Опыт применения режима кондиционирования Thio/Mel перед трансплантацией аутологичных гемопоэтических стволовых клеток при множественной миеломе

С.В. Грицаев1, И.И. Кострома1, А.А. Жернякова1, И.М. Запреева1, Е.В. Карягина2, Ж.В. Чубукина1, С.А. Тиранова1, И.С. Мартынкевич1, С.С. Бессмельцев1, А.В. Чечеткин1

1 ФГБУ «Российский НИИ гематологии и трансфузиологии ФМБА», ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024

2 ГБУ «Городская больница № 15», ул. Авангардная, д. 4, Санкт-Петербург, Российская Федерация, 198205

Для переписки: Иван Иванович Кострома, канд. мед. наук, ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024; тел.: +7(921)784-82-82; e-mail: obex@rambler.ru

Для цитирования: Грицаев С.В., Кострома И.И., Жернякова А.А. и др. Опыт применения режима кондиционирования Thio/Mel перед трансплантацией аутологичных гемопоэтических стволовых клеток при множественной миеломе. Клиническая онкогематология. 2019;12(3):282–8.

doi: 10.21320/2500-2139-2019-12-3-282-288


РЕФЕРАТ

Актуальность. В связи с продолжающимся поиском комбинированных режимов кондиционирования как способа усиления циторедуктивного воздействия до выполнения одиночной трансплантации аутологичных гемопоэтических стволовых клеток (аутоТГСК) больным множественной миеломой (ММ) привлекательной опцией является добавление тиотепы к мелфалану.

Цель. Анализ данных пилотного исследования по изучению эффективности режима кондиционирования, включающего введение двух алкилирующих препаратов (тиотепа и мелфалан) с последующей аутоТГСК.

Материалы и методы. 9 больным выполнено 10 аутоТГСК с режимом кондиционирования, включавшим введение тиотепы 250 мг/м2 в день –5 и мелфалана 140 мг/м2 в день –2. После проведения аутоТГСК 8 пациентам назначали пегилированный филграстим. Сроки приживления трансплантата рассчитывали по абсолютному числу нейтрофилов ≥ 0,5 × 109/л и уровню тромбоцитов ≥ 20 × 109/л. Токсичность режима оценивали по критериям CTCAE v5.0. Показатели выживаемости рассчитывали с помощью кривых Каплана—Мейера.

Результаты. Введение тиотепы не потребовало назначения дополнительных препаратов. Частота развития мукозита и энтеропатии I–II степени тяжести составила 100 и 70 % соответственно. Повышение температуры тела зафиксировано при проведении 7 аутоТГСК. Пневмония развилась у 1 больной. Инфузия 1–3 доз тромбоконцентрата (медиана 2 дозы) потребовалась всем, за исключением одного, больным. Донорские эритроциты были перелиты 3 больным. Приживление трансплантата констатировано у всех больных в срок 10–14 дней. Медиана длительности госпитализации от дня 0 до выписки составила 16 койко-дней. После аутоТГСК у 6 из 9 больных констатировано улучшение качества ответа. Прогрессирование ММ имело место у больного с комплексным кариотипом. При последующем наблюдении прогрессирование зафиксировано у 2 пациентов. На декабрь 2018 г. медиана наблюдения за 9 больными от даты проведения аутоТГСК составила 9 мес. (диапазон 3–20 мес.), медиана выживаемости без прогрессирования — 17 мес., медиана общей выживаемости не достигнута.

Заключение. Приемлемая токсичность, улучшение качества ответа и его сохранение до 20 мес. дают основание рассматривать комбинированный режим кондиционирования Thio/Mel как возможную альтернативу стандартному режиму Mel200.

Ключевые слова: множественная миелома, трансплантация аутологичных гемопоэтических стволовых клеток, режим кондиционирования, тиотепа, мелфалан.

Получено: 26 декабря 2018 г.

Принято в печать: 25 мая 2019 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Бессмельцев С.С., Абдулкадыров К.М. Множественная миелома: руководство для врачей. М.: СИМК, 2016. 512 с.

    [Bessmeltsev SS, Abdulkadyrov KM. Mnozhestvennaya mieloma: rukovodstvo dlya vrachei. (Multiple myeloma: manual for physicians.) Moscow: SIMK Publ.; 2016. 512 p. (In Russ)]

  2. Менделеева Л.П., Вотякова О.М., Покровская О.С. и др. Национальные клинические рекомендации по диагностике и лечению множественной миеломы. Гематология и трансфузиология. 2016;61(1, прил. 2):1–24. doi: 10.18821/0234-5730-2016-61-1-S2-1-24.

    [Mendeleeva LP, Votyakova OM, Pokrovskaya OS, et al. National clinical guidelines on diagnosis and treatment of multiple myeloma. Gematologiya i transfuziologiya. 2016;61(1, Suppl 2):1–24. doi: 10.18821/0234-5730-2016-61-1-S2-1-24. (In Russ)]

  3. Palumbo A, Anderson K. Multiple myeloma. N Engl J Med. 2011;364(11):1046–60. doi: 10.1056/NEJMra1011442.

  4. Cavo M, Rajkumar SV, Palumbo A, et al. International Myeloma Working Group consensus approach to the treatment of multiple myeloma patients who are candidates for autologous stem cell transplantation. 2011;117(23):6063–73. doi: 10.1182/blood-2011-02-297325.

  5. Engelhardt M, Terpos E, Kleber M, et al. European Myeloma Network recommendations on the evaluation and treatment of newly diagnosed patients with multiple myeloma. Haematologica. 2014;99(2):232–42. doi: 10.3324/haematol.2013.099358.

  6. Sidiqi MH, Aljama MA, Bin Riaz I, et al. Bortezomib, lenalidomide, and dexamethasone (VRd) followed by autologous stem cell transplant for multiple myeloma. Blood Cancer J. 2018;8(8):106. doi: 10.1038/s41408-018-0147-7.

  7. Attal M, Lauwers-Cances V, Hulin C, et al. Lenalidomide, bortezomib, and dexamethasone with transplantation for myeloma. N Engl J Med. 2017;376(14):1311–20. doi: 10.1056/NEJMoa1611750.

  8. Attal M, Harousseau JL, Stoppa AM, et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Francais du Myelome. N Engl J Med. 1996;335(2):91–7.

  9. Palumbo A, Cavallo F, Gay F, et al. Autologous transplantation and maintenance therapy in multiple myeloma. N Engl J Med. 2014;371(10):895–905. doi: 10.1056/NEJMoa1402888.

  10. Thoennissen GB, Gorlich D, Bacher U, et al. Autologous stem cell transplantation in multiple myeloma in the era of novel drug induction: a retrospective single-center analysis. Acta Haematol. 2017;137(3):163–72. doi: 10.1159/000463534.

  11. Ozaki S, Harada T, Saitoh T, et al. Survival of multiple myeloma patients aged 65–70 years in the era of novel agents and autologous stem cell transplantation. A multicenter retrospective collaborative study of the Japanese Society of Myeloma and the European Myeloma Network. Acta Haematol. 2014;132(2):211–9. doi: 10.1159/000357394.

  12. Cavo M, Salwender H, Rosinol L, et al. Double vs single autologous stem cell transplantation after bortezomib-based induction regimens for multiple myeloma: an integrated analysis of patient-level data from phase III European studies. Blood. 2013;122(21):767.

  13. Cavo M, Beksac M, Dimopoulos M, et al. Intensification therapy with bortezomib-melphalan-prednisone versus autologous stem cell transplantation for newly diagnosed multiple myeloma: an intergroup, multicenter, phase III study of the European Myeloma Network (EMN02/HO95 MM trial). 2016;128(22):673.

  14. Sonneveld P, Beksac M, van der Holt B, et al. Consolidation followed by maintenance therapy versus maintenance alone in newly diagnosed, transplant eligible patients with multiple myeloma (MM): a randomized phase 3 study of the European Myeloma Network (EMN02/HO95 MM Trial). 2016;128(22):242.

  15. Stadtmauer EA, Pasquini MC, Blackwell B, et al. Comparison of autologous hematopoietic cell transplant (autoHCT), bortezomib, lenalidomide and dexamethasone (RVD) consolidation with lenalidomide maintenance (ACM), tandem autoHCT with lenalidomide maintenance (TAM), and autoHCT with lenalidomide maintenance (AM) for upfront treatment of patients with multiple myeloma (MM): primary results from the randomized phase III trial of the Blood and Marrow Transplant Clinical Trials Network (BMT CTN 0702 – StaMINA Trial). 2016;128(22):LBA-1.

  16. Yhim HY, Kim K, Kim JS, et al. Matched-pair analysis to compare the outcomes of a second salvage auto-SCT to systemic chemotherapy alone in patients with multiple myeloma who relapsed after front-line auto-SCT. Bone Marrow Transplant. 2013;48(3):425–32. doi: 10.1038/bmt.2012.164.

  17. Olin RL, Vogl DT, Porter DL, et al. Second auto-SCT is safe and effective salvage therapy for relapsed multiple myeloma. Bone Marrow Transplant. 2009;43(5): 417–22. doi: 10.1038/bmt.2008.334.

  18. Abbi KKS, Zheng J, Devlin SM, et al. Second autologous stem cell transplant: an effective therapy for relapsed multiple myeloma. Biol Blood Marrow Transplant. 2015;21(3):468–72. doi: 10.1016/j.bbmt.2014.11.677.

  19. Cook G, Williams C, Brown JM, et al. High-dose chemotherapy plus autologous stem-cell transplantation as consolidation therapy in patients with relapsed multiple myeloma after previous autologous stem-cell transplantation (NCRI Myeloma X Relapse [Intensive trial]): a randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15(8):874–85. doi: 10.1016/S1470-2045(14)70245-1.

  20. Benson DM, Panzner K, Hamadani M, et al. Effects of induction with novel agents versus conventional chemotherapy on mobilization and autologous stem cell transplant outcomes in multiple myeloma. Leuk Lymphoma. 2010;51(2):243–51. doi: 10.3109/10428190903480728.

  21. Kumar SK, Lacy MQ, Dispenzieri A, et al. Early versus delayed autologous transplantation following IMiD-based induction therapy in patients with newly diagnosed multiple myeloma. Cancer. 2012;118(6):1585–92. doi: 10.1002/cncr.26422.

  22. Ashcroft J, Judge D, Dhanasiri S, et al. Chart review across EU5 in MM post-ASCT patients. Int J Hematol Oncol. 2018;7(1):IJH05. doi: 10.2217/ijh-2018-0004.

  23. McCarthy PL, Holstein SA, Petrucci MT, et al. Lenalidomide maintenance after autologous stem-cell transplantation in newly diagnosed multiple myeloma: a meta-analysis. J Clin Oncol. 2017;35(29):3279–89. doi: 10.1200/JCO.2017.72.6679.

  24. Kumar S, Lacy MQ, Dispenzieri A, et al. High-dose therapy and autologous stem cell transplantation for multiple myeloma poorly responsive to initial therapy. Bone Marrow Transplant. 2004;34(2):161–7. doi: 10.1038/sj.bmt.1704545.

  25. Kim JS, Kim K, Cheong JW, et al. Complete remission status before autologous stem cell transplantation is an important prognostic factor in patients with multiple myeloma undergoing upfront single autologous transplantation. Biol Blood Marrow Transplant. 2009;15(4):463–70. doi: 10.1016/j.bbmt.2008.12.512.

  26. Gertz MA, Kumar S, Lacy MQ, et al. Stem cell transplantation in multiple myeloma: impact of response failure with thalidomide or lenalidomide induction. Blood. 2010;115(12):2348–53. doi: 10.1182/blood-2009-07-235531.

  27. Грицаев С.В., Кузяева А.А., Бессмельцев С.С. Отдельные аспекты аутологичной трансплантации гемопоэтических стволовых клеток при множественной миеломе. Клиническая онкогематология. 2017;10(1):7–12. doi: 21320/2500-2139-2017-10-1-7-12.

    [Gritsaev SV, Kuzyaeva AA, Bessmeltsev SS. Certain Aspects of Autologous Hematopoietic Stem Cell Transplantation in Patients with Multiple Myeloma. Clinical oncohematology. 2017;10(1):7–12. doi: 10.21320/2500-2139-2017-10-1-7-12. (In Russ)]

  28. Musso M, Messina G, Marcacci G, et al. High-dose melphalan plus thiotepa as conditioning regimen before second autologous stem cell transplantation for “de novo” multiple myeloma patients: a phase II study. Biol Blood Marrow Transplant. 2015;21(11):1932–8. doi: 10.1016/j.bbmt.2015.06.011.

  29. Kumar S, Paiva B, Anderson KC, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17(8):e328–46. doi: 10.1016/S1470-2045(16)30206-6.

  30. Schiffman KS, Bensinger WI, Appelbaum FR, et al. Phase II study of high-dose busulfan, melphalan and thiotepa with autologous peripheral blood stem cell support in patients with malignant disease. Bone Marrow Transplant. 1996;17(6):943–50.

  31. Zaid AB, Abdul-Hai A, Grotto I, et al. Autologous transplant in multiple myeloma with an augmented conditioning protocol. Leuk Lymphoma. 2013;54(11):2480–4. doi: 10.3109/10428194.2013.782608.

  32. Anagnostopoulos A, Aleman A, Ayers G, et al. Comparison of high-dose melphalan with a more intensive regimen of thiotepa, busulfan, and cyclophosphamide for patients with multiple myeloma. Cancer. 2004;100(12):2607–12. doi: 10.1002/cncr.20294.

  33. Hari P, Reece DE, Randhawa J, et al. Final outcomes of escalated melphalan 280 mg/m2 with amifostine cytoprotection followed autologous hematopoietic stem cell transplantation for multiple myeloma: high CR and VGPR rates do not translate into improved survival. Bone Marrow Transplant. 2019;54(2):293–9. doi: 10.1038/s41409-018-0261-y.

  34. Auner HW, Iacobelli S, Sbianchi G, et al. Melphalan 140 mg/m2 or 200 mg/m2 for autologous transplantation in myeloma: results from the collaboration to collect autologous transplant outcomes in lymphoma and myeloma (CALM) study. A report by the EBMT Chronic Malignancies Working Party. Haematologica. 2018;103(3):514–21. doi: 10.3324/haematol.2017.181339.

  35. Dimopoulos M, Wang M, Maisnar V, et al. Response and progression-free survival according to planned treatment duration in patients with relapsed multiple myeloma treated with carfilzomib, lenalidomide, and dexamethasone (KRd) versus lenalidomide and dexamethasone (Rd) in the phase III ASPIRE study. J Hematol Oncol. 2018;11(1):49. doi: 10.1186/s13045-018-0583-7.

