2020 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Меликян А.Л., Ковригина А.М., Суборцева И.Н. и др. Национальные клинические рекомендации по диагностике и терапии Ph-негативных миелопролиферативных заболеваний (истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз) (редакция 2018 г.). Гематология и трансфузиология. 2018;63(3):275–315. doi: 10.25837/HAT.2019.51.88.001.

    [Melikyan AL, Kovrigina AM, Subortseva IN, et al. National сlinical recommendations for diagnosis and therapy of Ph-negative myeloproliferative neoplasms (polycythemia vera, essential thrombocythemia, primary myelofibrosis) (edition 2018). Russian Journal of Hematology and Transfusiology. 2018;63(3):275–315. doi: 10.25837/HAT.2019.51.88.001. (In Russ)]

  2. Arber DA, Orazi А, Hasserjian R., et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. doi: 10.1182/blood-2016-03-643544.

  3. Меликян А.Л., Суборцева И.Н. Материалы 57-го конгресса Американского гематологического общества (декабрь 2015 г., Орландо). Клиническая онкогематология. 2016;9(2):218–28.

    [Melikyan AL, Subortseva IN. Materials of the 57th Annual Meeting of the American Society of Hematology (December, 2015; Orlando). Clinical oncohematology. 2016;9(2):218–28. (In Russ)]

  4. Passamonti F, Merli M, Caramazza D, et al. Clinical Predictors of Outcome in MPN. Hematol Oncol Clin N Am. 2012;26(5):1101–16. doi: 10.1016/j.hoc.2012.07.009.

  5. Reilly JT, McMullin MF, Beer PA, et al. Guideline for the diagnosis and management of myelofibrosis. Br J Haematol. 2012;158(4):453–71. doi: 10.1111/j.1365-2141.2012.09179.x.

  6. Patient-reported outcomes in hematology. EHA SWG “Quality of life and Symptoms”. Forum Service Editore. Genoa; 2012. 206 p.

  7. Scherber R, Dueck AC, Johansson P, et al. The Myeloproliferative Neoplasm Symptom Assessment Form (MPN-SAF): international prospective validation and reliability trial in 402 patients. Blood. 2011;118(2):401–8. doi: 10.1182/blood-2011-01-328955.

  8. Emanuel RM, Dueck AC, Geyer HL, et al. Myeloproliferative Neoplasm (MPN) Symptom Assessment Form Total Symptom Score: Prospective International Assessment of an Abbreviated Symptom Burden Scoring System Among Patients With MPNs. J Сlin Oncol. 2012;30(33):4098–103. doi: 10.1200/jco.2012.42.3863.

  9. NCCN Clinical Practice Guidelines in Oncology. Myeloproliferative Neoplasms. Version 2.2019 — October 29, 2018. Available from: http://www.gaca.org.cn/uploadfolder/files/201903/ny27_930697.pdf (accessed 28.03.2020).

  10. Barosi G, Mesa R, Finazzi G, et al. Revised response criteria for polycythemia vera and essential thrombocythemia: an ELN and IWG-MRT consensus project. Blood. 2013;121(23):4778–81. doi: 10.1182/blood-2013-01-478891.

  11. Bullinger M, Power MJ, Aaronson NK, et al. Creating and evaluating cross-cultural instruments. In: Spilker B, ed. Quality of Life and Pharmacoeconomics in Clinical Trials. Philadelphia: Lippincott-Raven; 1996. pp. 659–68.

  12. Aaronson N, Alonso J, Burnam A, et al. Assessing health status and quality of life instruments: attributes and review. Qual Life Res. 2002;11(3):193–205.

  13. Beaton DE, Bombardier C, Guillemin F, et al. Guidelines for the process of cross-cultural adaptation of self-report measures. Spine. 2000;25(24):3186–91. doi: 10.1097/00007632-200012150-00014.

