Лимфома Ходжкина: результаты анализа данных регионального регистра (Волгоград)

К.Д. Капланов1,2, Н.П. Волков1, Т.Ю. Клиточенко1, И.В. Матвеева1, А.Л. Шипаева1, М.Н. Широкова1, Н.В. Давыдова3, Э.Г. Гемджян4

1 ГБУЗ «Волгоградский областной клинический онкологический диспансер», ул. Землячки, д. 78, Волгоград, Российская Федерация, 400138

2 ГБУ «Волгоградский медицинский научный центр», ул. Рокоссовского, д. 1Г, Волгоград, Российская Федерация, 400081

3 ГУЗ «Консультативно-диагностическая поликлиника № 2», ул. Ангарская, д. 114А, Волгоград, Российская Федерация, 400081

4 ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167

Для переписки: Камиль Даниялович Капланов, канд. мед. наук, ул. Землячки, д. 78, Волгоград, Российская Федерация, 400138; e-mail: kamilos@mail.ru

Для цитирования: Капланов К.Д., Волков Н.П., Клиточенко Т.Ю. и др. Лимфома Ходжкина: результаты анализа данных регионального регистра (Волгоград). Клиническая онкогематология. 2019;12(4):363–76.

DOI: 10.21320/2500-2139-2019-12-4-363-376


РЕФЕРАТ

Актуальность. В настоящей работе рассматриваются возможности терапии первой и второй линий, а также значение различных факторов риска в популяции всех впервые выявленных больных лимфомой Ходжкина (ЛХ) за 14-летний период, по данным регионального регистра (Волгоград).

Материалы и методы. С 2003 по 2017 г. в популяционный регистр отделения гематологии ГБУЗ «Волгоградский областной клинический онкологический диспансер» включены все пациенты с впервые установленным диагнозом ЛХ (n = 622): 272 (44 %) мужчины, 350 (56 %) женщин, в возрасте 18–84 года (средний возраст 38 лет, медиана 33 года). Пациенты с ранними стадиями без факторов риска — 97 (16 %), ранними стадиями с факторами риска — 165 (27 %), с распространенными стадиями — 360 (59 %), симптомами интоксикации (В-стадия) — 308 (50 %), наличием большого очага опухоли (≥ 10 см) — 179 (29 %). Лечение по схеме ABVD получало 190 (30,5 %) больных, усиленный BEACO(D)PP — 39 (6 %), BEACO(D)PP-14 — 159 (26 %), стандартный BEACO(D)PP — 200 (32 %), IVDG — 25 (4 %), другие режимы — 9 (1,5 %). Вторую линию терапии получало 120 (19 %) из 622 больных. На конец августа 2018 г. под наблюдением оставалось 514 (83 %) человек, умерло — 108 (17 %). Прогностическое значение международного прогностического индекса (IPS), ПЭТ и других факторов было оценено в многофакторном регрессионном анализе Кокса. Фармакоэкономическая составляющая различий между опциями терапии первой линии была проанализирована с помощью модели Маркова.

Результаты. В группе пациентов с распространенными стадиями ЛХ, получавших интенсифицированные варианты BEACO(D)PP (усиленный и BEACO(D)PP-14), 5- и 10-летняя общая выживаемость (ОВ) составила 83 и 74 % соответственно, медиана ОВ не достигнута. На фоне стандартного BEACO(D)PP при распространенных стадиях ЛХ медиана ОВ была 139 мес. (11,6 года), показатели 5- и 10-летней ОВ — 68 и 54 % соответственно (= 0,012). В группе с ранними стадиями и неблагоприятным прогнозом, где применялись интенсифицированные варианты BEACO(D)PP, 5- и 10-летняя ОВ была 100 и 90 % соответственно, в объединенной группе ABVD и стандартного BEACO(D)PP — 83 и 75 % (= 0,035). Замена прокарбазина на дакарбазин в стандартном и усиленных вариантах BEACOPP не отразилась на эффективности терапии. Марковский анализ показал преимущество интенсифицированных вариантов лечения для ранних стадий с неблагоприятным прогнозом и для распространенных стадий в количестве лет добавленной жизни. Из 7 факторов IPS на ОВ значимо влияли мужской пол, возраст ≥ 45 лет, гемоглобин < 105 г/л и альбумин < 40 мг/л. На основании этих данных предложен скорректированный прогностический индекс.