  36. Costa LJ, Landau HJ, Chhabra S, et al. Phase 1/2 trial of carfilzomib plus high-dose melphalan preparative regimen for salvage autologous hematopoietic cell transplantation followed by maintenance carfilzomib in patients with relapsed/refractory multiple myeloma. Biol Blood Marrow Transplant. 2018;24(7):1379–85. doi: 10.1016/j.bbmt.2018.01.036.

Применение ибрутиниба при рефрактерном течении хронического лимфолейкоза и у пациентов группы высокого риска

Н.В. Куркина1,2, Е.А. Репина1, Н.Н. Машнина2

1 ФГБОУ ВО «Национальный исследовательский Мордовский государственный университет им. Н.П. Огарева», ул. Большевистская, д. 68, Саранск, Республика Мордовия, Российская Федерация, 430032

2 ГБУЗ РМ «Республиканская клиническая больница № 4», ул. Ульянова, д. 32, Саранск, Республика Мордовия, Российская Федерация, 430032

Для переписки: Надежда Викторовна Куркина, канд. мед. наук, ул. Большевистская, д. 68, Саранск, Республика Мордовия, Российская Федерация, 430032; e-mail: nadya.kurckina@yandex.ru

Для цитирования: Куркина Н.В., Репина Е.А., Машнина Н.Н. Применение ибрутиниба при рефрактерном течении хронического лимфолейкоза и у пациентов группы высокого риска. Клиническая онкогематология. 2019;12(3):278–81.

doi: 10.21320/2500-2139-2019-12-3-278-281


РЕФЕРАТ

Несмотря на успехи иммунохимиотерапии хронического лимфолейкоза, существуют определенные трудности подбора терапии у пациентов с рефрактерным течением заболевания, аутоиммунными гемолитическими осложнениями, а также в группах высокого риска с наличием цитогенетических изменений. Применение препарата из группы ингибиторов тирозинкиназы Брутона — ибрутиниба — позволяет преодолеть резистентность к противоопухолевому лечению без ухудшения качества жизни пациентов.

Ключевые слова: хронический лимфолейкоз, иммунохимиотерапия, ибрутиниб, рефрактерность, рецидив.

Получено: 21 января 2018 г.

Принято в печать: 10 мая 2019 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Zenz T, Gribben JG, Hallek M, et al. Risk categories and refractory CLL in the era of chemoimmunotherapy. Blood. 2012;119(18):4101. doi: 10.1182/blood-2011-11-312421.

  2. Никитин Е.А., Судариков А.Б. Хронический лимфолейкоз высокого риска: история, определение, диагностика и лечение. Клиническая онкогематология. 2013;6(1):59–67.

    [Nikitin EA, Sudarikov AB. High­risk chronic lymphocytic leukemia: history, definition, diagnosis, and management. Klinicheskaya onkogematologiya. 2013;6(1):59–67. (In Russ)]

  3. Byrd JС, Furman RR, Coutre SE, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369(1):32–42. doi: 10.1056/nejmoa1215637.

  4. Kil LP, de Bruijn MJ, van Hulst JA, et al. Bruton’s tyrosine kinase mediated signaling enhances leukemogenesis in a mouse model for chronic lymphocytic leukemia. Am J Blood Res. 2013;3(1):71–83.

  5. Cheson BD, Byrd JC, Rai KR, et al. Novel targeted agents and the need to refine clinical end points in chronic lymphocytic leukemia. J Clin Oncol. 2012;30(23):2820–2. doi: 10.1200/jco.2012.43.3748.

  6. Byrd JС, Furman RR, Coutre SE, et al. Three-year follow-up of treatment-naive and previously treated patients with CLL and SLL receiving single-agent ibrutinib. Blood. 2015;125(16):2497–506. doi: 10.1182/blood-2014-10-606038.

  7. Имбрувика® (инструкция по медицинскому применению). Джонсон & Джонсон (Россия). Доступно по: https://www.vidal.ru/drugs/imbruvica Ссылка активна на 21.01.2019.

    [Imbruvica® (package insert). Johnson & Johnson (Russia). Available from: https://www.vidal.ru/drugs/imbruvica__43861. (accessed 21.01.2019) (In Russ)]

  8. Chavez J, Sahakian E, Pinilla-Ibarz J. Ibrutinib: an evidence-based review of its potential in the treatment of advanced chronic lymphocytic leukemia. Core Evid. 2013;8:37–45. doi: 10.2147/CE.S34068.

  9. Программное лечение заболеваний системы крови: сборник алгоритмов диагностики и протоколов лечения заболеваний системы крови. Под ред. В.Г. Савченко. М.: Практика, 2012. 1056 с.

    [Savchenko VG, ed. Programmnoe lechenie zabolevanii sistemy krovi: sbornik algoritmov diagnostiki i protokolov lecheniya zabolevanii sistemy krovi. (Program treatment of blood system diseases: collection of diagnostic algorithms and treatment protocols for blood system diseases.) Moscow: Praktika Publ.; 1056 p. (In Russ)]

Реаранжировки генов иммуноглобулинов в опухолевых клетках у пациентов c первичной медиастинальной (тимической) В-крупноклеточной лимфомой

Я.К. Мангасарова, Ю.В. Сидорова, А.У. Магомедова, Б.В. Бидерман, Е.Е. Никулина, А.Б. Судариков, А.М. Ковригина, С.К. Кравченко

ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167

Для переписки: Яна Константиновна Мангасарова, канд. мед. наук, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167; тел.: +7(926)395-82-52; e-mail: v.k.jana@mail.ru

Для цитирования: Мангасарова Я.К., Сидорова Ю.В., Магомедова А.У. Реаранжировки генов иммуноглобулинов в опухолевых клетках у пациентов c первичной медиастинальной (тимической) В-крупноклеточной лимфомой. Клиническая онкогематология. 2019;12(3):271–7.

doi: 10.21320/2500-2139-2019-12-3-271-277


РЕФЕРАТ

Актуальность. Первичная медиастинальная (тимическая) В-крупноклеточная лимфома (ПМВКЛ) — это злокачественная опухоль, субстратом которой являются крупные атипичные лимфоидные клетки, экспрессирующие маркеры постгерминальной дифференцировки. Реаранжировки генов иммуноглобулинов при ПМВКЛ выявляются в 30–65 % случаев. При этом молекулы иммуноглобулинов не экспрессируются ни на поверхности, ни в цитоплазме опухолевых клеток.

Цель. Оценить частоту В-клеточной клональности по реаранжировкам генов тяжелой/легких цепей иммуноглобулинов; определить стабильность реаранжировок при развитии рецидивов заболевания; изучить спектр реаранжировок и клональную связь с первичной опухолью при метахронном возникновении медиастинальной лимфомы серой зоны.

Материалы и методы. С целью оценить реаранжировки генов тяжелой/легких цепей иммуноглобулинов был выполнен молекулярный анализ 29 первичных биоптатов опухоли и 4 образцов ткани с верифицированными гистологически и иммуногистохимически рецидивами заболевания или метахронным развитием лимфом.

Результаты. В 16 (55,2 %) из 29 случаев выявлена перестройка генов тяжелой цепи иммуноглобулинов, в 7 (24,1 %) — перестройка генов легких цепей, в 6 (20,7 %) — реаранжировок генов тяжелой/легких цепей иммуноглобулинов не обнаружено. На основании анализа генов иммуноглобулинов у 2 пациентов при развитии раннего рецидива заболевания определялся опухолевый клон, идентичный выявленному в дебюте заболевания. У 2 больных, достигших полной ремиссии, констатировано метахронное развитие медиастинальной лимфомы серой зоны, а молекулярно-генетическое исследование выявило смену/исчезновение исходных клональных реаранжировок генов иммуноглобулинов.

Заключение. Общая частота обнаружения В-клеточной клональности при ПМВКЛ составила 79,3 %. Молекулярно-генетические исследования позволяли подтвердить сохранение исходных клональных реаранжировок генов иммуноглобулинов при развитии ранних рецидивов заболевания и опровергнуть клональное родство опухоли при метахронном развитии медиастинальной лимфомы серой зоны.

Ключевые слова: первичная медиастинальная (тимическая) В-крупноклеточная лимфома, реаранжировка генов тяжелой/легких цепей иммуноглобулинов, полимеразная цепная реакция, метахронное развитие лимфомы.

Получено: 2 ноября 2018 г.

Принято в печать: 29 мая 2019 г.

Читать статью в PDF 


ЛИТЕРАТУРА

  1. Evans PA, Pott Ch, Groenen PJ, et al. Significantly improved PCR-based clonality testing in B-cell malignancies by use of multiple immunoglobulin gene targets. Report of the BIOMED-2 Concerted Action BHM4-CT98-3936. Leukemia. 2007;21(2):207–14. doi: 10.1038/sj.leu.2404479.

  2. Мангасарова Я.К., Магомедова А.У., Ковригина А.М. и др. Первичная медиастинальная (тимическая) В-крупноклеточная лимфома: диагностика отдаленных экстрамедиастинальных поражений и возможности лечения. Клиническая онкогематология. 2018;11(3):220–6. doi: 21320/2500-2139-2018-11-3-220-226.

    [Mangasarova YaK, Magomedova AU, Kovrigina AM, et al. Primary Mediastinal (Thymic) Large B-Cell Lymphoma: Diagnostics of Extramediastinal Lesions and Treatment Opportunities. Clinical oncohematology. 2018;11(3):220–6. doi: 10.21320/2500-2139-2018-11-3-220-226. (In Russ)]

  3. Harris NL; The International Lymphoma Study Group. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Curr Diagn Pathol. 1995;2(1):58–9. doi: 10.1016/S0968-6053(00)80051-4.

  4. Rosenwald A, Wright G, Leroy K, et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med. 2003;198(6):851–62. doi: 10.1084/jem.20031074.

  5. Pileri SA, Zinzani PL, Gaidano G, et al. Pathobiology of primary mediastinal B-cell lymphoma. Leuk Lymphoma. 2003;44(Suppl 3):S21–6. doi: 10.1080/10428190310001623810.

  6. Loddenkemper C, Anagnostopoulos I, Hummel M, et al. Differential Emu enhancer activity and expression of BOB.1/OBF.1, Oct2, PU.1, and immunoglobulin in reactive B-cell populations, B-cell non-Hodgkin lymphomas, and Hodgkin lymphomas. J Pathol. 2004;202(1):60–9. doi: 10.1002/path.1485.

  7. De Leval L, Ferry JA, Falini B, et al. Expression of bcl-6 and CD10 in primary Mediastinal large B-cell lymphoma: evidence for derivation from germinal center B cells? Am J Surg Pathol. 2001;25(10):1277–82. doi: 10.1097/00000478-200110000-00008.

  8. Rosenquist R, Lindstrom A, Holmberg D, et al. V(H) gene family utilization in different B-cell lymphoma subgroups. Eur J Haematol. 1999;62(2):123–8. doi: 10.1111/j.1600-0609.1999.tb01732.x.

  9. Zhong DR, Ling Q, Shi XH, et al. Comparative study between primary mediastinal B-cell lymphoma and non-mediastinal diffuse large B-cell lymphoma by immunoglobulin gene rearrangement and Epstein-Barr virus infection detection. J Hematop. 2009;2(1):45–9. doi: 1007/s12308-009-0022-3.

  10. Leithauser F, Bauerle M, Quang Huynh M, et al. Isotype-switched immunoglobulin genes with a high load of somatic hypermutation and lack of ongoing mutational activity are prevalent in mediastinal B-cell lymphoma. 2001;98(9):2762–70; doi: 10.1182/blood.v98.9.2762.

  11. Burack WR, Laughlin TS, Friedberg JW, et al. PCR assays detect B-lymphocyte clonality in formalin-fixed, paraffin-embedded specimens of classical Hodgkin lymphoma without microdissection. Am J Clin Pathol. 2010;134(1):104–11. doi: 10.1309/AJCPK6SBE0XOODHB.

  12. Evens AM, Kanakry JA, Sehn LH, et al. Gray zone lymphoma with features intermediate between classical Hodgkin lymphoma and diffuse large B-cell lymphoma: characteristics, outcomes, and prognostication among a large multicenter cohort. Am J Hematol. 2015;90(9):778–83. doi: 10.1002/ajh.24082.

  13. Eberle FC, Salaverria I, Steidl C, et al. Gray zone lymphoma: chromosomal aberrations with immunophenotypic and clinical correlations. Mod Pathol. 2011;24(12):1586–97. doi: 10.1038/modpathol.2011.116.

  14. Dongen JJ, Langerak AW, Bruggemann M, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2003;17(12):2257–317. doi: 10.1038/sj.leu.2403202.

Мутации гена TP53 в опухолевых клетках у пациентов с агрессивными В-клеточными лимфомами

А.Е. Мисюрина1, С.К. Кравченко1, В.А. Мисюрин2, А.М. Ковригина1, А.У. Магомедова1, Е.А. Барях3, Ф.Э. Бабаева1, А.В. Мисюрин4

1 ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167

2 ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Москва, Российская Федерация, 115478

3 ГБУЗ «Городская клиническая больница № 52 ДЗМ», ул. Пехотная, д. 3, Москва, Российская Федерация, 123182

4 ООО «ГеноТехнология», ул. 800-летия Москвы, д. 11, Москва, Российская Федерация, 127247

Для переписки: Анна Евгеньевна Мисюрина, канд. мед. наук, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167; тел.: +7(909)637-32-49; e-mail: anna.lukina1@gmail.com

Для цитирования: Мисюрина А.Е., Кравченко С.К., Мисюрин В.А. и др. Мутации гена TP53 в опухолевых клетках у пациентов с агрессивными В-клеточными лимфомами. Клиническая онкогематология. 2019;12(3):263–70.

doi: 10.21320/2500-2139-2019-12-3-263-270


РЕФЕРАТ

Актуальность. Наличие мутаций в гене TP53 затрудняет апоптоз в клетках и приводит к возникновению в них дополнительных онкогенных событий, способствующих прогрессированию опухоли.

Цель. Оценить частоту мутаций гена TP53 у пациентов с В-клеточными лимфомами высокой степени злокачественности «double-hit» (HGBL DH) и неуточненной (HGBL NOS); проанализировать связь с прогнозом заболевания.