  14. Cull A, Sprangers M, Bjordal K, et al. Translation Procedure. EORTC Monograph. Brussels; 1998. 26

  15. Ионова Т.И. Принципы языковой и культурной адаптации опросников оценки качества жизни. Вестник Межнационального центра исследования качества жизни. 2018;31–32:12–7.

    [Ionova Principles of linguistic and cultural adaptation of life quality assessment forms. Vestnik Mezhnatsional’nogo tsentra issledovaniya kachestva zhizni. 2018;31–32:12–7. (In Russ)]

  16. Ионова Т.И., Виноградова О.Ю., Ефремова Е.В. и др. Языковая и культурная адаптация русской версии инструмента для оценки симптомов у пациентов с миелопролиферативными новообразованиями — МПН10. Вестник Межнационального центра исследования качества жизни. 2019;33–34:19–30.

    [Ionova TI, Vinogradova OYu, Efremova EV, et al. Linguistic and cultural adaptation of the Russian version of the instrument for symptom assessment in patients with myeloproliferative neoplasms — MPN10. Vestnik Mezhnatsional’nogo tsentra issledovaniya kachestva zhizni. 2019;33–34:19–30. (In Russ)]

  17. Guidelines for Best Practice in Cross-Cultural Surveys. Available from: https://ccsg.isr.umich.edu/images/PDFs/CCSG_Full_Guidelines_2016_Version.pdf (accessed 28.03.2020).

Прогностическое значение результатов секвенирования нового поколения у пациентов с миелодиспластическим синдромом

Н.Ю. Цветков1, Е.В. Морозова1, И.М. Бархатов1, И.С. Моисеев1, М.В. Барабанщикова1, А.В. Тишков2, Д.С. Буг2, Н.В. Петухова2, Е.А. Измайлова1, С.Н. Бондаренко1, Б.В. Афанасьев1

1 НИИ детской онкологии, гематологии и трансплантологии им. Р.М. Горбачевой, ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

2 Центр биоинформатики научно-образовательного института биомедицины, ФГБОУ ВО «Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова» Минздрава России, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022

Для переписки: Николай Юрьевич Цветков, ул. Льва Толстого, д. 6/8, Санкт-Петербург, Российская Федерация, 197022; тел.: +7(911)233-48-77, +7(812)338-62-27; e-mail: nikolai.tcvetkov@yandex.ru

Для цитирования: Цветков Н.Ю., Морозова Е.В., Бархатов И.М. и др. Прогностическое значение результатов секвенирования нового поколения у пациентов с миелодиспластическим синдромом. Клиническая онкогематология. 2020;13(2):170–5.

DOI: 10.21320/2500-2139-2020-13-2-170-175


РЕФЕРАТ

Цель. Оценить прогностическое значение мутаций генов метилирования ДНК и генов SF3B1, TP53 у пациентов с миелодиспластическим синдромом (МДС).

Материалы и методы. В исследование включено 35 пациентов с МДС: с мультилинейной дисплазией — 2, с избытком бластов-I — 13, с избытком бластов-II — 19, с 5q-синдромом — 1 (критерии ВОЗ 2016 г.). У 30 больных был первичный МДС, у 5 — после предшествующей химио- или лучевой терапии. Трансплантация аллогенных гемопоэтических стволовых клеток (аллоТГСК) выполнена 25 пациентам. Согласно IPSS-R, 1 пациент соответствовал группе низкого риска, 5 — промежуточного, 17 — высокого, 12 — очень высокого. Лечение гипометилирующими препаратами получали 28 больных. Медиана возраста пациентов составила 49 лет (диапазон 18–80 лет). С помощью секвенирования нового поколения определяли соматические мутации в генах метилирования ДНК (TET2, IDH1/2, ASXL1, DNMT3A), а также в генах SF3B1, TP53, IDH и RUNX1. Время до прогрессирования (ВДП) рассчитывалось как время от постановки диагноза до трансформации в острый лейкоз. Конкурирующим риском считалась смерть по причинам, связанным с аллоТГСК или проводимой противоопухолевой терапией.