Заключение. Преимущество интенсифицированной стратегии терапии первой линии при ЛХ находит отражение в показателях выживаемости и имеет фармакоэкономическое обоснование. Значение некоторых лабораторных факторов риска IPS может быть пересмотрено; в частности, очевидно возрастающее значение ПЭТ для прогнозирования потребности в терапии «спасения».

Ключевые слова: лимфома Ходжкина, BEACO(D)PP, ABVD, международный прогностический индекс, анализ выживаемости, фармакоэкономика, модель Маркова, «добавленные годы жизни» (LYG), «отношение затраты-эффективность» (ICER).

Получено: 21 февраля 2019 г.

Принято в печать: 17 сентября 2019 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Jaffe ES, Arber DA, Campo E, et al. Hematopathology, 2nd edition. Elsevier Ltd.; 2017. 1216 p.

  2. Glaser SL, Jarrett RF. The epidemiology of Hodgkin’s disease. Baill Clin Haematol. 1996;9(3):401–16. doi: 10.1016/s0950-3536(96)80018-7.

  3. Злокачественные новообразования в России в 2017 г. (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена, 2018. 250 с.

    [Kaprin AD, Starinskii VV, Petrova GV, eds. Zlokachestvennye novoobrazovaniya v Rossii v 2017 godu (zabolevaemost’ i smertnost’). (Malignancies in Russia in 2017: incidence and mortality.) Moscow: MNIOI im. P.A. Gertsena; 2018. 250 p. (In Russ)]

  4. Grufferman S, Cole P, Smith PG, et al. Hodgkin’s disease in siblings. N Engl J Med. 1977;296(5):248–50. doi: 10.1056/NEJM197702032960504.

  5. Lynch HT, Marcus JN, Lynch JF. Genetics of Hodgkin’s and non-Hodgkin’s lymphoma: a review. Cancer Invest. 1992;10(3):247–56. doi: 10.3109/07357909209032768.

  6. Mack TM, Cozen W, Shibata DK, et al. Concordance for Hodgkin’s disease in identical twins suggesting genetic susceptibility to the young-adult form of the disease. N Engl J Med. 1995;332(7):413–8. doi: 10.1056/NEJM199502163320701.

  7. Horwitz M, Wiernik PH. Pseudoautosomal linkage of Hodgkin disease. Am J Hum Genet. 1999;65(5):1413–22. doi: 10.1086/302608.

  8. Weiss LM, Strickler JG, Warnke RA, et al. Epstein-Barr viral DNA in tissues of Hodgkin’s disease. Am J Pathol. 1987;129(1):86–91.

  9. Alexander FE, Jarrett RF, Lawrence D, et al. Risk factors for Hodgkin’s disease by Epstein-Barr virus (EBV) status: prior infection by EBV and other agents. Br J Cancer. 2000;82(5):1117–21. doi: 10.1054/bjoc.1999.1049.

  10. Andrieu JM, Roithmann S, Tourani JM, et al. Hodgkin’s disease during HIV1 infection: the French registry experience. French Registry of HIV-associated Tumors. Ann Oncol. 1993;4(8):635–41. doi: 10.1093/oxfordjournals.annonc.a058617.

  11. Tirelli U, Errante D, Dolcetti R, et al. Hodgkin’s disease and human immunodeficiency virus infection: clinicopathologic and virologic features of 114 patients from the Italian Cooperative Group on AIDS and Tumors. J Clin Oncol. 1995;13(7):1758–67. doi: 10.1200/JCO.1995.13.7.1758.