Материалы и методы. Проанализирован ретроспективный материал из архива 10 больных с HGBL DH и 26 — с HGBL NOS. Медиана наблюдения составила 26,5 мес. (диапазон 0,6–160,9 мес.). Отбор выполняли по принципу наличия доступного биологического материала (парафиновые блоки) для проведения секвенирования по Сэнгеру последовательности гена TP53 с 5-го по 8-й экзон (кодирующих ДНК-связывающий домен гена TP53). Всем больным выполняли FISH-исследование опухоли с целью выявить транслокации с участием локусов генов cMYC/8q24, BCL2/18q21 и BCL6/3q27. Для анализа различий между группами использовались тесты χ2 и Манна—Уитни. Для оценки влияния молекулярных маркеров на прогноз заболевания проведен однофакторный событийный анализ (критерий Каплана—Мейера, лог-ранговый тест) и многофакторный регрессионный анализ Кокса.

Результаты. Мутации гена TP53 в клетках лимфомы выявлены у 13 (36 %) из 36 больных, 10 (77 %) из 13 — патогенные. У 8 из 10 больных с мутациями TP53 обнаружена транслокация гена cMYC/8q24. Группы с диким (TP53-WT) и мутантным (TP53-MUT) типами гена TP53 были сопоставимы по основным клиническим характеристикам. Больные с TP53-MUT в опухолевых клетках имели худшие показатели 3-летней общей выживаемости (ОВ) в сравнении с группой без TP53-MUT (30 vs 73 %; = 0,026) и более высокую вероятность прогрессирования заболевания в течение 3 лет (66 vs 15 %; = 0,004). При многофакторном анализе значимым фактором в отношении ОВ было наличие мутации гена TP53 (= 0,006). Вероятность развития рецидивов/прогрессирования повышалась при сочетании мутаций гена TP53 и транслокации с участием локуса гена cMYC (= 0,0003).

Заключение. Сочетание транслокации с участием гена cMYC/8q24 и мутации гена TP53 в клетках опухоли при HGBL DH и HGBL NOS позволяет стратифицировать больных на группы риска рецидивов/прогрессирования лимфомы.

Ключевые слова: B-клеточная лимфома высокой степени злокачественности «double-hit», B-клеточная лимфома высокой степени злокачественности, неуточненная, мутация TP53 в опухолевых клетках, транслокация с участием локуса гена cMYC.

Получено: 25 января 2019 г.

Принято в печать: 3 июня 2019 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Matlashewski G, Lamb P, Pim D, et al. Isolation and characterization of a human p53 cDNA clone: expression of the human p53 gene. EMBO J. 1984;3(13):3257–62. doi: 10.1002/j.1460-2075.1984.tb02287.x.

  2. Kern SE, Kinzler KW, Bruskin A, et al. Identification of p53 as a sequence-specific DNA-binding protein. Science. 1991;252(5013):1708–11. doi: 10.1126/science.2047879.

  3. McBride OW, Merry D, Givol D. The gene for human p53 cellular tumor antigen is located on chromosome 17 short arm (17p13). Proc Natl Acad Sci USA. 1986;83(1):130–4. doi: 10.1073/pnas.83.1.130.

  4. Levine AJ, Oren M. The first 30 years of p53: growing ever more complex. Nat Rev Cancer. 2009;9(10):749–58. doi: 10.1038/nrc2723.

  5. Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell. 2009;137(3):413–31. doi: 10.1016/j.cell.2009.04.037.

  6. Eischen CM, Weber JD, Roussel MF, et al. Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev. 1999;13(20):2658–69. doi: 10.1101/gad.13.20.2658.

  7. Donehower LA, Harvey M, Slagle BL, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 1992;356(6366):215–21. doi: 10.1038/356215a0.

  8. Gudkov AV, Komarova EA. The role of p53 in determining sensitivity to radiotherapy. Nat Rev Cancer. 2003;3(2):117–29. doi: 10.1038/nrc992.

  9. Xu-Monette ZY, Medeiros LJ, Li Y, et al. Dysfunction of the TP53 tumor suppressor gene in lymphoid malignancies. Blood. 2012;119(16):3668–83. doi: 10.1182/blood-2011-11-366062.

  10. Mihara M, Erster S, Zaika A, et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell. 2003;11(3):577–90. doi: 10.1016/s1097-2765(03)00050-9.

  11. Petitjean A, Mathe E, Kato S, et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat. 2007;28(6):622–9. doi: 10.1002/humu.20495.

  12. Young KH, Weisenburger DD, Dave BJ, et al. Mutations in the DNA-binding codons of TP53, which are associated with decreased expression of TRAIL receptor-2, predict for poor survival in diffuse large B-cell lymphoma. Blood. 2007;110(13):4396–405. doi: 10.1182/blood-2007-02-072082.

  13. Haupt S, Raghu D, Haupt Y. Mutant p53 drives cancer by subverting multiple tumor suppression pathways. Front Oncol. 2016;6:12. doi: 10.3389/fonc.2016.00012.

  14. Soussi T, Beroud C. Assessing TP53 status in human tumours to evaluate clinical outcome. Nat Rev Cancer. 2001;1(3):233–9. doi: 10.1038/35106009.

  15. Soussi T, Lozano G. P53 mutation heterogeneity in cancer. Biochem Biophys Res Commun. 2005;331(3):834–42. doi: 10.1016/j.bbrc.2005.03.190.

  16. Kato S, Han SY, Liu W, et al. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci USA. 2003;100(14):8424–9. doi: 10.1073/pnas.1431692100.

  17. Xu-Monette ZY, Young KH. The TP53 tumor suppressor and autophagy in malignant lymphoma. Autophagy. 2012;8(5):842–5. doi: 10.4161/auto.19703.

  18. Vousden KH, Prives C. P53 and prognosis: new insights and further complexity. Cell. 2005;120(1):7–10. doi: 10.1016/s0092-8674(04)01252-8.

  19. Young KH, Leroy K, Moller MB, et al. Structural profiles of TP53 gene mutations predict clinical outcome in diffuse large B-cell lymphoma: an international collaborative study. Blood. 2008;112(8):3088–98. doi: 10.1182/blood-2008-01-129783.

  20. Joerger AC, Ang HC, Fersht AR. Structural basis for understanding oncogenic p53 mutations and designing rescue drugs. Proc Natl Acad Sci USA. 2006;103(41):15056–61. doi: 10.1073/pnas.0607286103.

  21. Joerger AC, Fersht AR. Structural biology of the tumor suppressor p53. Annu Rev Biochem. 2008;77(1):557–82. doi: 10.1146/annurev.biochem.77.060806.091238.

  22. Peroja P, Pedersen M, Mantere T, et al. Mutation of TP53, translocation analysis and immunohistochemical expression of MYC, BCL-2 and BCL-6 in patients with DLBCL treated with R-CHOP. Sci Rep. 2018;8(1):14814. doi: 10.1038/s41598-018-33230-3.

  23. Clipson A, Barrans S, Zeng N, et al. The prognosis of MYC translocation positive diffuse large B-cell lymphoma depends on the second hit. J Pathol Clin Res. 2015;1(3):125–33. doi: 10.1002/cjp2.10.

  24. Aukema SM, Kreuz M, Kohler CW, et al. Biological characterization of adult MYC-translocation-positive mature B-cell lymphomas other than molecular Burkitt lymphoma. Haematologica. 2014;99(4):726–35. doi: 10.3324/haematol.2013.091827.

  25. Swerdlow SH, Campo E, Harris NL, et al. Classification of tumours of haematopoietic and lymphoid tissues. WHO classification of tumours. Revised 4th edition, Vol. 2. Lyon: IARC Press; 2017.

  26. Gebauer N, Bernard V, Gebauer W, et al. TP53 mutations are frequent events in double-hit B-cell lymphomas with MYC and BCL2 but not MYC and BCL6 translocations. Leuk Lymphoma. 2015;56(1):179–85. doi: 10.3109/10428194.2014.907896.

  27. Xu-Monette ZY, Wu L, Visco C, et al. Mutational profile and prognostic significance of TP53 in diffuse large B-cell lymphoma patients treated with R-CHOP: report from an International DLBCL Rituximab-CHOP Consortium Program Study. Blood. 2012;120(19):3986–96. doi: 10.1182/blood-2012-05-433334.

  28. Schiefer AI, Kornauth C, Simonitsch-Klupp I, et al. Impact of Single or Combined Genomic Alterations of TP53, MYC, and BCL2 on survival of patients with diffuse large B-cell lymphomas: A retrospective cohort study. Medicine (Baltimore). 2015;94(52):e2388. doi: 10.1097/MD.0000000000002388.

  29. Hu S, Xu-Monette ZY, Tzankov A, et al. MYC/BCL2 protein coexpression contributes to the inferior survival of activated B-cell subtype of diffuse large B-cell lymphoma and demonstrates high-risk gene expression signatures: a report from the international DLBCL rituximab-CHOP consortium program. Blood. 2013;121(20):4021–31. doi: 10.1182/blood-2012-10-460063.

  30. Schuster C, Berger A, Hoelzl MA, et al. The cooperating mutation or “second hit” determines the immunologic visibility toward MYC-induced murine lymphomas. Blood. 2011;118(17):4635–45. doi: 10.1182/blood-2010-10-313098.

  31. Tzankov A, Xu-Monette ZY, Gerhard M, et al. Rearrangements of MYC gene facilitate risk stratification in diffuse large B-cell lymphoma patients treated with rituximab-CHOP. Mod Pathol. 2014;27(7):958–71. doi: 10.1038/modpathol.2013.214.

  32. Moll UM, Wolff S, Speidel D, Deppert W. Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol. 2005;17(6):631–6. doi: 10.1016/j.ceb.2005.09.007.

  33. MacLean KH, Keller UB, Rodriguez-Galindo C, et al. c-Myc augments gamma irradiation-induced apoptosis by suppressing Bcl-XL. Mol Cell Biol 2003;23(20):7256–70. doi: 10.1128/mcb.23.20.7256-7270.2003.

  34. Adams JM, Harris AW, Pinkert CA, et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature. 1985;318(6046):533–8. doi: 10.1038/318533a0.

Первичные лимфомы костей: долгосрочные результаты проспективного одноцентрового исследования

А.К. Смольянинова, Н.Г. Габеева, В.Е. Мамонов, С.А. Татарникова, Л.Г. Горенкова, Д.С. Бадмаджапова, А.М. Ковригина, Э.Г. Гемджян, Е.Е. Звонков

ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167

Для переписки: Анна Константиновна Смольянинова, канд. мед. наук, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167; тел.: +7(495)612-23-61, +7(926)912-31-16; e-mail: annmo8@mail.ru

Для цитирования: Смольянинова А.К., Габеева Н.Г., Мамонов В.Е. и др. Первичные лимфомы костей: долгосрочные результаты проспективного одноцентрового исследования. Клиническая онкогематология. 2019;12 (3):247–62.

doi: 10.21320/2500-2139-2019-12-3-247-262


РЕФЕРАТ

Актуальность. Первичные лимфомы костей (ПЛК) относятся к редким экстранодальным лимфатическим опухолям. Более чем в 90 % наблюдений они представлены диффузной В-крупноклеточной лимфомой (ДВКЛ). Эффективность стандартной иммунохимиотерапии R-CHOP при локальной (IЕ) стадии ПЛК составляет более 90 %. В то же время при наличии таких факторов неблагоприятного прогноза (ФНП), как множественное поражение костей (IVЕ стадия), повышение активности лактатдегидрогеназы (ЛДГ), В-симптомы, большой размер опухоли, отмечается снижение эффективности R-CHOP. Оптимального режима противоопухолевого лечения для больных ПЛК с ФНП в настоящее время нет. Мы предлагаем у данной категории пациентов проводить первичную интенсифицированную многокомпонентную химиотерапию.

Цель. Оценить долгосрочные результаты проспективного одноцентрового исследования по применению высокодозной программы mNHL-BFM-90 у больных с первичной ДВКЛ костей и ФНП.

Материалы и методы. В исследование включено 33 пациента с первичной ДВКЛ костей, наблюдавшихся в ФГБУ «НМИЦ гематологии» с 2006 по 2018 г. Медиана возраста больных составила 44 года (диапазон 16–78 лет). Оценивались основные клинические, лабораторные, рентгенологические и МР-характеристики опухоли, показатели выживаемости, факторы прогноза.

Результаты. ФНП выявлены у 29 (88 %) пациентов, из них распространенная (˃ IE) стадия была у 20 (61 %) больных, повышение активности ЛДГ — у 20 (59 %), В-симптомы — у 15 (45 %), большой размер опухоли — у 23 (71 %). Высокодозное противоопухолевое лечение по программе mNHL-BFM-90 проведено 27 из 33 больных. Общая и выживаемость без прогрессирования за 5 лет составили 92 %. Ни один из ФНП не оказал статистически значимого влияния на показатели выживаемости.

Заключение. Применение высокодозной программы mNHL-BFM-90 при ПЛК, характеризующихся неблагоприятным прогнозом, позволяет достичь длительные ремиссии у 92 % пациентов. Мы рекомендуем mNHL-BFM-90 в качестве терапии выбора у прогностически неблагоприятной группы больных с ПЛК.

Ключевые слова: первичная лимфома костей, диффузная В-крупноклеточная лимфома, высокодозная интенсифицированная многокомпонентная программа mNHL-BFM-90.

Получено: 25 января 2019 г.

Принято в печать: 12 мая 2019 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Matikas A, Briasoulis A, Tzannou I, et al. Primary bone lymphoma: a retrospective analysis of 22 patients treated in a single tertiary center. Acta Haematol. 2013;130(4):291–6. doi: 10.1159/000351051.

  2. Bacci G, Jaffe N, Emiliani E, et al. Therapy for primary non-Hodgkin’s lymphoma of bone and a comparison of results with Ewing’s sarcoma. Ten year’s experience at the Istituto Ortopedico Rizzoli. Cancer. 1986;57(8):1468–72. doi: 10.1002/1097-0142(19860415)57:8<1468::aid-cncr2820570806>3.0.co;2-0.

  3. Fidias P, Spiro I, Scobczak ML, et al. Long-term results of combined modality therapy in primary bone lymphomas. Int J Radiat Oncol Biol Phys. 1999;45(5):1213–8. doi: 10.1016/s0360-3016(99)00305-3.

  4. Lewis VO, Primus G, Anastasi J, et al. Oncologic outcomes of primary lymphomas of bone in adults. Clin Orthop Rel Res. 2003;415:90–7. doi: 10.1097/01.blo.0000093901.12372.ad.