Результаты. У 37 % пациентов при анализе генов метилирования мутаций не выявлено, у 40 % пациентов обнаружена мутация только в 1 из генов, у 23 % — в 2 генах и более. Мутации SF3B1 наблюдались у 23 % больных, TP53 — у 11 %. Медиана времени наблюдения составила 25 мес. (диапазон 5–116 мес.). В однофакторном анализе не получено значимых различий в общей выживаемости в зависимости от мутационного статуса. Медиана ВДП в группе с аллоТГСК не достигнута, а без аллоТГСК она составила 6 мес. (= 0,0001). Этот же показатель при отсутствии мутации в гене SF3B1 равен 35 мес., при ее наличии медиана ВДП не достигнута (= 0,043). При наличии ≥ 2 мутаций в генах метилирования медиана ВДП была 12 мес., в других случаях она не достигнута (= 0,024). При наличии мутации в гене TP53 медиана ВДП составила 6 мес., при ее отсутствии — 43 мес. (= 0,023). В многофакторном анализе наличие мутации в гене TP53 или ≥ 2 мутаций в генах метилирования сохранило свое неблагоприятное прогностическое значение в отношении ВДП вне зависимости от проведенного лекарственного лечения или аллоТГСК (отношение рисков 7,1; 95%-й доверительный интервал 2,6–19,6; = 0,0001).

Заключение. Изучение молекулярных маркеров позволяет получить дополнительную информацию о прогнозе при МДС. Требуются дальнейшие исследования для определения прогностической роли молекулярных маркеров в клинической практике, что даст возможность индивидуализировать подходы к терапии МДС.

Ключевые слова: миелодиспластический синдром, молекулярные маркеры, мутации, секвенирование нового поколения, прогноз.

Получено: 27 декабря 2019 г.

Принято в печать: 25 марта 2020 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Ma X. Epidemiology of Myelodysplastic Syndromes. Am J Med. 2012;125(7):S2–S5. doi: 10.1016/j.amjmed.2012.04.014.

  2. Greenberg P, Cox C, LeBeau MM, et al. International Scoring System for Evaluating Prognosis in Myelodysplastic Syndromes. 1997;89(6):2079–88. doi: 10.1182/blood.v89.6.2079.

  3. Alessandrino EP, Della Porta MG, Bacigalupo A, et al. WHO classification and WPSS predict posttransplantation outcome in patients with myelodysplastic syndrome: a study from the Gruppo Italiano Trapianto di Midollo Osseo (GITMO). Blood. 2008;112(3):895–902. doi: 10.1182/blood-2008-03-143735.

  4. Greenberg PL, Tuechler H, Schanz J, et al. Revised International Prognostic Scoring System for Myelodysplastic Syndromes. Blood. 2012;120(12):2454–65. doi: 10.1182/blood-2012-03-420489.

  5. Montalban-Bravo G, Garcia-Manero G. Myelodysplastic syndromes: 2018 update on diagnosis, risk-stratification and management. Am J Hematol. 2018;93(1):129–47. doi: 10.1002/ajh.24930.

  6. Bejar R, Stevenson KE, Caughey B, et al. Somatic mutations predict poor outcome in patients with myelodysplastic syndrome after hematopoietic stem-cell transplantation. J Clin Oncol. 2014;32(25):2691–8. doi: 10.1200/jco.2013.52.3381.

  7. Bains A, Luthra R, Medeiros LJ, et al. FLT3 and NPM1 mutations in myelodysplastic syndromes: Frequency and potential value for predicting progression to acute myeloid leukemia. Am J Clin Pathol. 2011;135(1):62–9. doi: 10.1309/ajcpei9xu8pybcio.