  12. Tubiana M, Henry-Amar M, Carde P, et al. Toward comprehensive management tailored to prognostic factors of patients with clinical stages I and II Hodgkin’s disease. The EORTC Lymphoma Group controlled clinical trials: 1964–1987. Blood. 1989;73(1):47–56.

  13. Diehl V, Stein H, Hummel M, et al. Hodgkin’s lymphoma: biology and treatment strategies for primary, refractory, and relapsed disease. Hematology. 2003;2003(1):225–47. doi: 10.1182/asheducation-2003.1.225.

  14. Hasenclever D, Diehl V, Armitage JO, et al. A prognostic score for advanced Hodgkin’s disease. International Prognostic Factors Project on Advanced Hodgkin’s Disease. N Engl J Med. 1998;339(21):1506–14. doi: 10.1056/NEJM199811193392104.

  15. Andre MP, Girinsky T, Federico M, et al. Early positron emission tomography response-adapted treatment in stage I and II Hodgkin lymphoma: final results of the randomized EORTC/LYSA/FIL H10 trial. J Clin Oncol. 2017;35(16):1786–94. doi: 10.1200/JCO.2016.68.6394.

  16. Johnson P, Federico M, Kirkwood A, et al. Adapted treatment guided by interim PET-CT scan in advanced Hodgkin’s lymphoma. N Engl J Med. 2016;374(25):2419–29. doi: 10.1056/NEJMoa1510093.

  17. Green MR, Monti S, Rodig SJ, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116(17):3268–77. doi: 10.1182/blood-2010-05-282780.

  18. Roemer MG, Advani RH, Ligon AH, et al. PD-L1 and PD-L2 genetic alterations define classical Hodgkin lymphoma and predict outcome. J Clin Oncol. 2016;34(23):2690–7. doi: 10.1200/JCO.2016.66.4482.

  19. Roemer MGM, Redd RA, Cader FZ, et al. Major histocompatibility complex Class II and programmed death ligand 1 expression predict outcome after programmed death 1 blockade in classic Hodgkin lymphoma. J Clin Oncol. 2018;36(10):942–50. doi: 10.1200/JCO.2017.77.3994.

  20. Liu L, Giusti F, Schaapveld M, et al. Survival differences between patients with Hodgkin lymphoma treated inside and outside clinical trials. A study based on the EORTC-Netherlands Cancer Registry linked data with 20 years of follow-up. Br J Haematol. 2017;176(1):65–75. doi: 10.1111/bjh.14379.

  21. Капланов К.Д., Шипаева А.Л., Васильева В.А. и др. Эффективность программ химиотерапии первой линии при различных стадиях лимфомы Ходжкина. Клиническая онкогематология. 2012;5(1):22–9.

    [Kaplanov KD, Shipaeva AL, Vasil’eva VA, et al. Efficacy of first line chemotherapy programs for different stages of Hodgkin’s lymphomas. Klinicheskaya onkogematologiya. 2012;5(1):22–9. (In Russ)]

  22. Капланов К.Д., Шипаева А.Л., Васильева В.А. и др. Международный прогностический индекс при распространенных стадиях лимфомы Ходжкина в условиях современной терапии. Клиническая онкогематология. 2013;6(3):294–302.

    [Kaplanov KD, Shipaeva AL, Vasil’eva VA, et al. International prognostic score in advanced Hodgkin’s lymphoma. Klinicheskaya onkogematologiya. 2013;6(3):294–302. (In Russ)]

  23. Капланов К.Д., Волков Н.П., Клиточенко Т.Ю. и др. Первая линия терапии лимфомы из клеток зоны мантии: анализ эффективности и клинико-экономическая оценка. Клиническая онкогематология. 2018;11(2):150–9. doi: 10.21320/2500-2139-2018-11-2-150-159.