  5. Ostrowski ML, Unni KK, Banks PM, et al. Malignant Lymphoma of Bone. Cancer. 1986;58(12):2646–55. doi: 10.1002/1097-0142(19861215)58:12<2646::aid-cncr2820581217>3.0.co;2-u.

  6. Ramadan KM, Shenkier T, Sehn LH, et al. A clinicopathological retrospective study of 131 patients with primary bone lymphoma: a population-based study of successively treated cohorts from the British Columbia Cancer Agency. Ann Oncol. 2006;18(1):129–35. doi: 10.1093/annonc/mdl329.

  7. Ueda T, Aozasa K, Ohsawa M, et al. Malignant lymphomas of bone in Japan. Cancer. 1989;64(11):2387–92. doi: 10.1002/1097-0142(19891201)64:11<2387::aid-cncr2820641132>3.0.co;2-1.

  8. Звонков Е.Е., Красильникова Б.Б., Махиня В.А. и др. Первый опыт применения модифицированной программы NHL-BFM-90 у взрослых больных первичной диффузной В-крупноклеточной лимфосаркомой желудка с неблагоприятным прогнозом. Терапевтический архив. 2006;78(7):38–46.

    [Zvonkov EE, Krasil’nikova BB, Makhinya VА, et al. Pilot experience with the modified program NHLBFM90 in adult patients with primary diffuse large В-cell gastric lymphosarcoma with unfavorable prognosis. Terapevticheskii arkhiv. 2006;78(7):38–46. (In Russ)]

  9. Кравченко С.К., Барях Е.А., Замятина В.И. и др. Высокодозная терапия лимфомы Беркитта у больных старше 40 лет. Терапевтический архив. 2008;80(7):9–18.

    [Kravchenko SK, Baryakh EA, Zamyatina VI, et al. Highdose therapy of Berkitt’s lymphoma in patients over 40 years of age. Terapevticheskii arkhiv. 2008;80(7):9–18. (In Russ)]

  10. Магомедова А.У., Кравченко С.К., Кременецкая А.М. и др. Модифицированная программа NHL-BFM-90 для лечения больных диффузной В-крупноклеточной лимфосаркомой. Терапевтический архив. 2006;78(10):44–7.

    [Magomedova AU, Kravchenko SK, Kremenetskaya AM, et al. The modified program NHL-BFM-90 in the treatment of patients with diffuse large B-cell lymphosarcoma. Terapevticheskii arkhiv. 2006;78(10):44–7. (In Russ)]

  11. Горенкова Л.Г., Кравченко С.К., Мисюрин А.В. и др. Клиническая и молекулярная оценки эффективности высокодозной химиотерапии при анаплазированной Т-крупноклеточной АЛК-позитивной лимфоме у взрослых. Гематология и трансфузиология. 2012;57(3):43.

    [Gorenkova LG, Kravchenko SK, Misyurin AV, et al. Clinical and molecular evaluation of the efficacy of high-dose chemotherapy in adult patients with anaplastic large T-cell ALK-positive lymphoma. Gematologiya i transfuziologiya. 2012;57(3):43. (In Russ)]

  12. Морозова А.К., Звонков Е.Е., Кременецкая А.М. и др. Первый опыт применения модифицированной программы NHL-BFM-90 при лечении первичной диффузной B-крупноклеточной лимфосаркомы костей и мягких тканей с факторами неблагоприятного прогноза. Терапевтический архив. 2009;81(7):61–5.

    [Morozova AK, Zvonkov EE, Kremenetskaya AM, et al. Initial experience with using modified NHL-BFM-90 program in management of primary diffuse large B-cell lymphosarcoma of bones and soft tissues with unfavorable prognostic factors. Terapevticheskii arkhiv. 2009;81(7):61–5. (In Russ)]

  13. Морозова А.К., Звонков Е.Е., Мамонов В.Е. и др. Первичные лимфатические опухоли костей и мягких тканей: сравнительная оценка результатов лечения. Терапевтический архив. 2012;84(7):42–9.

    [Morozova AK, Zvonkov EE, Mamonov VE, et al. Primary lymphomas of bones and soft tissues: comparative assessment of treatment results. Terapevticheskii arkhiv. 2012;84(7):42–9. (In Russ)]

  14. Gill P, Wenger D, Inwards D. Primary lymphomas of bone. Clin Lymph Myel. 2005;6(2):140–2. doi: 10.3816/CLM.2005.n.041.

  15. Cheson BD, Horning SJ, Coiffier B, et al. Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. NCI Sponsored International Working Group. J Clin Oncol. 1999;17(4):1244. doi: 10.1200/JCO.1999.17.4.1244.

  16. Juweid ME, Wiseman GA, Vose JM, et al. Response assessment of aggressive non-Hodgkin’s lymphoma by integrated International Workshop Criteria and fluorine-18-fluorodeoxyglucose positron emission tomography. J Clin Oncol. 2005;23(21):4652–61. doi: 10.1200/JCO.2005.01.891.

  17. Cheson BD, Pfistner B, Juweid ME, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007; 25(5):579–86. doi: 10.1200/JCO.2006.09.2403.

  18. Juweid ME, Stroobants S, Hoekstra OS, et al. Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol. 2007;25(5):571–8. doi: 10.1200/JCO.2006.08.2305.

  19. Common Terminology Criteria for Adverse Events, version 3.0 (CTCAE). Published August 9, 2006. Available at: http://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/ctcaev3.pdf. (accessed 14.04.2019).

  20. Hans CP, Weisenburger DD, Greiner TC, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103(1):275–82. doi: 10.1182/blood-2003-05-1545.

  21. Messina C, Ferreri AJ, Govi S, et al. Clinical features, management and prognosis of multifocal primary bone lymphoma: a retrospective study of the international Extranodal Lymphoma Study Group (the IELSG 14 study). Br J Haematol. 2014;164(6):834–40. doi: 10.1111/bjh.12714.

  22. Reddy N, Greer JP. Primary bone lymphoma: a set of unique problems in management. Leuk 2009;51(1):1–2. doi: 10.3109/10428190903470877.

  23. Baar J, Burkes R, Bell R, et al. Primary Non-Hodgkin’s Lymphoma of Bone. A clinicopathologic study. Cancer. 1994;73(4):1194–9. doi: 10.1002/1097-0142(19940215)73:4<1194::aid-cncr2820730412>3.0.co;2-r.

  24. Bacci G, Ferraro A, Casadei R, et al. Primary lymphoma of bone: Long term results in patients treated with vincristine–adriamycin–cyclophosphamide and local radiation. J Chemother. 1991;3(3):189–93. doi: 10.1080/1120009x.1991.11739091.

  25. Jones D, Kraus MD, Dorfman DM. Lymphoma presenting as a solitary bone lesion. Am J Clin Pathol. 1999;111(2):171–8. doi: 10.1093/ajcp/111.2.171.

  26. Limb D, Dreghorn C, Murphy JK, Mannion R. Primary lymphoma of bone. Int Orthop. 1994;18(3):180–3. doi: 10.1007/bf00192476.

  27. Govi S, Christie D, Messina C, et al. The clinical features, management and prognostic effects of pathological fractures in a multicenter series of 373 patients with diffuse large B-cell lymphoma of the bone. Ann Oncol. 2013;25(1):176–81. doi: 10.1093/annonc/mdt482.

  28. Pilorge S, Harel S, Ribrag V, et al. Primary bone diffuse large B-cell lymphoma: a retrospective evaluation on 76 cases from French institutional and LYSA studies. Leuk Lymphoma. 2016;57(12):2820–6. doi: 10.1080/10428194.2016.1177180.

  29. Christie DR, Barton MB, Bryant G, et al. Osteolymphoma (primary bone lymphoma): An Australian review of 70 cases. Australasian Radiation Oncology Lymphoma Group (AROLG). Aust N Z J Med. 1999;29(2):214–9. doi: 10.1111/j.1445-5994.1999.tb00686.x.

  30. Santini D, Vincenzi B, Hannon RA, et al. Phase II trial evaluating the palliative benefit of second-line zoledronic acid in breast cancer patients with either a skeletal-related event or progressive bone metastases despite first-line bisphosphonate therapy. J Clin Oncol. 2006;24(30):4895–900. doi: 10.1200/JCO.2006.05.9212.

  31. Shoji H, Miller TR. Primary reticulum cell sarcoma of bone: Significance of clinical features upon the prognosis. Cancer. 1971;28(5):1234–44. doi: 10.1002/1097-0142(1971)28:5<1234::aid-cncr2820280522>3.0.co;2-l.

  32. Hayase E, Kurosawa M, Suzuki H, et al. Primary Bone Lymphoma: A Clinical Analysis of 17 Patients in a Single Institution. Acta Haematol. 2015;134(2):80–5. doi: 10.1159/000375437.

  33. Tao R, Allen PK, Rodriguez A, et al. Benefit of consolidative radiation therapy for primary bone diffuse large B-cell lymphoma. Int J Radiat Oncol Biol Phys. 2015;92(1):122–9. doi: 10.1016/j.ijrobp.2015.01.014.

  34. Ali SM, Demers LM, Leitzel K, et al. Baseline serum NTx levels are prognostic in metastatic breast cancer patients with bone-only metastasis. Ann Oncol. 2004;15(3):455–9. doi: 10.1093/annonc/mdh089.

  35. Doll C, Wulff B, Rossler J, et al. Primary B-cell lymphoma of bone in children. Eur J Pediatr. 2001;160(4):239–42. doi: 10.1007/s004310000711.

  36. Dosoretz DE, Murphy GF, Raymond AK, et al. Radiation Therapy for Primary Lymphoma of Bone. Cancer. 1983;51(1):44–6. doi: 10.1002/1097-0142(19830101)51:1<44::aid-cncr2820510111>3.0.co;2-d.

  37. Kransdorf MJ. Malignant soft-tissue tumors in a large referral population: distribution of diagnoses by age, sex, and location. Am J Roentgenol. 1995;164(1):129–34. doi: 10.2214/ajr.164.1.7998525.

  38. Wang CC. Treatment of primary reticulum-cell sarcoma of bone by radiation. N Engl J Med. 1968;278(24):1331–2. doi: 10.1056/NEJM196806132782407.

  39. Jacobs AJ, Michels R, Stein J, et al. Socioeconomic and demographic factors contributing to outcomes in patients with primary lymphoma of bone. J Bone Oncol. 2015;4(1):32–6. doi: 10.1016/j.jbo.2014.11.002.

  40. Dos Santos TM, Zumarraga JP, Reaes FM, et al. Primary bone lymphomas: retrospective analysis of 42 consecutive cases. Acta Ortop Bras. 2018;26(2):103–7. doi: 10.1590/1413-785220182602185549.

  41. Wu H, Zhang L, Shao M, Sokol L, et al. Prognostic Significance Of Soft Tissue Involvement, International Prognostic Index In Primary Bone Lymphoma: A Single Institutional Experience. Br J Haematol. 2014;166(1):60-8. doi: 10.1111/bjh.12841.

  42. Zhang HY, Zhu J, Song YQ, et al. Clinical characterization and outcome of primary bone lymphoma: a retrospective study of 61 Chinese patients. Sci Rep. 2016;6(1):28834. doi: 10.1038/srep28834.

  43. Alencar A, Pitcher D, Byrne G at al. Primary bone lymphoma – the University of Miami Experience. Leuk Lymphoma. 2009;51(1):39–49. doi. 10.3109/10428190903308007.

  44. Kim SY, Shin DY, Lee SS. Clinical characteristics and outcomes of primary bone lymphoma in Korea. Korean J Hematol. 2012;47(3): 213–8. doi: 10.5045/kjh.2012.47.3.213.

  45. Held G, Zeynalova S, Murawski N, et al. Impact of rituximab and radiotherapy on outcome of patients with aggressive B-cell lymphoma and skeletal involvement. J Clin Oncol. 2013;31(32):4115–22. doi: 10.1200/JCO.2012.48.0467.

  46. Zhu Y, Yue C, Wu B, et al. Clinical characteristics and outcomes of 31 patients with primary bone lymphoma. Nan Fang Yi Ke Da Xue Xue Bao. 2013;33(3):444–7.

  47. Barbieri E, Cammellin C, Mauro F et al. Primary Non-Hodgkin lymphoma of the bone: treatment and analysis of prognostic factors. Int J Radiat Oncol Biol Phys. 2004;59(3):760–4. doi: 10.1016/j.ijrobp.2003.11.020.

  48. Fairbanks RK, Bonner JA, Inwards CY, et al. Treatment stage 1E primary lymphoma of bone. Int J Radiat Oncol Biol Phys. 1994;28(2):363–72. doi. 10.1016/0360-3016(94)90059-0.

  49. Marshall DT, Amdur RJ, Scarborough MT, et al. Stage 1E primary non Hodgkin’s lymphoma of bone. Clin Orthop Rel Res. 2002;405:216–22. doi: 10.1097/00003086-200212000-00028.

  50. Remier RR, Chabner BA, Yong RC, et al. Lymphoma Presenting in Bone. Results of Histopathology, Staging, and Therapy. Ann Intern Med. 1977;87(1):50–5. doi: 10.7326/0003-4819-87-1-50.

  51. Singh Т, Satheesh С, Lakshmaiah С, et al. Primary bone lymphoma: A report of two cases and review of the literature. J Cancer Res Ther. 2010;6(3):296–8. doi: 10.4103/0973-1482.73366.

  52. Coley BL, Higinbotham NL, Groesbeck HP. Primary reliculum-cell sarcoma of bone. Radiology. 1950;55(5):641–58. doi: 10.1148/55.5.641.

  53. Francis KC, Higinbotham NL, Coley BL. Primary reticulum cell sarcoma of bone; report of 44 cases. Surg Gynecol Obstet. 1954;99(2):142–6.

  54. Badoo S, Sidhu GS. Primary Bone Lymphoma (PBL): Impact Of Novel Treatment On Need For Radiation Therapy (RT), a Population Based Study. Blood. 2013;122(21):3059.

  55. Гаврилина О.А., Звонков Е.Е., Паровичникова Е.Н. и др. Лечение больных диффузной В-крупноклеточной лимфомой с факторами неблагоприятного прогноза по протоколу R-DA-EPOCH/R-HMA: первые результаты российского пилотного многоцентрового исследования. Гематология и трансфузиология. 2016;61(1, прил. 1):38.