  8. Della Porta MG, Galli A, Bacigalupo A, et al. Clinical Effects of Driver Somatic Mutations on the Outcomes of Patients With Myelodysplastic Syndromes Treated With Allogeneic Hematopoietic Stem-Cell Transplantation. J Clin Oncol. 2016;34(30):3627–37. doi: 10.1200/jco.2016.67.3616.

  9. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. 2016;127(20):2391–405. doi: 10.1182/blood-2016-03-643544.

  10. Bejar R. CHIP, ICUS, CCUS and other four-letter words. 2017;31(9):1869–71. doi: 10.1038/leu.2017.181.

  11. Genovese G, Kahler AK, Handsaker RE, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371(26):2477–87. doi: 10.1056/nejmoa1409405.

  12. Young AL, Tong RS, Birmann BM, et al. Clonal hematopoiesis and risk of acute myeloid leukemia. 2019;104(12):2410–7. doi: 10.3324/haematol.2018.215269.

  13. Figueroa ME, Skrabanek L, Li Y, et al. MDS and secondary AML display unique patterns and abundance of aberrant DNA methylation. 2009;114(16):3448–58. doi: 10.1182/blood-2009-01-200519.

  14. Reilly B, Tanaka TN, Diep D, et al. DNA methylation identifies genetically and prognostically distinct subtypes of myelodysplastic syndromes. Blood Adv. 2019;3(19):2845–58. doi: 10.1182/bloodadvances.2019000192.

  15. Silverman LR, Demakos EP, Peterson BL, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol. 2002;20(10):2429–40. doi: 10.1200/jco.2002.04.117.

  16. Kantarjian H, Issa J-PJ, Rosenfeld CS, et al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. 2006;106(8):1794–803. doi: 10.1002/cncr.21792.

  17. Stahl M, Zeidan AM. Lenalidomide use in myelodysplastic syndromes: Insights into the biologic mechanisms and clinical applications. 2017;123(10):1703–13. doi: 10.1002/cncr.30585.

  18. Duong VH, Lin K, Reljic T, et al. Poor outcome of patients with myelodysplastic syndrome after azacitidine treatment failure. Clin Lymphoma Myel Leuk. 2013;13(6):711–5. doi: 10.1016/j.clml.2013.07.007.

  19. Prebet T, Cluzeau T, Park S, et al. Outcome of patients treated for myelodysplastic syndromes with 5q deletion after failure of lenalidomide therapy. 2017;8(23):81926–35. doi: 10.18632/oncotarget.15200.

  20. Tefferi A, Guglielmelli P, Lasho TL, et al. MIPSS70+ Version 2.0: Mutation and Karyotype-Enhanced International Prognostic Scoring System for Primary Myelofibrosis. J Clin Oncol. 2018;36(17):1769–70. doi: 10.1200/jco.2018.78.9867.

  21. Haase D, Stevenson KE, Neuberg D, et al. TP53 mutation status divides myelodysplastic syndromes with complex karyotypes into distinct prognostic subgroups. 2019;33(7):1747–58. doi: 10.1038/s41375-018-0351-2.

  22. Montalban-Bravo G, Takahashi K, Patel K, et al. Impact of the number of mutations in survival and response outcomes to hypomethylating agents in patients with myelodysplastic syndromes or myelodysplastic/myeloproliferative neoplasms. 2018;9(11):9714–27. doi: 10.18632/oncotarget.23882.

  23. van Gelder M, de Wreede LC, Schetelig J, et al. Monosomal karyotype predicts poor survival after allogeneic stem cell transplantation in chromosome 7 abnormal myelodysplastic syndrome and secondary acute myeloid leukemia. 2013;27(4):879–88. doi: 10.1038/leu.2012.297.

  24. de Witte T, Bowen D, Robin M, et al. Allogeneic hematopoietic stem cell transplantation for MDS and CMML: recommendations from an international expert panel. 2017;129(13):1753–62. doi: 10.1182/blood-2016-06-724500.