    [Kaplanov KD, Volkov NP, Klitochenko TYu, et al. First-Line Treatment of Mantle-Cell Lymphoma: Analysis of Effectiveness and Cost-Effectiveness. Clinical oncohematology. 2018;11(2):150–9. doi: 10.21320/2500-2139-2018-11-2-150-159. (In Russ)]

  24. Капланов К.Д., Волков Н.П., Клиточенко Т.Ю. и др. Результаты анализа регионального регистра пациентов с диффузной В-крупноклеточной лимфомой: факторы риска и проблемы иммунохимиотерапии. Клиническая онкогематология. 2019;12(2):154–64. doi: 10.21320/2500-2139-2019-12-2-154-164.

    [Kaplanov KD, Volkov NP, Klitochenko TYu, et al. Analysis Results of the Regional Registry of Patients with Diffuse Large B-cell Lymphoma: Risk Factors and Chemo-Immunotherapy Issues. Clinical oncohematology. 2019;12(2):154–64. doi: 10.21320/2500-2139-2019-12-2-154-164. (In Russ)]

  25. Kaplanov K, Klitochenko T, Shipaeva A, et al. Combination of idarubicin, vinblastine, dacarbazine, and gemcitabine (IVDG) as therapy for elderly patients with Hodgkin lymphoma with cardiac and pulmonary comorbidity. Hematol Oncol. 2017;35(Suppl 2):317. doi: 1002/hon.2439_57.

  26. Капланов К.Д., Клиточенко Т.Ю., Шипаева А.Л. и др. Программа IVDG — возможный выбор первой линии терапии лимфомы Ходжкина у пациентов пожилого возраста с сопутствующими сердечно-сосудистыми и легочными заболеваниями. Клиническая онкогематология. 2017;10(3):358–65. doi: 10.21320/2500-2139-2017-10-3-358-365.

    [Kaplanov KD, Klitochenko TYu, Shipaeva АL, et al. The IVDG Regimen is the Possible Treatment of Choice as First Line Therapy For Hodgkin’s Lymphoma in Elderly Patients with Cardiovascular and Pulmonary Comorbidity. Clinical oncohematology. 2017;10(3):358–65. doi: 10.21320/2500-2139-2017-10-3-358-365. (In Russ)]

  27. Bosh TM. Pharmacogenomics of drug-metabolizing enzymes and drug transporters in chemotherapy. Meth Mol Biol. 2008;448:63–76. doi: 10.1007/978-1-59745-205-2_5.

  28. Lee NH. Pharmacogenetics of drug metabolizing enzymes and transporters: effects on pharmacokinetics and pharmacodynamics of anticancer agents. Anti-cancer Agents Med Chem. 2010;10(8):583–92. doi: 10.2174/187152010794474019.

  29. Ekhart C, Rodenhuis S, Smits PH, et al. An overview of the relations between polymorphisms in drug metabolising enzymes and drug transporters and survival after cancer drug treatment. Cancer Treat Rev. 2009;35(1):18–31. doi: 10.1016/j.ctrv.2008.07.003.

  30. Von Treschkow B, Kreissl S, Goergen H, et al. Intensive treatment strategies in advanced stage Hodgkin’s lymphoma (HD9 and HD12): analysis of long-term survival in two randomised trial. Lancet Haematol. 2018;5(10):e462–e473. doi: 10.1016/S2352-3026(18)30140-6.

  31. Skoetz N, Will A, Monsef I. Comparison of first-line chemotherapy including escalated BEACOPP versus chemotherapy including ABVD for people with early unfavorable or advanced stage Hodgkin lymphoma. Cochrane Database Syst Rev. 2017;5:CD007941. doi: 10.1002/14651858.CD007941.pub3.

  32. Rancea M, Monsef I, von Tresckow B, et al. High-dose chemotherapy followed by autologous stem cell transplantation for patients with relapsed/refractory Hodgkin lymphoma. Cochrane Database Syst Rev. 2013;6:CD009411. doi: 10.1002/14651858.CD009411.pub2.