    [Gavrilina OA, Zvonkov EE, Parovichnikova EN, et al. Treatment of diffuse large B-cell lymphoma patients with poor prognosis factors using R-DA-EPOCH/R-HMA regimen: first results of the Russian pilot multi-center trial. Gematologiya i transfuziologiya. 2016;61(1, Suppl 1):38. (In Russ)]

  56. Meignan M, Barrington S, Itti E, et al. Report on the 4th international workshop on positron emission tomography in lymphoma held in Menton, France, 3–5 October 2012. Leuk 2014;55(1):31–7. doi: 10.3109/10428194.2013.802784.

  57. Rigacci L, Kovalchuk S, Berti V, et al. The use of Deauville 5-point score could reduce the risk of false-positive fluorodeoxyglucose-positron emission tomography in the posttherapy evaluation of patients with primary bone lymphomas. W J Nucl Med. 2018;17(3):157–65. doi: 10.4103/wjnm.WJNM_42_17.

  58. Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: The Lugano classification. J Clin Oncol. 2014;32(27):3059–67. doi: 1200/JCO.2013.54.8800.

  59. Reddy N, Greer JP. Primary bone lymphoma: a set of unique problems in management. Leuk 2009;51(1):1–2. doi: 10.3109/10428190903470877.

  60. Borst AJ, States LJ, Reilly AF, et al. Determining response and recurrence in pediatric B-cell lymphomas of the bone. Pediatr Blood Cancer. 2013;60(8):1281–6. doi: 10.1002/pbc.24523.

  61. Ferreri AJ, Reni M, Ceresoli GL, et al. Therapeutic management with adriamycin-containing chemotherapy and radiotherapy of monostotic and polyostotic primary non-Hodgkin’s lymphoma of bone in adults. Cancer Invest. 1998;16(8):554–61. doi: 10.3109/07357909809032885.

  62. Messina C, Christie D, Zucca E, et al. Primary and secondary bone lymphomas. Cancer Treat Rev. 2015;41(3):235–46. doi: 10.1016/j.ctrv.2015.02.001.

  63. Tomita N, Yokoyama M, Yamamoto W, et al. Central nervous system event in patients with diffuse large B-cell lymphoma in the rituximab era. Cancer Sci. 2012;103(2):245–51. doi: 10.1111/j.1349-7006.2011.02139.x.

  64. Seymour JF. Extra-nodal lymphoma in rare localisations: bone, breast and testes. Hematol Oncol. 2013;31(Suppl 1):60–3. doi: 10.1002/hon.2081.

  65. Guirguis HR, Cheung MC, Mahrous M, et al. Impact of central nervous system (CNS) prophylaxis on the incidence and risk factors for CNS relapse in patients with diffuse large B-cell lymphoma treated in the rituximab era: a single center experience and review of the literature. Br J Haematol. 2012;159(1):39–49. doi: 10.1111/j.1365-2141.2012.09247.x.

  66. Dosoretz DE, Raymond AK, Murphy GF, et al. Primary lymphoma of bone. The relationship of morphologic diversity to clinical behavior. Cancer. 1982;50(5):1009–14. doi: 10.1002/1097-0142(19820901)50:5<1009::aid-cncr2820500532>3.0.co;2-0.

  67. Rathmell AJ, Gospodarowicz MK, Sutcliffe SB, et al. Localised lymphoma of bone: prognostic factors and treatment recommendations. The Princess Margaret Hospital Lymphoma Group. Br J Cancer. 1992;66(3):603–6. doi: 10.1038/bjc.1992.322.

  68. Dubey P, Ha CS, Besa PC, et al. Localized primary malignant lymphoma of bone. Int J Radiat Oncol Biol Phys. 1997;37(5):1087–93. 10.1016/S0360-3016(97)00106-5.

  69. Gianelli U, Patriarca C, Moro A, et al. Lymphomas of the bone: a pathological and clinical study of 54 cases. Int J Surg Pathol 2002;10(4):257–66. doi: 1177/106689690201000403.

  70. Zinzani PL, Carrillo G, Ascani S, et al. Primary bone lymphoma: experience with 52 patients. Haematologica. 2003;88(3):280–5.

  71. Bayrakci K, Yildiz Y, Saglik Y, et al. Primary lymphoma of bones. Int Orthop. 2001;25(2):123–6. doi: 10.1007/s002640100224.

  72. Horsman JM, Thomas J, Hough R, Hancock BW. Primary bone lymphoma: a retrospective analysis. Int J Oncol. 2006;28(6):1571–5. doi: 10.3892/ijo.28.6.1571.

  73. Catlett JP, Williams SA, O’Connor SC, et al. Primary lymphoma of bone: an institutional experience. Leuk 2008;49(11):2125–32. doi: 10.1080/10428190802404030.

  74. Heyning FH, Hogenndoorn PC, Kramer MH, et al. Primary lymphoma of bone: extranodal lymphoma with favourable survival independent of germinal centre, post-germinal centre or indeterminate phenotype. J Clin Pathol. 2009;62(9):820–4. doi: 10.1136/jcp.2008.063156.

  75. Jawad MU, Schneiderbauer MM, Min ES, et al. Primary Lymphoma of Bone in Adult Patients. Cancer. 2010;116(4):871–9. doi: 10.1002/cncr.24828.

  76. Nasiri MR, Varshoee F, Mohtashami S, et al. Primary bone lymphoma: a clinicopathological retrospective study of 28 patients in a single institution. J Res Med Sci. 2011;16(6):814–20.

  77. Christie DR, Dear K, Le T, et al. Limited chemotherapy and shrinking field radiotherapy for Osteolymphoma (primary bone lymphoma): results from the trans-Tasman Radiation Oncology Group 99.04 and Australasian Leukaemia and Lymphoma Group LY02 prospective trial. Int J Radiat Oncol Biol Phys. 2011;80(4):1164–70. doi: 10.1016/j.ijrobp.2010.03.036.

  78. Cai L, Stauder MC, Zhang YJ, et al. Early-stage primary bone lymphoma: a retrospective, multicenter rare cancer network (RCN) study. Int J Radiat Oncol Biol Phys. 2012;83(1):284–91. doi: 10.1016/j.ijrobp.2011.06.1976.

  79. Ventre BM, Ferreri AJM, Gospodarowicz M, et al. Clinical features, management, and prognosis of an international series of 161 patients with limited-stage diffuse large B-cell lymphoma of the bone (the IELSG-14 study). Oncologist. 2014;19(3):291–8. doi: 10.1634/theoncologist.2013-0249.

  80. Jamshidi K, Jabalameli MD, Hoseini MG, et al. Stage IE Primary Bone Lymphoma: Limb Salvage for Local Recurrence. Arch Bone Jt Surg. 2015;3(1):39–44.

  81. Ayed BC, Laabidi S, Said N, et al. Primary bone lymphoma: tunisian multicentric retrospective study about 32 cases. Tunis Med. 2018;96(5):269–72.

Клиническое наблюдение волосатоклеточного лейкоза и лимфоплазмоцитарной лимфомы, установленных одновременно методом клеточного биочипа

А.Н. Хвастунова1,2, Л.С. Аль-Ради3, О.С. Федянина1,2, С.А. Луговская4, С.А. Кузнецова1,2

1 ФГБУ «НМИЦ детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России, ул. Саморы Машела, д. 1, Москва, Российская Федерация, 117997

2 ФГБУН «Центр теоретических проблем физико-химической фармакологии РАН», ул. Косыгина, д. 4, Москва, Российская Федерация, 119991

3 ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167

4 ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, ул. Баррикадная, д. 2/1, Москва, Российская Федерация, 125993

Для переписки: Алина Николаевна Хвастунова, канд. биол. наук, ул. Саморы Машела, д. 1, Москва, Российская Федерация, 117997; тел.: +7(495)287-65-70; e-mail: alina_shunina@mail.ru

Для цитирования: Хвастунова А.Н., Аль-Ради Л.С., Федянина О.С. и др. Клиническое наблюдение волосатоклеточного лейкоза и лимфоплазмоцитарной лимфомы, установленных одновременно методом клеточного биочипа. Клиническая онкогематология. 2019;12(3):243–6.

doi: 10.21320/2500-2139-2019-12-3-243-246


РЕФЕРАТ

В работе представлено клиническое наблюдение сочетания волосатоклеточного лейкоза и лимфоплазмоцитарной лимфомы с секрецией PIgMκ. С помощью клеточного биочипа, позволяющего одновременно исследовать иммунофенотип и проводить морфологический и цитохимический анализы лейкоцитов, в периферической крови у пациента с лейкопенией были обнаружены малые популяции ворсинчатых (3 % от общего числа лимфоцитов) и плазматических клеток (2 %), включая клетки Мотта (0,2 %). Результаты, полученные методом клеточного биочипа, способствовали быстрому установлению предварительного диагноза, который затем был подтвержден стандартными методами диагностики.

Ключевые слова: клеточный биочип, волосатоклеточный лейкоз, лимфоплазмоцитарная лимфома, ворсинчатые клетки, плазматические клетки, клетки Мотта.

Получено: 12 ноября 2018 г.

Принято в печать: 2 мая 2019 г.

Читать статью в PDF 


ЛИТЕРАТУРА

  1. Khvastunova AN, Kuznetsova SA, Al-Radi LS, et al. Anti-CD antibody microarray for human leukocyte morphology examination allows analyzing rare cell populations and suggesting preliminary diagnosis in leukemia. Sci Rep. 2015;5(1):12573. doi: 10.1038/srep12573.

  2. Хвастунова А.Н., Аль-Ради Л.С., Капранов Н.М. и др. Использование клеточного биочипа в диагностике волосатоклеточного лейкоза. Онкогематология. 2015;10(1):37–45. doi: 10.17650/1818-8346-2015-1-37-45.

    [Khvastunova AN, Al-Radi LS, Kapranov NM, et al. Cell-binding microarray application in diagnosis of hairy cell leukemia. Oncohematology. 2015;10(1):37–45. doi: 10.17650/1818-8346-2015-1-37-45. (In Russ)]

  3. Khvastunova AN, Al‐Radi LS, Fedyanina OS, Kuznetsova SA. Simultaneous finding of chronic lymphocytic leukemia and residual hairy cell leukemia using a lymphocyte‐binding anti‐CD antibody microarray. Clin Case Rep. 2018;6(4):753–5. doi: 10.1002/ccr3.1416.

  4. Bain BJ. Leukemia Diagnosis. 4th edition. Singapore: Blackwell Publishing; 2010. doi: 10.1002/9781444318470.

  5. Луговская С.А., Почтарь М.Е. Гематологический атлас. М. – Тверь: Триада, 2011. 368 с.

    [Lugovskaya SA, Pochtar ME. Gematologicheskii atlas. (Hematology atlas.) Moscow – Tver: Triada Publ.; 2011. 368 р. (In Russ)]

  6. Shao H, Calvo KR, Gronborg M, et al. Distinguishing hairy cell leukemia variant from hairy cell leukemia: Development and validation of diagnostic criteria. Leuk Res. 2013;37(4):401–9. doi: 10.1016/j.leukres.2012.11.021.

  7. Robak T. Hairy-cell leukemia variant: recent view on diagnosis, biology and treatment. Cancer Treat Rev. 2011;37(1):3–10. doi: 10.1016/j.ctrv.2010.05.003.

  8. Traverse-Glehen A, Baseggio L, Callet-Bauchu E, et al. Splenic red pulp lymphoma with numerous basophilic villous lymphocytes: a distinct clinicopathologic and molecular entity? Blood. 2008;111(4):2253–60. doi: 10.1182/blood-2007-07-098848.

  9. Хвастунова А.Н., Аль-Ради Л.С., Федянина О.С. и др. Особенности морфологии и иммунофенотипа опухолевых клеток лимфомы из клеток маргинальной зоны селезенки (исследование с помощью клеточного биочипа). Онкогематология. 2017;12(1):71–7. doi: 10.17650/1818-8346-2017-12-1-71-77.

    [Khvastunova AN, Al-Radi LS, Fedyanina OS, et al. Determination of morphology and immunophenotype of circulating lymphoma cells in patients with splenic marginal zone lymphoma using an anti-CD antibody microarray. Oncohematology. 2017;12(1):71–7. doi: 10.17650/1818-8346-2017-12-1-71-77. (In Russ)]

  10. Mott F. Observations on the brains of men and animals infected with various forms of trypanosomes. Preliminary note. Proc Royal Soc London B. 1905;76(509):235–42. doi: 10.1098/rspb.1905.0016.

  11. Jacob H, Lutcke A. Subakute sklerosierende leukoencephalitis unter dem initialbild einer akuten epidemischen encephalitis (akute parkinsonistische encephalitis) mit ausgepragter entwicklung von Maulbeerzellen und Russell-Korperchen. J Neurol Sci. 1971;12(2):137–53. doi: 10.1016/0022-510X(71)90045-1.

  12. Greenwood BM, Whittle HC. Cerebrospinal fluid IgM in patients with sleeping sickness. Lancet. 1973;302(7828):525–7. doi: 10.1016/s0140-6736(73)92348-9.

  13. Alanen A, Pira U, Lassila O, et al. Mott cells are plasma cells defective in immunoglobulin secretion. Eur J Immunol. 1985;15(3):235–42. doi: 10.1002/eji.1830150306.

  14. Posnett DN, Mouradian J, Mangraviti DJ, Wolf DJ. Mott cells in a patient with a lymphoproliferative disorder. Differentiation of a clone of B lymphocytes into Mott cells. Am J Med. 1984;77(1):125–30. doi: 10.1016/0002-9343(84)90446-7.

  15. El-Okda M, Hyeh Y, Xie SS, Hsu SM. Russell bodies consist of heterogeneous glycoproteins in B-cell lymphoma cells. Am J Clin Pathol. 1992;97(6):866–71. doi: 10.1093/ajcp/97.6.866.

  16. Kurihara K, Sakai H, Hashimoto N. Russell body-like inclusions in oral B-lymphomas. J Oral Pathol.1984;13(6):640–9. doi: 10.1111/j.1600-0714.1984.tb01466.x.

  17. Джулакян У.Л., Двирнык В.Н., Менделеева Л.П. Селезеночная В-клеточная лимфома из клеток маргинальной зоны с выраженной плазмоклеточной дифференцировкой: вариант опухоли из клеток Мотта? Онкогематология. 2015;10(4):34–7. doi: 10.17650/1818-8346-2015-10-4-34-37.

    [Dzhulakyan UL, Dvirnyk VN, Mendeleeva LP. Splenic B-cell marginal zone lymphoma with marked plasmocytic differentiation: tumor variant from Mott cells? Oncohematology. 2015;10(4):34–7. doi: 10.17650/1818-8346-2015-10-4-34-37. (In Russ)]

  18. Mossafa H, Malaure H, Maynadie M, et al. Persistent polyclonal B lymphocytosis with binucleated lymphocytes: a study of 25 cases. Br J Haematol. 1999;104(3):486–93. doi: 10.1046/j.1365-2141.1999.01200.x.