  25. Itzykson R, Kosmider O, Cluzeau T, et al. Impact of TET2 mutations on response rate to azacitidine in myelodysplastic syndromes and low blast count acute myeloid leukemias. 2011;25(7):1147–52. doi: 10.1038/leu.2011.71.

  26. Welch JS, Petti AA, Miller CA, et al. TP53 and Decitabine in Acute Myeloid Leukemia and Myelodysplastic Syndromes. N Engl J Med. 2016;375(21):2023–36. doi: 10.1056/nejmoa1605949.

Диагностика и лечение клональных миелопролиферативных заболеваний, протекающих с эозинофилией

И.С. Немченко, Н.Н. Цыба, А.Г. Туркина, Е.Ю. Челышева, О.А. Шухов, А.М. Ковригина, Т.Н. Обухова

ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167

Для переписки: Ирина Семеновна Немченко, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167; e-mail: isn1965@mail.ru

Для цитирования: Немченко И.С., Цыба Н.Н., Туркина А.Г. и др. Диагностика и лечение клональных миелопролиферативных заболеваний, протекающих с эозинофилией. Клиническая онкогематология. 2020;13(2):161–9.

DOI: 10.21320/2500-2139-2020-13-2-161-169


РЕФЕРАТ

Цель. Охарактеризовать на собственном материале клинические проявления гиперэозинофильных состояний, выделив реактивные эозинофилии (РЭ), клональные миелопролиферативные заболевания с эозинофилией (МПЗ-эо) и миелопролиферативный вариант гиперэозинофильного синдрома (МП-ГЭС). Оценить результаты лечения.

Материалы и методы. В исследование включено 188 пациентов с первичным ГЭС (132 мужчины, 56 женщин; возраст 19–72 года), находившихся под наблюдением в ФГБУ «НМИЦ гематологии» МЗ РФ с 2001 г. Основной критерий включения в исследование — эозинофилия в крови ≥ 1,5 × 109/л и наличие клинических симптомов, в ряде случаев обусловленных гиперэозинофилией. Всем больным выполняли комплексное общеклиническое обследование, а также иммуноморфологические, стандартное цитогенетическое и молекулярно-генетические исследования. Лечение проведено 73 больным (63 мужчинам, 10 женщинам), в т. ч. с МПЗ-эо PDGFRA+ (n = 39), PDGFRB+ (n = 2), FGFR1+ (n = 1), хроническим эозинофильным лейкозом без дополнительных уточнений (n = 8), системным мастоцитозом (n = 1) и МП-ГЭС (n = 22). Критерием эффективности терапии служило достижение полного гематологического ответа (ПГО). В группах PDGFRA+ и PDGFRB+ МПЗ-эо также оценивалась частота достижения молекулярного ответа (МО) при лечении иматинибом. МО определялся как отсутствие экспрессии транскриптов FIP1L1-PDGFRA и ETV6-PDGFRB при исследовании методом ОТ-ПЦР.

Результаты. Проведенное обследование позволило выявить причину эозинофилии у 117 (62,2 %) из 188 пациентов. РЭ была диагностирована у 60 (32 %) из 117 пациентов, различные варианты клональных МПЗ — у 57 (30 %). У 71 (38 %) из 188 пациентов на первых этапах исследования сохранялся диагноз ГЭС. Позднее из этой группы выделены пациенты с МП-ГЭС — 22 (30,9 %) из 71. В группе получавших иматиниб ПГО достигнут у 37 (90 %) из 41 больного в срок 1–3 мес.: у 36 с FIP1L1-PDGFRA+ МПЗ-эо и у 1 с ETV6-PDGFRB+ МПЗ-эо. МО установлен в 88 % наблюдений. При отсутствии молекулярных маркеров, характерных для МПЗ-эо, в 26 % случаев также достигнут ПГО. В группе получавших иную (кроме иматиниба) терапию ПГО не было ни в одном наблюдении.