  33. von Tresckow B, Moskowitz CH. Treatment of relapsed and refractory Hodgkin lymphoma. Semin Hematol. 2016;53(3):180–5. doi: 10.1053/j.seminhematol.2016.05.010.

  34. Kobe C, Goergen H, Baues C, et al. Outcome-based interpretation of early interim PET in advanced-stage Hodgkin lymphoma. Blood. 2018;132(21):2273–9. doi: 10.1182/blood-2018-05-852129.

  35. Diehl V, Franklin J, Pfreundschuh M, et al. Standard and increased-dose BEACOPP chemotherapy compared with COPP-ABVD for advanced Hodgkin’s disease. N Engl J Med. 2003;348(24):2386–95. doi: 10.1056/NEJMoa022473.

  36. Moccia AA, Donaldson J, Chhanabhai M, et al. International Prognostic Score in Advanced-Stage Hodgkin’s Lymphoma: Altered Utility in the Modern Era. J Clin Oncol. 2012;30(27):3383–8. doi: 10.1200/JCO.2011.41.0910.

  37. Gordon LI, Hong F, Fisher RI, et al. Randomized phase III trial of ABVD versus Stanford V with or without radiation therapy in locally extensive and advanced-stage Hodgkin lymphoma: an intergroup study coordinated by the Eastern Cooperative Oncology Group (E2496). J Clin Oncol. 2013;31(6):684–91. doi: 10.1200/JCO.2012.43.4803.

  38. Dann EJ, Blumenfeld Z, Bar-Shalom R, et al. A 10-year experience with treatment of high and standard risk Hodgkin disease: six cycles of tailored BEACOPP, with interim scintigraphy, are effective and female fertility is preserved. Am J Hematol. 2012;87(1):32–6. doi: 10.1002/ajh.22187.

  39. Dann EJ, Bairey O, Bar-Shalom R, et al. Modification of initial therapy in early and advanced Hodgkin lymphoma, based on interim PET/CT is beneficial: a prospective multicenter trial of 355 patients. Br J Haematol. 2017;178(5):709–18. doi: 10.1111/bjh.14734.

  40. Sieber M, Bredenfeld H, Josting A, et al. 14-day variant of the bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and prednisone regimen in advanced-stage Hodgkin’s lymphoma: results of a pilot study of the German Hodgkin’s Lymphoma Study Group. J Clin Oncol. 2003;21(9):1734–9. doi: 10.1200/JCO.2003.06.028.

  41. Engert A, Haverkamp H, Kobe C, et al. Reduced-intensity chemotherapy and PET-guided radiotherapy in patients with advanced stage Hodgkin’s lymphoma (HD15 trial): a randomised, open-label, phase 3 non-inferiority trial. Lancet. 2012;379(9828):1791–9. doi: 10.1016/S0140-6736(11)61940-5.

  42. Engert A, Diehl V, Franklin J, et al. Escalated-dose BEACOPP in the treatment of patients with advanced-stage Hodgkin’s lymphoma: 10 years of follow-up of the GHSG HD9 study. J Clin Oncol. 2009;27(27):4548–54. doi: 10.1200/JCO.2008.19.8820.

  43. Skoetz N, Trelle S, Rancea M, et al. Effect of initial treatment strategy on survival of patients with advanced-stage Hodgkin’s lymphoma: a systematic review and network meta-analysis. Lancet Oncol. 2013;14(10):943–52. doi: 10.1016/S1470-2045(13)70341-3.

Экспрессия молекулы адгезии CD56 на опухолевых плазматических клетках в костном мозге как фактор прогноза при множественной миеломе

М.В. Фирсова, Л.П. Менделеева, А.М. Ковригина, М.В. Соловьев, Н.Л. Дейнеко, М.Ю. Дроков, В.Г. Савченко

ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167

Для переписки: Майя Валерьевна Фирсова, канд. мед. наук, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167; e-mail: firs-maia@yandex.ru

Для цитирования: Фирсова М.В., Менделеева Л.П., Ковригина А.М. и др. Экспрессия молекулы адгезии CD56 на опухолевых плазматических клетках в костном мозге как фактор прогноза при множественной миеломе. Клиническая онкогематология. 2019;12(4):377–84.