 

 

Клинико-патоморфологическое сопоставление различных иммуноморфологических подвариантов нодулярной лимфомы Ходжкина с лимфоидным преобладанием на этапе первичной диагностики опухоли

И.А. Шуплецова, А.М. Ковригина, Т.Н. Моисеева, Е.И. Дорохина, С.М. Куликов

ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167

Для переписки: Ирина Александровна Шуплецова, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167; тел.: +7(906)757-50-43; e-mail: voda90@inbox.ru

Для цитирования: Шуплецова И.А., Ковригина А.М., Моисеева Т.Н. и др. Клинико-патоморфологическое сопоставление различных иммуноморфологических подвариантов нодулярной лимфомы Ходжкина с лимфоидным преобладанием на этапе первичной диагностики опухоли. Клиническая онкогематология. 2019;12(2):185–93.

DOI: 10.21320/2500-2139-2019-12-2-185-193


РЕФЕРАТ

Актуальность. Нодулярная лимфома Ходжкина с лимфоидным преобладанием (НЛХЛП) — редкий подтип лимфомы Ходжкина с вариабельным характером роста и иммуногистоархитектоникой опухолевого субстрата. Выделение подгрупп пациентов в зависимости от иммуногистохимических (ИГХ) подвариантов опухоли необходимо для оценки прогноза заболевания и разработки новых подходов к дифференцированной терапии.

Цель. Оценить клиническое течение НЛХЛП у пациентов с различными ИГХ-подвариантами заболевания с выделением подгруппы с неблагоприятным прогнозом.

Материалы и методы. В патологоанатомическом отделении ФГБУ «НМИЦ гематологии» Минздрава России с 2010 по 2017 г. проведен морфологический и ИГХ-анализы биоптатов лимфатических узлов и трепанобиоптатов костного мозга 60 пациентов с НЛХЛП. Исследуемую группу составили 47 мужчин и 13 женщин (соотношение мужчин/женщин 3,6:1) в возрастном диапазоне 17–68 лет (медиана 37 лет). ИГХ-исследование с расширенной панелью антител проводилось во всех случаях с определением ИГХ-подвариантов в соответствии с классификацией ВОЗ-2017.

Результаты. Среди случаев НЛХЛП с вариантной иммуногистоархитектоникой проведенное клинико-иммуноморфологическое сопоставление позволило выделить три подгруппы, различающиеся выраженностью участков, подобных В-крупноклеточной лимфоме, богатой Т-клетками/гистиоцитами (THRLBCL), в срезе лимфатического узла/биоптате иной локализации и характеризующиеся различным клиническим течением заболевания. В подгруппе с наличием THRLBCL-подобных участков 50 % и более отмечалось преобладание IV клинической стадии и статистически значимо большее количество экстранодальных зон поражения.

Заключение. При НЛХЛП наиболее неблагоприятное клиническое течение имеет подгруппа пациентов, в биопсийном материале которых содержание THRLBCL-подобных участков составляет 50 % и более. Полуколичественное определение THRLBCL-подобных участков позволило охарактеризовать спектр различных ИГХ-подвариантов НЛХЛП, коррелирующих с клиническим течением заболевания. Истинная трансформация в диффузную В-крупноклеточную лимфому является редким событием и отмечена у 2 (3 %) из 60 пациентов.

Ключевые слова: нодулярная лимфома Ходжкина с лимфоидным преобладанием, THRLBCL-подобные участки, иммуногистоархитектоника, иммуногистохимические подварианты.

Получено: 19 января 2019 г.

Принято в печать: 10 марта 2019 г.

Читать статью в PDF 


ЛИТЕРАТУРА

  1. Демина Е.А., Тумян Г.С., Чекан А.А. и др. Редкое заболевание — нодулярная лимфома Ходжкина с лимфоидным преобладанием: обзор литературы и собственные наблюдения. Клиническая онкогематология. 2014;7(4):522–32.

    [Demina EA, Tumyan GS, Chekan AA, et al. Rare Disease — Nodular Lymphocyte-Predominant Hodgkin’s Lymphoma: Literature Review and Own Data. Klinicheskaya onkogematologiya. 2014;7(4):522–32. (In Russ)]

  2. Моисеева Т.Н., Аль-Ради Л.С., Ковригина А.М. и др. Нодулярная лимфома Ходжкина с лимфоидным преобладанием: принципы диагностики и лечения. Терапевтический архив. 2015;87(11):78–83. doi: 10.17116/terarkh2015871178-83.

    [Moiseeva TN, Al’-Radi LS, Kovrigina AM, et al. Nodular lymphocyte-predominant Hodgkin’s lymphoma: Principles of diagnosis and treatment. Terapevticheskii arkhiv. 2015;87(11):78–83. doi: 10.17116/terarkh2015871178-83. (In Russ)]

  3. Seliem RM, Ferry JA, Hasserjian RP, et al. Nodular Lymphocyte-Predominant Hodgkin Lymphoma (NLPHL) with CD30-Positive Lymphocyte-Predominant (LP) Cells. J Hematopathol. 2011;4(3):175–81. doi: 10.1007/s12308-011-0104-x.

  4. Stein H, Swerdlow SH, Gascoyne RD, et al. Nodular lymphocyte predominant Hodgkin lymphoma. In: SH Swerdlow, E Campo, NL Harris, et al., eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revised 4th Edition. Lyon: IARC Press; pp. 431–4.

  5. Ковригина A.M., Пробатова Н.A. Лимфома Ходжкина и крупноклеточные лимфомы. М.: МИА, 2007. С. 212.

    [Kovrigina AM, Probatova NA. Limfoma Khodzhkina i krupnokletochnye limfomy. (Hodgkin’s lymphoma and large cell lymphomas.) Moscow: MIA Publ.; 2007. pp. 212 (In Russ)]

  6. Brune V, Tiacci E, Pfeil I, et al. Origin and pathogenesis of nodular lymphocyte-predominant Hodgkin lymphoma as revealed by global gene expression analysis. J Exp Med. 2008;205(10):2251–68. doi: 10.1084/jem.20080809.

  7. Hartmann S, Doring C, Jakobus C, et al. Nodular Lymphocyte Predominant Hodgkin Lymphoma and T Cell/Histiocyte Rich Large B Cell Lymphoma – Endpoints of a Spectrum of One Disease? PLoS One. 2013;8(11):e78812. doi: 10.1371/journal.pone.0078812.

  8. Schuhmacher B, Bein J, Rausch T, et al. JUNB, DUSP2, SGK1, SOCS1 and CREBBP are frequently mutated in T-cell/histiocyte rich large B-cell lymphoma. Haematologica. 2018;104(2):330–7. doi: 10.3324/haematol.2018.203224.

  9. Fan Z, Natkunam Y, Bair E, et al. Characterization of variant patterns of nodular lymphocyte predominant Hodgkin lymphoma with immunohistologic and clinical correlation. Am J Surg Pathol. 2003;27(10):1346–56. doi: 10.1097/00000478-200310000-00007.

  10. Hartmann S, Eichenauer DA, Plutschow A, et al. The prognostic impact of variant histology in nodular lymphocyte-predominant Hodgkin lymphoma: a report from the German Hodgkin Study Group (GHSG). Blood. 2013;122(26):4246–52. doi. 10.1182/blood-2013-07-515825.

  11. Agbay RLMC, Loghavi S, Zuo Z, et al. Bone Marrow Involvement in Patients With Nodular Lymphocyte Predominant Hodgkin Lymphoma. Am J Surg Pathol. 2018;42(4):492–9. doi: 10.1097/PAS.0000000000001005.

  12. Xing KH, Connors JM, Lai A, et al. Advanced-stage nodular lymphocyte predominant Hodgkin lymphoma compared with classical Hodgkin lymphoma: a matched pair outcome analysis. Blood. 2014;123(23):3567–73. doi: 10.1182/blood-2013-12-541078.

  13. Fanale MA, Cheah CY, Rich A, et al. Encouraging activity for R-CHOP in Advanced Stage Nodular Lymphocyte Predominant Hodgkin Lymphoma. Blood. 2017;130(4):472–7. doi: 10.1182/blood-2017-02-766121.

  14. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90. doi: 10.1182/blood-2016-01-643569.

  15. Ott G, Delabie J, Gascoyne RD, et al. T-cell/histiocyte-rich large B-cell lymphoma. In: SH Swerdlow, E Campo, NL Harris, et al., eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revised 4th Edition. Lyon: IARC Press; pp. 298–9.

Преодоление резистентности при рецидивах анапластической крупноклеточной лимфомы, ALK-позитивной (обзор литературы и собственное клиническое наблюдение)

Ю.Е. Виноградова1, Н.Г. Чернова2

1 ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский университет), ул. Трубецкая, д. 8, стр. 2, Москва, Российская Федерация, 119991

2 ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167

Для переписки: Юлия Ейхеновна Виноградова, канд. мед. наук, ул. Трубецкая, д. 8, стр. 2, Москва, Российская Федерация, 119991; тел.: +7(495)609-14-00, +7(916)195-68-57; е-mail: jvinogr@gmail.com

Для цитирования: Виноградова Ю.Е., Чернова Н.Г. Преодоление резистентности при рецидивах анапластической крупноклеточной лимфомы, ALK-позитивной (обзор литературы и собственное клиническое наблюдение). Клиническая онкогематология. 2019;12(2):179–84.

DOI: 10.21320/2500-2139-2019-12-2-179-184


РЕФЕРАТ

Периферические Т-клеточные лимфомы (ПТКЛ) характеризуются плохим прогнозом и худшей выживаемостью по сравнению с В-клеточными. Вероятность достижения ремиссии при терапии первой линии при ПТКЛ не превышает 60 %, отмечается высокая частота развития рецидивов. В большинстве случаев рецидивов/прогрессирующего течения ПТКЛ не удается достичь продолжительной ремиссии. В настоящей статье представлены обзор литературы и описание собственного клинического наблюдения анапластической крупноклеточной лимфомы, ALK-позитивной, протекающей с первичным поражением кожи и мягких тканей у пациентки 65 лет. После проведения интенсивной химиотерапии по программе NHL-BFM-90 больная пребывала в первой полной ремиссии 5,5 года. В дальнейшем развился рецидив заболевания, резистентный к СНОР-терапии. Резистентность опухоли к химиотерапии была успешно преодолена добавлением к цитостатическому противоопухолевому воздействию эпигенетических препаратов. Продолжительность второй полной ремиссии составляет 3 года. При лечении онкогематологических заболеваний с исходной резистентностью к химиотерапии или с резистентностью, приобретенной в процессе противоопухолевого лечения, наиболее рационально использовать различные лечебные комбинации, включающие моноклональные антитела, эпигенетические препараты и цитостатическую терапию.

Ключевые слова: анапластическая крупноклеточная лимфома, ALK-позитивная, вовлечение кожи, резистентность при рецидивах, эпигенетические препараты.

Получено: 26 июля 2018 г.

Принято в печать: 15 января 2019 г.

Читать статью в PDF 


ЛИТЕРАТУРА

  1. Vose J, Armitage J, Weisenburger D. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol. 2008;26(25):4124–30. doi: 10.1200/JCO.2008.16.4558.

  2. Conlan MG, Bast M, Armitage JO, Weisenburger DD. Bone marrow involvement by non-Hodgkin’s lymphoma: the clinical significance of morphologic discordance between the lymph node and bone marrow. Nebraska Lymphoma Study Group. J Clin Oncol. 1990;8(7):1163–72. doi: 10.1200/JCO.1990.8.7.1163.

  3. Savage KJ, Harris NL, Vose JM, et al. ALK-anaplastic large-cell lymphoma is clinically and immunophenotypically different from both ALK+ ALCL and peripheral T-cell lymphoma, not otherwise specified: report from the International Peripheral T-Cell Lymphoma Project. 2008;111(12):5496–504. doi: 10.1182/blood-2008-01-134270.

  4. Ferreri AJ, Govi S, Pileri SA, Savage KJ. Anaplastic large cell lymphoma, ALK-positive. Crit Rev Oncol Hematol. 2012;83(2):293–302. doi: 10.1016/j.critrevonc.2012.02.005.

  5. Mak V, Hamm J, Chhanabhai M, et al. Survival of patients with peripheral T-cell lymphoma after first relapse or progression: spectrum of disease and rare long-term survivors. J Clin Oncol. 2013;31(16):1970–6. doi: 10.1200/JCO.2012.44.7524.

  6. Виноградова Ю.Е., Луценко И.Н., Капланская И.Б. и др. Эффективность терапии различных вариантов анаплазированных Т-крупноклеточных лимфом. Терапевтический архив. 2008;80(7):33–7.

    [Vinogradova YuE, Lutsenko IN, Kaplanskaya IB, et al. Efficacy of therapy of different variants of anaplastic large T-cell lymphomas. Terapevticheskii arkhiv. 2008;80(7):33–7. (In Russ)]

  7. Hutchins LF, Moon J, Clark JI, et al. Evaluation of interferon alpha-2B and thalidomide in patients with disseminated malignant melanoma, phase 2, SWOG 0026. Cancer. 2007;110(10):2269–75. doi: 10.1002/cncr.23035.

  8. Rangwala S, Zhang C, Duvic M. HDAC inhibitors for the treatment of cutaneous T-cell lymphomas. Fut Med. Chem. 2012;4(4):471–86. doi: 10.4155/fmc.12.6.

  9. Witzig TE, Reeder C, Han JJ, et al. The mTORC1 inhibitor everolimus has antitumor activity in vitro and produces tumor responses in patients with relapsed T-cell lymphoma. Blood. 2015;126(3):328–35. doi: 10.1182/blood-2015-02-629543.

  10. Vose JM, Link BK, Grossbard ML, et al. Long-term update of a phase II study of rituximab in combination with CHOP chemotherapy in patients with previously untreated, aggressive non-Hodgkin’s lymphoma. Leuk Lymphoma. 2005;46(11):1569–73. doi: 10.1080/10428190500217312.

  11. Vaishampayan UN, Heilbrun LK, Marsack C, et al. Phase II trial of pegylated interferon and thalidomide in malignant metastatic melanoma. Anticancer Drugs. 2007;18(10):1221–6. doi: 10.1097/CAD.0b013e3282eea391.