Заключение. Подход к диагностике у пациентов с первичным ГЭС должен быть комплексным и индивидуализированным, а развитие и расширение молекулярно-генетических методов исследования служат одним из приоритетных направлений в современной гематологии. Применение иматиниба мезилата в терапии МПЗ-эо приводит в большинстве случаев к длительным гематологическим и молекулярным ремиссиям. Достижение ПГО при лечении иматинибом у больных без молекулярных маркеров, характерных для МПЗ-эо, позволяет рекомендовать раннее применение этого препарата (или других ингибиторов тирозинкиназ) при остром течении ГЭС.

Ключевые слова: эозинофилия, гиперэозинофильный синдром, миелопролиферативное заболевание, гены PDGFRA, PDGFRВ, FGFR1, иматиниб.

Получено: 15 ноября 2019 г.

Принято в печать: 28 февраля 2020 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Hardy WR, Anderson RE. The hypereosinophilic syndromes. Ann Intern Med. 1968;68(6):1220–9. doi: 10.7326/0003-4819-68-6-1220.
  2. Chusid MJ, Dale DC, West BC, Wolff SM. The hypereosinophilic syndrome: analysis of fourteen cases with review of the literature. Medicine (Baltimore). 1975;54(1):1–27.

  3. Gotlib J, Cools J. Five years since the discovery of FIP1L1-PDGFRA: what we have learned about the fusion and other molecularly defined eosinophilias. Leukemia. 2008;22(11):1999–2010. doi: 1038/leu.2008.287.

  4. Abruzzo LV, Jaffe ES, Cotelingam JD, et al. T-cell lymphoblastic lymphoma with eosinophilia associated with subsequent myeloid malignancy. Am J Surg Pathol. 1992;16(3):236–45. doi: 1097/00000478-199203000-00003.

  5. Golub TR, Barker GF, Lovett M, et al. Fusion of PDGF receptor β to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell. 1994;77(2):307–16. doi: 1016/0092-8674(94)90322-0.

  6. Cools J, DeAngelo DJ, Gotlib J, et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med. 2003;348(13):1201–14. doi: 1056/NEJMoa025217.

  7. Reiter A, Gotlib J. Myeloid neoplasms with eosinophilia. Blood. 2017;129(6):704–14. doi: 1182/blood-2016-10-695973.

  8. Capovilla M, Cayuela JM, Bilhou-Nabera C, et al. Synchronous FIP1L1-PDGFRA-positive chronic eosinophilic leukemia and T-cell lymphoblastic lymphoma: a bilineal clonal malignancy. Eur J Haematol. 2008;80(1):81–6. doi: 1111/j.1600-0609.2007.00973.x.

  9. Metzgeroth G, Walz C, Score J, et al. Recurrent finding of the FIP1L1-PDGFRA fusion gene in eosinophilia-associated acute myeloid leukemia and lymphoblastic T-cell lymphoma. Leukemia. 2007;21(6):1183–8. doi: 1038/sj.leu.2404662.

  10. Tefferi A, Vardiman JW. Classification and diagnosis of myeloproliferative neoplasms: The 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia. 2008;22(1):14–22. doi: 10.1038/sj.leu.2404955.

  11. Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. doi: 10.1182/blood-2016-03-643544.

  12. Bain BJ, Gilliland DG, Horny H-P., et al. Chronic eosinophilic leukaemia, not otherwise specified. In: Swerdlow S, Harris NL, Stein H, et al. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press; 2008. рр. 51–3.

  13. Valent Mastocytosis: a paradigmatic example of a rare disease with complex biology and pathology. Am J Cancer Res. 2013;3(2):159–72.

  14. Weller PF, Bubley GJ. The idiopathic hypereosinophilic syndrome. Blood. 1994;83(10):2759–79. doi: 10.1182/blood.v83.10.2759.2759.

  15. Bain BJ. Cytogenetic and molecular genetic aspects of eosinophilic leukaemias. Br J Haemat. 2003;122(2):173–9. doi: 10.1046/j.1365-2141.2003.04458.x.