DOI: 10.21320/2500-2139-2019-12-4-377-384


РЕФЕРАТ

Цель. Изучить иммуногистохимические параметры опухолевых плазматических клеток костного мозга и оценить влияние экспрессии молекулы адгезии CD56 на общую выживаемость (ОВ) больных множественной миеломой (ММ).

Материалы и методы. В исследование включено 35 пациентов (19 мужчин, 16 женщин) в возрасте 23–73 года (медиана 58 лет) с впервые диагностированной ММ. В дебюте заболевания плазмоцитома диагностирована у 21 больного. Всем пациентам выполнена трепанобиопсия костного мозга с последующими гистологическим и иммуногистохимическим (ИГХ) исследованиями. Для ИГХ-исследования использовалась панель антител к CD56, CD166, CXCR4, Ki-67, c-MYC/CD138. Кривые выживаемости построены методом Каплана—Мейера с оценкой статистической значимости с помощью F-теста Кокса.

Результаты. Средние значения экспрессии большинства исследуемых маркеров (CD56, CXCR4, c-MYC, Ki-67) в костном мозге у больных без плазмоцитомы (n = 14) оказались выше по сравнению с пациентами с плазмоцитомой в дебюте ММ. Под средним значением экспрессии подразумевается процентное отношение плазматических клеток, экспрессирующих исследуемый маркер, к общему числу клеток опухолевого субстрата. Вероятно, высокая экспрессия хемокиновых рецепторов (CXCR4) и молекул адгезии (CD56) сдерживает миграцию плазматических клеток и препятствует экстрамедуллярному росту опухоли. При сравнении экспрессии белков опухолевыми плазматическими клетками в костном мозге в группах с костной экстрамедуллярной плазмоцитомой отчетливая закономерность прослеживается в отношении молекулы адгезии CD56. Так, экспрессия CD56 статистически значимо (< 0,05) ниже по числу экспрессирующих маркер опухолевых плазматических клеток в костном мозге у больных ММ с экстрамедуллярной плазмоцитомой, чем у пациентов с костной плазмоцитомой (1 ± 1 vs 65,71 ± 12,12 %). При сопоставлении ОВ больных ММ в зависимости от экспрессии CD56 опухолевыми плазматическими клетками костного мозга показано, что 4-летняя ОВ пациентов с экспрессией CD56 в костном мозге была статистически значимо выше и составила 80 vs 38 % в группе с экспрессией CD56 менее чем в 10 % опухолевых клеток.

Заключение. Экспрессия молекулы адгезии CD56 на опухолевых плазматических клетках в костном мозге может служить фактором прогноза при ММ. Вероятно, при обнаружении экспрессии CD56 менее чем в 10 % опухолевых плазматических клетках костного мозга в дебюте болезни необходимо более тщательное дополнительное обследование пациента для исключения экстрамедуллярных очагов поражения в различных органах и тканях.

Ключевые слова: множественная миелома, костная плазмоцитома, экстрамедуллярная плазмоцитома, трепанобиопсия костного мозга, CD56.

Получено: 12 мая 2019 г.

Принято в печать: 2 сентября 2019 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Фрейдлин И.С. Система мононуклеарных фагоцитов. М.: Медицина, 1984. 272 c.