  12. Younes A, Bartlett N, Leonard JP, et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med. 2010;363(19):1812–21. doi: 10.1056/NEJMoa1002965.

  13. Pro B, Advani R, Brice P, et al. Five-year results of brentuximab vedotin in patients with relapsed or refractory systemic anaplastic large cell lymphoma. Blood. 2017;130(25):2709–17. doi: 10.1182/blood-2017-05-780049.

  14. Bartlett NL, Chen R, Fanale MA, et al. Retreatment with brentuximab vedotin in patients with CD30-positive hematologic malignancies. J Hematol Oncol. 2014;7(1):24. doi: 10.1186/1756-8722-7-24.

  15. Lamarque M, Bossard C, Contejean A, et al. Brentuximab vedotin in refractory or relapsed peripheral T-cell lymphomas: the French named patient program experience in 56 patients. Haematologica. 2016;101(3):e103–6. doi: 10.3324/haematol.2015.135400.

  16. Fanale MA, Horwitz SM, Forero-Torres A, et al.. Brentuximab vedotin in the front-line treatment of patients with CD30+ peripheral T-cell lymphomas: results of a phase I study. J Clin Oncol. 2014;32(28):3137–43. doi: 0.1200/JCO.2013.54.2456.

  17. Morel A, Briere J, Lamant L, et al. Long-term outcomes of adults with first-relapsed/refractory systemic anaplastic large-cell lymphoma in the pre-brentuximab vedotin era: A LYSA/SFGM-TC study. Eur J Cancer. 2017;83:146–53. doi: 10.1016/j.ejca.2017.06.026.

  18. Виноградова Ю.Е., Потекаев Н.С., Виноградов Д.Л. Лимфомы кожи. Диагностика и лечение. М.: Практическая медицина, 175 c.

    [Vinogradova YuE, Potekaev NS, Vinogradov DL. Limfomy kozhi. Diagnostika i lechenie. (Skin lymphomas: diagnosis and treatment.) Moscow: Prakticheskaya meditsina Publ.; 2014. 175 p. (In Russ)]

  19. Hoelzer D, Gokbuget N, Digel W, et al. Outcome of adult patients with T-lymphoblastic lymphoma treated according to protocols for acute lymphoblastic leukemia. Blood. 2002;99(12):4379–85. doi: 10.1182/blood-2002-01-0110.

  20. Паровичникова Е.Н., Клясова Г.А., Исаев В.Г. и др. Первые итоги терапии Ph-негативных острых лимфобластных лейкозов взрослых по протоколу научно-исследовательской группы гематологических центров России ОЛЛ-2009. Терапевтический архив. 2011;83(7):11–

    [Parovichnikova EN, Klyasova GA, Isaev VG, et al. Pilot results of therapy of adult Ph-negative acute lymphoblastic leukemia according to the protocol of Research Group of Russian Hematological Centers ALL-2009. Terapevticheskii arkhiv. 2011;83(7):11–7. (In Russ)]

  21. Виноградова Ю.Е., Чернова Н.Г., Капланская И.Б. и др. Отдаленные результаты лечения Т-клеточных лимфобластных лимфом. Терапевтический архив. 2012;84(8):57–60.

    [Vinogradova YuE, Chernova NG, Kaplanskaya IB, et al. Long-term results of treatment for T-cell lymphoblastic lymphomas. Terapevticheskii arkhiv. 2012;84(8):57–60. (In Russ)]

  22. Чернова Н.Г., Виноградова Ю.Е., Сидорова Ю.В. и др. Длительные режимы цитостатической терапии ангиоиммунобластной Т-клеточной лимфомы. Клиническая онкогематология. 2014;7(1):57–62.

    [Chernova NG, Vinogradova YuE, Sidorova YV, et al. Prolonged chemotherapy for angioimmunoblastic T-cell lymphoma. Klinicheskaya onkogematologiya. 2014;7(1):57–62. (In Russ)]

  23. Reiter A, Schrappe M, Tiemann M, et al. Successful treatment strategy for Ki-1 anaplastic large-cell lymphoma of childhood: a prospective analysis of 62 patients enrolled in three consecutive Berlin-Frankfurt-Munster group studies. J Clin Oncol. 1994;12(5):899–908. doi: 10.1200/JCO.1994.12.5.899.

  24. Виноградова Ю.Е., Зингерман Б.В. Нозологические формы и выживаемость пациентов с Т- и NK-клеточными лимфатическими опухолями, наблюдавшихся в ГНЦ в течение 10 лет. Клиническая онкогематология. 2011;4(3):201–12.

    [Vinogradova YuE, Zingerman BV. Nosological forms and survival of patients with T- and NK-cell lymphatic tumors, followed-up at HRC for 10 years. Klinicheskaya onkogematologiya. 2011;4(3):201–12. (In Russ)]

  25. Aviles A, Neri N, Nambo MJ, et al. Novel therapy in multiple myeloma. Invest New Drugs. 2005;23(5):411–5. doi: 10.1007/s10637-005-2900-6.

  26. Горенкова Л.Г., Виноградова Ю.Е., Кравченко С.К. и др. Анаплазированная Т-крупноклеточная АЛК-положительная лимфосаркома с изолированным поражением кожи и мягких тканей у пожилой больной. Гематология и трансфузиология. 2011;56(1):31–3.

    [Gorenkova LG, Vinogradova YuE, Kravchenko SK, et al. Anaplastic T-cell ALK-positive lymphoma with isolated involvement of the skin and soft tissues in an elderly female patient. Gematologiya i transfuziologiya. 2011;56(1):31–3. (In Russ)]

  27. Geller S, Canavan TN, Pulitzer M, et al. ALK-positive primary cutaneous anaplastic large cell lymphoma: a case report and review of the literature. Int J Dermatol. 2018;57(5):515–20. doi: 10.1111/ijd.13804.

  28. Oschlies I, Lisfeld J, Lamant L, et al. ALK-positive anaplastic large cell lymphoma limited to the skin: clinical, histopathological and molecular analysis of 6 pediatric cases. A report from the ALCL99 study. Haematologica. 2013;98(1):50–6. doi: 10.3324/haematol.2012.065664.

  29. Сидорова Ю.В., Чернова Н.Г., Рыжикова Н.В. и др. Клональные реаранжировки и опухолевые клоны при периферической Т-клеточной лимфоме. Acta Naturae. 2015;7(3):130–40.

    [Sidorova YuV, Chernova NG, Ryzhikova NV, et al. Clonal rearrangements and malignant clones in peripheral T-cell lymphoma. Acta Naturae. 2015;7(3):130–40. (In Russ)]

Прогностическое значение активности гена PRAME в опухолевых клетках фолликулярной лимфомы

В.А. Мисюрин1, А.Е. Мисюрина2, С.К. Кравченко2, Н.А. Лыжко1, Ю.П. Финашутина1, Н.Н. Касаткина1, Д.С. Марьин2, Е.С. Нестерова2, Н.Н. Шаркунов3, М.А. Барышникова1, А.В. Мисюрин1

1 ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Москва, Российская Федерация, 115478

2 ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167

3 ГБУЗ «Городская клиническая больница им. С.П. Боткина ДЗМ», 2-й Боткинский пр-д, д. 5, Москва, Российская Федерация, 125284

Для переписки: Всеволод Андреевич Мисюрин, канд. биол. наук, Каширское ш., д. 24, Moсква, Российская Федерация, 115478; тел.: +7(985)436-30-19; e-mail: vsevolod.misyurin@gmail.com

Для цитирования: Мисюрин В.А., Мисюрина А.Е., Кравченко С.К. и др. Прогностическое значение активности гена PRAME в опухолевых клетках фолликулярной лимфомы. Клиническая онкогематология. 2019;12(2):173–8.

DOI: 10.21320/2500-2139-2019-12-2-173-178


РЕФЕРАТ

Цель. Определить параметры выживаемости больных фолликулярной лимфомой (ФЛ) в группах с различным уровнем экспрессии гена PRAME в опухолевых клетках.

Материалы и методы. В работе собраны образцы лимфатических узлов, крови и аспирата костного мозга 34 первичных больных ФЛ. Уровень экспрессии гена PRAME в опухолевых клетках (центроцитах и центробластах) оценивался методом количественной ПЦР в реальном времени. Изучалось влияние разного уровня экспрессии PRAME на параметры выживаемости больных с медианой наблюдения 29 мес. Предпринято сопоставление клиническо-лабораторных признаков, используемых для расчетов FLIPI-1 и FLIPI-2 в разных группах пациентов.

Результаты. Высокий (> 5 % относительно контрольного гена ABL) уровень экспрессии PRAME коррелирует с большей активностью Ki-67 (= 0,043) и более высокой степенью распространенности опухоли (= 0,04). Отмечается ухудшение параметров выживаемости при высоком уровне экспрессии PRAME в клетках ФЛ. Сочетание высокого риска по FLIPI-1/FLIPI-2 и высокого уровня экспрессии PRAME определяет крайне неблагоприятный прогноз с возможным летальным исходом.

Заключение. У больных ФЛ высокий уровень экспрессии гена PRAME в опухолевых клетках имеет отрицательное прогностическое значение, но только при наличии параметров, определяющих высокий риск по FLIPI-1 и FLIPI-2. На основании сопоставления уровня экспрессии PRAME с показателями FLIPI-1 и FLIPI-2 можно с большей вероятностью предположить раннюю летальность у больных ФЛ.

Ключевые слова: ген PRAME, фолликулярная лимфома.

Получено: 4 ноября 2018 г.

Принято в печать: 24 февраля 2019 г.

Читать статью в PDF 


ЛИТЕРАТУРА

  1. Solal-Celigny P, Roy P, Colombat P, et al. Follicular lymphoma international prognostic index. Blood. 2004;104(5):1258–65. doi: 10.1182/blood-2003-12-4434.

  2. Federico M, Bellei M, Marcheselli L, et al. Follicular lymphoma international prognostic index 2: a new prognostic index for follicular lymphoma developed by the international follicular lymphoma prognostic factor project. J Clin Oncol. 2009;27(27):4555–62. doi: 10.1200/JCO.2008.21.3991.

  3. Montoto S, Davies AJ, Matthews J, et al. Risk and clinical implications of transformation of follicular lymphoma to diffuse large B-cell lymphoma. J Clin Oncol. 2007;25(17):2426–33. doi: 10.1200/JCO.2006.09.3260.

  4. Ortmann CA, Eisele L, Nuckel H, et al. Aberrant hypomethylation of the cancer–testis antigen PRAME correlates with PRAME expression in acute myeloid leukemia. Ann Hematol. 2008;87(10):809–18. doi: 10.1007/s00277-008-0514-8.

  5. Yao J, Caballero OL, Yung WK, et al. Tumor subtype-specific cancer-testis antigens as potential biomarkers and immunotherapeutic targets for cancers. Cancer Immunol Res. 2014;2(4):371–9. doi: 10.1158/2326-6066.CIR-13-0088.

  6. Epping MT, Wang L, Edel MJ, et al. The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling. Cell. 2005;122(6):835–47. doi: 10.1016/j.cell.2005.07.003.

  7. Dyrskjot L, Zieger K, Kissow Lildal T, et al. Expression of MAGE-A3, NY-ESO-1, LAGE-1 and PRAME in urothelial carcinoma. Br J Cancer. 2012;107(1):116–22. doi: 10.1038/bjc.2012.215.

  8. De Carvalho DD, Mello BP, Pereira WO, Amarante-Mendes GP. PRAME/EZH2-mediated regulation of TRAIL: a new target for cancer therapy. Curr Mol Med. 2013;13(2):296–304. doi: 10.2174/156652413804810727.

  9. McElwaine S, Mulligan C, Groet J, et al. Microarray transcript profiling distinguishes the transient from the acute type of megakaryoblastic leukaemia (M7) in Down’s syndrome, revealing PRAME as a specific discriminating marker. Br J Haematol. 2004;125(6):729–42. doi: 10.1111/j.1365-2141.2004.04982.x.

  10. Kim HL, Seo YR. Molecular and genomic approach for understanding the gene-environment interaction between Nrf2 deficiency and carcinogenic nickel-induced DNA damage. Oncol Rep. 2012;28(6):1959–67. doi: 10.3892/or.2012.2057.

  11. Costessi A, Mahrour N, Tijchon E, et al. The tumour antigen PRAME is a subunit of a Cul2 ubiquitin ligase and associates with active NFY promoters. EMBO J. 2011;30(18):3786–98. doi: 10.1038/emboj.2011.262.

  12. Baylin SB, Jones PA. A decade of exploring the cancer epigenome – biological and translational implications. Nat Rev Cancer. 2011;11(10):726–34. doi: 10.1038/nrc3130.

  13. Mitsuhashi K, Masuda A, Wang YH, et al. Prognostic significance of PRAME expression based on immunohistochemistry for diffuse large B-cell lymphoma patients treated with R-CHOP therapy. Int J Hematol. 2014;100(1):88–95. doi: 10.1007/s12185-014-1593-z.

  14. Мисюрин В.А., Лукина А.Е., Мисюрин А.В. и др. Особенности соотношения уровней экспрессии генов PRAME и PML/RARα в дебюте острого промиелоцитарного лейкоза. Российский биотерапевтический журнал. 2014;13(1):9–16.

    [Misyurin VA, Lukina AE, Misyurin AV, et al. A ratio between gene expression levels of PRAME and PML/RARα at the onset of acute promyelocytic leukemia. Rossiiskii bioterapevticheskii zhurnal. 2014;13(1):9–16. (In Russ)]

  15. Proto-Siqueira R, Figueiredo-Pontes LL, Panepucci RA, et al. PRAME is a membrane and cytoplasmic protein aberrantly expressed in chronic lymphocytic leukemia and mantle cell lymphoma. Leuk Res. 2006;30(11):1333–9. doi: 10.1016/j.leukres.2006.02.031.

  16. Proto-Siqueira R, Falcao RP, de Souza CA, et al. The expression of PRAME in chronic lymphoproliferative disorders. Leuk Res. 2003;27(5):393–6. doi: 10.1016/S0145-2126(02)00217-5.

  17. Qin Y, Lu J, Bao L, et al. Bortezomib improves progression-free survival in multiple myeloma patients overexpressing preferentially expressed antigen of melanoma. Chin Med J (Engl). 2014;127(9):1666–71. doi: 10.3760/cma.j.issn.0366-6999.20132356.