  16. Klion AD, Robyn J, Akin C, et al. Molecular remission and reversal of myelofibrosis in response to imatinib mesylate treatment in patients with the myeloproliferative variant of hypereosinophilic syndrome. Blood. 2004;103(2):473–8. doi: 10.1182/blood-2003-08-2798.

  17. Klion Recent Advances in the Diagnosis and Treatment of Hypereosinophilic Syndrome. Hematology. 2005;2005(1):209–14. doi: 10.1182/asheducation-2005.1.209.

  18. NMPN Study Group. Guidelines for the diagnosis and treatment of eosinophilia. 2nd version, September 2012. Available from: https://ru.scribd.com/document/264225330/Nordic-Eos-Guideline-Revised-Sept-2012 (accessed 9.01.2020).

  19. Andersen CL, Siersma VD, Hasselbalch HC, et al. Association of the blood eosinophil count with hematological malignancies and mortality. Am J Hematol. 2015;90(3):225–9. doi: 10.1002/ajh.23916.

  20. Crane MM, Chang CM, Kobayashi MG, et al. Incidence of myeloproliferative hypereosinophilic syndrome in the Unites States and an estimate of all hypereosinophilic syndrome incidence. J Allergy Clin Immunol. 2010;126(1):179–81. doi: 10.1016/j.jaci.2010.03.035.

  21. Pardanani A, Ketterling RP, Li CY, et al. FIP1L1-PDGFRA in eosinophilic disorders: prevalence in routine clinical practice, long-term experience with imatinib therapy, and a critical review of the literature. Leuk Res. 2006;30(8):965–70. doi: 10.1016/j.leukres.2005.11.011.

  22. Jovanovic JV, Score J, Waghorn K, et al. Low-dose imatinib mesylate leads to rapid induction of major molecular responses and achievement of complete molecular remission in FIP1L1-PDGFRA-positive chronic eosinophilic leukemia. Blood. 2007;109(11):4635–40. doi: 10.1182/blood-2006-10-050054.

  23. Jawhar M, Naumann N, Schwaab J, et al. Imatinib in myeloid/lymphoid neoplasms with eosinophilia and rearrangement of PDGFRB in chronic or blast phase. Ann Hematol. 2017;96(9):1463–70. doi: 1007/s00277-017-3067-x.

  24. Zhou J, Papenhausen P, Shao H. Therapy-related acute myeloid leukemia with eosinophilia, basophilia, t(4;14)(q12;q24) and PDGFRA rearrangement: a case report and review of the literature. Int J Clin Exp Pathol. 2015;8(5):5812–20.

  25. Shomali W, Gotlib J. World Health Organization eosinophilic disorders: 2019 update on diagnosis, risk stratification, and management. Am J Hematol. 2019;94(10):149–67. doi: 1002/ajh.25617.

  26. Bain BJ. Myeloid and lymphoid neoplasms with eosinophilia and abnormalities of PDGFRA, PDGFRB or FGFR1. Haematologica. 2010;95(5):696–8. doi: 3324/haematol.2009.021675.

  27. Legrand F, Renneville A, Macintyre E, et al. The spectrum of FIP1L1-PDGFRA-associated chronic eosinophilic leukemia: new insights based on a survey of 44 cases. Medicine (Baltimore). 2013;92(5):e1–e9. doi: 10.1097/MD.0b013e3182a71eba.

  28. Ogbogu PU, Bochner BS, Butterfield JH, et al. Hypereosinophilic syndrome: a multicenter, retrospective analysis of clinical characteristics and response to therapy. J Allergy Clin Immunol. 2009;124(6):1319–25. doi: 10.1016/j.jaci.2009.09.022.

  29. Metzgeroth G, Schwaab J, Gosenca D, et al. Long-term follow-up of treatment with imatinib in eosinophilia-associated myeloid/lymphoid neoplasms with PDGFR rearrangements in blast phase. 2013;27(11):2254–6. doi: 10.1038/leu.2013.129.

  30. Baccarani M, Cilloni D, Rondoni M, et al. The efficacy of imatinib mesylate in patients with FIP1L1-PDGFRα-positive hypereosinophilic syndrome. Results of a multicenter prospective study. Haematologica. 2007;92(9):1173–9. doi: 3324/haematol.11420.

  31. Helbig G, Moskwa A, Hus M, et al. Clinical characteristics of patients with chronic eosinophilic leukaemia (CEL) harbouring FIP1L1-PDGFRA fusion transcript-results of Polish multicentre study. Hematol Oncol. 2010;28(2):93–7. doi: 10.1002/hon.919.

  32. Klion AD. Recent Advances in the Diagnosis and Treatment of Hypereosinophilic Syndromes. Hematology. 2005;2005(1):209–14. doi: 10.1182/asheducation-2005.1.209.

  33. Helbig G, Moskwa A, Hus M, et al. Durable remission after treatment with very low of imatinib for FIP1L1-PDGFRα-positive chronic eosinophilic leukemia. Cancer Chemother Pharmacol. 2011;67(4):967–9. doi: 1007/s00280-011-1582-3.

  34. Pardanani A, D’Souza A, Knudson RA, et al. Long-term follow-up of FIP1L1-PDGFRA-mutated patients with eosinophilia: survival and clinical outcome. Leukemia. 2012;26(11):2439–41. doi:1038/leu.2012.162.

  35. von Bubnoff N, Sandherr M, Schlimok G, et al. Myeloid blast crisis evolving during imatinib treatment of an FIP1L1-PDGFR alpha-positive chronic myeloproliferative disease with prominent eosinophilia. 2005;19(2):286–7. doi: 10.1038/sj.leu.2403600.

  36. Ohnishi H, Kandabashi K, Maeda Y, et al. Chronic eosinophilic leukaemia with FIP1L1-PDGFRA fusion and T6741 mutation that evolved from Langerhans cell histiocytosis with eosinophilia after chemotherapy. Br J Haematol. 2006;134(5):547–9. doi: 10.1111/j.1365-2141.2006.06221.x.

  37. Lierman E, Michaux L, Beullens E, et al. FIP1L1-PDGFRα D842V, a novel panresistant mutant, emerging after treatment of FIP1L1-PDGFRα T674I eosinophilic leukemia with single agent sorafenib. 2009;23(5):845–51. doi: 10.1038/leu.2009.2.

  38. Bradeen HA, Eide CA, O’Hare T, et al. Comparison of imatinib mesylate, dasatinib (BMS-354825), and nilotinib (AMN107) in an N-ethyl-N-nitrosourea (ENU)-based mutagenesis screen: high efficacy of drug combinations. 2006;108(7):2332–8. doi: 10.1182/blood-2006-02-004580.

  39. Helbig G, Hus M, Halasz M, et al. Imatinib mesylate may induce long-term clinical response in FIP1L1-PDGFRα-negative hypereosinophilic syndrome. Med Oncol. 2012;29 (2):1073–6. doi:1007/s12032-011-9831-1.

  40. Butt NM, Lambert J, Ali S, et al. Guideline for the investigation and management of eosinophilia. Br J Haematol. 2017;176(4):553–72. doi: 10.1111/bjh.14488.

  41. Butterfield JH. Success of short-term, higher-dose imatinib mesylate to induce clinical response in FIP1L1-PDGFRα-negative hypereosinophilic syndrome. Leuk Res. 2009;33(8):1127–9. doi: 10.1016/j.leukres.2008.12.001.

  42. Klion AD, Robyn J, Maric I, et al. Relapse following discontinuation of imatinib mesylate therapy for FIP1L1/PDGFRA-positive chronic eosinophilic leukemia: implications for optimal dosing. Blood. 2007;110(10):3552–6. doi: 10.1182/blood-2007-07-100164.