  18. Солодовник А.А., Мкртчян А.С., Мисюрин В.А. и др. Экспрессия раково-тестикулярных генов PRAME, NY-ESO1, GAGE1, MAGE A3, MAGE A6, MAGE A12, SSX1, SLLP1, PASD1 у больных множественной миеломой, их влияние на показатели общей выживаемости и скорость возникновения рецидива. Успехи молекулярной онкологии. 2018;5(2):62–70. doi: 10.17650/2313-805X-2018-5-2-62-70.

    [Solodovnik AA, Mkrtchyan АS, Misyurin VA, et al. Expression of cancer-testis genes PRAME, NY-ESO1, GAGE1, MAGE A3, MAGE A6, MAGE A12, SSX1, SLLP1, PASD1 in patients with multiple myeloma, their influence on overall survival and relapse rate. Advances in molecular oncology. 2018;5(2):62–70. doi: 10.17650/2313-805X-2018-5-2-62-70. (In Russ)]

Промежуточные результаты проспективного наблюдательного исследования: 2-летний опыт применения ибрутиниба при рецидивах и рефрактерном течении мантийноклеточной лимфомы в реальной клинической практике

В.И. Воробьев, В.А. Жеребцова, Е.И. Дубровин, Л.А. Быченкова, Ю.Б. Кочкарева, Л.А. Муха, В.Л. Иванова, Н.К. Хуажева, В.В. Птушкин

ГБУЗ «Городская клиническая больница им. С.П. Боткина ДЗМ», 2-й Боткинский пр-д, д. 5, Москва, Российская Федерация, 125284

Для переписки: Владимир Иванович Воробьев, канд. мед. наук, 2-й Боткинский пр-д, д. 5, Москва, Российская Федерация, 125284; e-mail: morela@mail.ru

Для цитирования: Воробьев В.И., Жеребцова В.А., Дубровин Е.И. и др. Промежуточные результаты проспективного наблюдательного исследования: 2-летний опыт применения ибрутиниба при рецидивах и рефрактерном течении мантийноклеточной лимфомы в реальной клинической практике. Клиническая онкогематология 2019;12(2):165–72.

DOI: 10.21320/2500-2139-2019-12-2-165-172


РЕФЕРАТ

Цель. Оценить эффективность и токсичность монотерапии ибрутинибом у больных с рецидивами и рефрактерным течением лимфомы из клеток мантийной зоны (ЛКМЗ).

Материалы и методы. Ибрутиниб у данной категории пациентов применяется с апреля 2016 г. Критериями для назначения препарата служили возраст старше 18 лет и наличие подтвержденного диагноза ЛКМЗ с выявлением ядерной гиперэкспрессии циклина D1 или наличием транслокации t(11;14)(q13;q32). Тяжелый соматический статус, панцитопения, инфекционные осложнения (за исключением угрожающих жизни), бластоидный вариант, число линий предшествующей терапии не считались противопоказаниями для назначения ибрутиниба. Препарат использовался в дозе 560 мг внутрь 1 раз в сутки до прогрессирования или достижения неприемлемой токсичности.

Результаты. С 20 апреля 2016 г. по 6 апреля 2018 г. терапия ибрутинибом начата у 42 пациентов с рецидивами и рефрактерным течением ЛКМЗ. Медиана возраста составила 69 лет (диапазон 40–81 год); мужчины — 64 %; ECOG > 2 баллов — 14 %; бластоидный вариант — 38 %; медиана числа предшествующих линий терапии — 2 (диапазон 1–11). Частота общего ответа составила 85 % (полная ремиссия 35 %); 57 % (24/42) пациентов продолжают лечение ибрутинибом с длительностью приема 4–667 дней. Медиана бессобытийной выживаемости (БСВ) составила 365 дней (95%-й доверительный интервал 31–698 дней). Медиана общей выживаемости не достигнута. При бластоидном варианте медиана БСВ составила 92 дня, в альтернативной группе медиана не была достигнута и БСВ составила 76 % на 12 мес. (< 0,001). Переносимость ибрутиниба в большинстве случаев была удовлетворительной. Самыми распространенными осложнениями были миалгия и мышечные судороги (57 % наблюдений), диарея (46 %, III степени в 5 % случаев), геморрагические осложнения (63 %, все I–II степени тяжести), нарушения сердечного ритма (7 %). Инфекционные осложнения отмечены у 31 % больных. В 1 случае начало терапии ибрутинибом осложнилось нейтропенией IV степени. Относительная интенсивность дозы составила более 98 % (диапазон 91,6–100 %). Коррекция терапии ибрутинибом (уменьшение дозы или перерыв в приеме) из-за токсичности или планируемых оперативных вмешательств имела место у 10 (24 %) пациентов. Никому из принимавших ибрутиниб не потребовалось полностью прекратить лечение из-за осложнений.

Заключение. Полученные данные по применению ибрутиниба в реальной клинической практике сопоставимы с результатами международных многоцентровых исследований (PCYC-1104, SPARK и RAY). Благоприятный профиль токсичности и довольно высокая скорость противоопухолевого ответа позволяют назначать данный препарат при тяжелом соматическом статусе, низком уровне форменных элементов крови и даже при наличии инфекционных осложнений. В то же время ряд побочных эффектов, часть из которых проявляется только через 6 мес. терапии, делает необходимым постоянный врачебный мониторинг за пациентами, особенно при подготовке к любым оперативным вмешательствам.

Ключевые слова: лимфома из клеток мантийной зоны, ибрутиниб, рецидив, рефрактерное течение, таргетная терапия.

Получено: 4 ноября 2018 г.

Принято в печать: 11 февраля 2019 г.

Читать статью в PDF 


ЛИТЕРАТУРА

  1. Swerdlow SH, Campo E, Harris NL, et al. (eds) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edition. Lyon: IARC Press; 2008.

  2. Zhou Y, Wang H, Fang W, et al. Incidence trends of mantle cell lymphoma in the United States between 1992 and 2004. Cancer. 2008;113(4):791–8. doi: 10.1002/cncr.23608.

  3. Smith A, Roman E, Appleton S, et al. Impact of novel therapies for mantle cell lymphoma in the real world setting: a report from the UK’s Haematological Malignancy Research Network (HMRN). Br J Haemotol. 2018;181(2):215–28. doi: 10.1111/bjh.15170.

  4. Leux C, Maynadie M, Troussard X, et al. Mantle cell lymphoma epidemiology: a population-based study in France. Ann Hematol. 2014;93(8):1327–33. doi: 10.1007/s00277-014-2049-5.

  5. Geisler CH, Kolstad A, Laurell A, et al. Nordic MCL2 trial update: six-year follow-up after intensive immunochemotherapy for untreated mantle cell lymphoma followed by BEAM or BEAC + autologous stem-cell support: still very long survival but late relapses do occur. Br J Haematol. 2012;158(3):355–62. doi: 10.1111/j.1365-2141.2012.09174.x.

  6. Romaguera JE, Fayad LE, Feng L, et al. Ten-year follow-up after intense chemoimmunotherapy with Rituximab-HyperCVAD alternating with Rituximab-high dose methotrexate/cytarabine (R-MA) and without stem cell transplantation in patients with untreated aggressive mantle cell lymphoma. Br J Haematol. 2010;150(2):200–8. doi: 10.1111/j.1365-2141.2010.08228.x.

  7. Merli F, Luminari S, Ilariucci F, et al. Rituximab plus HyperCVAD alternating with high dose cytarabine and methotrexate for the initial treatment of patients with mantle cell lymphoma, a multicentre trial from Gruppo Italiano Studio Linfomi. Br J Haematol. 2012;156(3):346–53. doi: 10.1111/j.1365-2141.2011.08958.x.

  8. Le Gouill S, Thieblemont C, Oberic L, et al. Rituximab after Autologous Stem-Cell Transplantation in Mantle-Cell Lymphoma. N Engl J Med. 2017;377(13):1250–60. doi: 10.1056/nejmoa1701769.

  9. Воробьев В.И., Кравченко С.К., Гемджян Э.Г. и др. Мантийноклеточная лимфома: программное лечение первичных больных в возрасте до 65 лет. Клиническая онкогематология. 2013;6(3):274–81.

    [Vorob’ev VI, Kravchenko SK, Gemdzhian EG, et al. Mantle cell lymphoma: program therapy for untreated patients under 65 years. Klinicheskaya onkogematologiya. 2013;6(3):274–81. (In Russ)]

  10. Rummel MJ, Niederle N, Maschmeyer G, et al. Bendamustine plus rituximab versus CHOP plus rituximab as first-line treatment for patients with indolent and mantle-cell lymphomas: an open-label, multicentre, randomised, phase 3 non-inferiority trial. 2013;381(9873):1203–10. doi: 10.1016/s0140-6736(12)61763-2.

  11. Flinn IW, van der Jagt R, Kahl BS, et al. Randomized trial of bendamustine-rituximab or R-CHOP/R-CVP in first-line treatment of indolent NHL or MCL: the BRIGHT study. Blood. 2014;123(19):2944–52. doi: 10.1182/blood-2013-11-531327.

  12. Kluin-Nelemans HC, Hoster E, Hermine O, et al. Treatment of older patients with mantle-cell lymphoma. N Engl J Med. 2012;367(6):520–31. doi: 10.1056/nejmoa1200920.

  13. Robak T, Huang H, Jin J, et al. Bortezomib-based therapy for newly diagnosed mantle-cell lymphoma. N Engl J Med. 2015;372(10):944–53. doi: 10.1056/nejmoa1412096.

  14. Fisher RI, Bernstein SH, Kahl BS, et al. Multicenter phase II study of bortezomib in patients with relapsed or refractory mantle cell lymphoma. J Clin Oncol, 2006;24(30):4867–74. doi: 10.1200/jco.2006.07.9665.

  15. Goy A, Sinha R, Williams ME, et al. Single-agent lenalidomide in patients with mantle-cell lymphoma who relapsed or progressed after or were refractory to bortezomib: phase II MCL-001 (EMERGE) study. J Clin Oncol. 2013;31(29):3688–95. doi: 10.1200/jco.2013.49.2835.

  16. Dreyling M, Jurczak W, Jerkeman M, et al. Ibrutinib versus temsirolimus in patients with relapsed or refractory mantle-cell lymphoma: an international, randomised, open-label, phase 3 study. Lancet. 2016;387(10020):770–8. doi: 10.1016/s0140-6736(15)00667-4.

  17. Wang ML, Rule S, Martin P, et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2013,369(6):507–16. doi: 10.1056/nejmoa1306220.

  18. Davids SM, Roberts AW, Seymour JF, et al. Phase I First-in-Human Study of Venetoclax in Patients with Relapsed or Refractory Non-Hodgkin Lymphoma. J Clin Oncol. 2017;35(8):826–33. doi: 10.1200/jco.2016.70.4320.

  19. Khan WN. Colonel Bruton’s kinase defined the molecular basis of X-linked agammaglobulinemia, the first primary immunodeficiency. J Immunol. 2012;188(7):2933–5. doi: 10.4049/jimmunol.1200490.

  20. Herrera AF, Jacobsen ED. Ibrutinib for the treatment of mantle cell lymphoma. Clin Cancer Res. 2014;20(21):5365–71. doi: 10.1158/1078-0432.ccr-14-0010.

  21. Honigberg LA, Smith AM, Sirisawad M, et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci USA. 2010;107(29):13075–80. doi: 10.1073/pnas.1004594107.

  22. Cinar M, Hamedani F, Mo Z, et al. Bruton tyrosine kinase is commonly over expressed in mantle cell lymphoma and its attenuation by Ibrutinib induces apoptosis. Leuk Res. 2013;37(10):1271–7. doi: 10.1016/j.leukres.2013.07.028.

  23. de Rooij MFM, Kuil A, Geest CR, et al. The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. Blood. 2012;119(11):2590–4. doi: 10.1182/blood-2011-11-390989.

  24. Ponader S, Chen S-S, Buggy JJ, et al. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood. 2012;119(5):1182–9. doi: 10.1182/blood-2011-10-386417.

  25. Buggy JJ, Elias L. Bruton tyrosine kinase (BTK) and its role in B-cell malignancy. Int Rev Immunol. 2012;31(2):119–32. doi: 10.3109/08830185.2012.664797.

  26. Herman SE, Gordon AL, Hertlein E, et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood. 2011;117(23):6287–96. doi: 10.1182/blood-2011-01-328484.

  27. Cheng S, Ma J, Guo A, et al. BTK inhibition targets in vivo CLL proliferation through its effects on B-cell receptor signaling activity. Leukemia. 2014;28(3):649–57. doi: 10.1038/leu.2013.358.

  28. Advani RH, Buggy JJ, Sharman JP, et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol. 2013;31(1):88–94. doi: 10.1200/jco.2012.42.7906.

  29. Wang M, Rule S, Martin P, et al. Single-agent ibrutinib demonstrates safety and durability of response at 2 years follow-up in patients with relapsed or refractory mantle cell lymphoma: updated results of an international, multicenter, open-label phase 2 study. Blood. 2014;124(21):4453, abstract.

  30. Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–68. doi: 10.1200/jco.2013.54.8800.

  31. Rule S, Dreyling M, Goy A, et al. Outcomes in 370 patients with mantle cell lymphoma treated with ibrutinib: a pooled analysis from three open-label studies. Br J Haematol. 2017;179(3):430–8. doi: 10.1111/bjh.14870.

  32. Wang ML, Rule S, Martin P, et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2013;369(6):507–16. doi: 10.1056/nejmoa1306220.

  33. Cheah CY, Chihara D, Romaguera JE, et al. Patients with mantle cell lymphoma failing ibrutinib are unlikely to respond to salvage chemotherapy and have poor outcomes. Ann Oncol. 2015;26(6):1175–9. doi: 10.1093/annonc/mdv111.

  34. Martin P, Maddocks K, Noto K, et al. Poor overall survival of patients with ibrutinib-resistant mantle cell lymphoma. Blood. 2014;124(21):3047, abstract.

  35. Balasubramanian S, Schaffer M, Deraedt W, et al. Mutational analysis of patients with primary resistance to single-agent ibrutinib in relapsed or refractory mantle cell lymphoma (MCL). Blood. 2014;124(21):78, abstract.

  36. Woyach JA, Furman RR, Liu T-M, et al. Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib. N Engl J Med. 2014;370(24):2286–94. doi: 10.1056/nejmoa1400029.

  37. Sarkozy C, Traverse-Glehen A, Bachy E, et al. Comparative Effectiveness of Single-Agent Ibrutinib in the Ray Trial Versus Real-World Treatment in the Lyon-Sud Database in Patients with Relapsed or Refractory Mantle Cell Lymphoma. Blood. 2017;130: 2770, abstract.