    [Freidlin IS. Sistema mononuklearnykh fagotsitov. (The system of mononuclear phagocytes.) Moscow: Meditsina Publ.; 1984. 272 p. (In Russ)]

  2. Van Furth R, Raeburn JA, van Zwet TL. Characteristics of human mononuclear phagocytes. Blood. 1979;54(2):485–500.

  3. Mitsiades CS, McMillin DW, Klippel S, et al. The role of the bone marrow microenvironment in the pathophysiology of myeloma and its significance in the development of more effective therapies. Hematol Oncol Clin N Am. 2007;21(6):1007–34. doi: 10.1016/j.hoc.2007.08.007.

  4. Van Camp B, Durie BG, Spier C, et al. Plasma cells in multiple myeloma express a natural killer cell-associated antigen: CD56 (NKH-1; Leu-19). Blood. 1990;76(2):377–82.

  5. Sahara N, Takeshita A, Shigeno K, et al. Clinicopathological and prognostic characteristics of CD56-negative multiple myeloma. Br J Haematol. 2002;117(4):882–5. doi: 10.1046/j.1365-2141.2002.03513.x.

  6. Cayrol R, Wosik K, Berard JL, et al. Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Nat Immunol. 2008;9(2):137–45. doi: 10.1038/ni1551.

  7. Masedunskas A, King JA, Tan F, et al. Activated leukocyte cell adhesion molecule is a component of the endothelial junction involved in transendothelial monocyte migration. FEBS Lett. 2006;580(11):2637–45. doi: 10.1016/j.febslet.2006.04.013.

  8. Avet-Loiseau H, Gerson F, Magrangeas F, et al. Rearrangements of the c-myc oncogene are present in 15% of primary human multiple myeloma tumors. Blood. 2001;98(10):3082–6. doi: 10.1182/blood.v98.10.3082.

  9. Gabrea A, Martelli ML, Qi Y, et al. Secondary genomic rearrangements involving immunoglobulin or MYC loci show similar prevalences in hyperdiploid and nonhyperdiploid myeloma tumors. Genes Chromos Cancer. 2008;47(7):573–90. doi: 10.1002/gcc.20563.

  10. Gerdes J. Ki-67 and other proliferation markers useful for immunohistological diagnostic and prognostic evaluations in human malignancies. Semin Cancer Biol. 1990;1(3):199–206.

  11. Endl E, Steinbach P, Knuchel R, et al. Analysis of cell cycle-related Ki-67 and p120 expression by flow cytometric BrdUrd-Hoechst/7AAD and immunolabeling technique. Cytometry. 1997;29(3):233–41. doi: 10.1002/(sici)1097-0320(19971101)29:3<233::aid-cyto6>3.3.co;2-3.

  12. Kausch I, Lingnau A, Endl E, et al. Antisense treatment against Ki-67 mRNA inhibits proliferation and tumor growth in vitro and in vivo. Int J Cancer. 2003;105(5):710–6. doi: 10.1002/ijc.11111.

  13. Greipp PR, Lust JA, O’Fallon WM, et al. Plasma cell labeling index and beta 2-microglobulin predict survival independent of thymidine kinase and C-reactive protein in multiple myeloma. Blood. 1993;81(12):3382–7.

  14. Tsirakis G, Pappa CA, Spanoudakis M, et al. Clinical significance of sCD105 in angiogenesis and disease activity in multiple myeloma. Eur J Intern Med. 2012;23(4):368–73. doi: 10.1016/j.ejim.2012.01.012.

  15. Tsirakis G, Pappa CA, Psarakis FE, et al. Serum concentrations and clinical significance of soluble CD40 ligand in patients with multiple myeloma. Med Oncol. 2012;29(4):2396–401. doi: 10.1007/s12032-012-0203-2.

  16. Tsirakis G, Pappa CA, Kaparou M, et al. The relationship between soluble receptor of interleukin-6 with angiogenic cytokines and proliferation markers in multiple myeloma. Tumour Biol. 2013;34(2):859–64. doi: 10.1007/s13277-012-0618-6.

  17. Rossi D, Zlotnik A. The biology of chemokines and their receptors. Annu Rev Immunol. 2000;18(1):217–42. doi: 10.1146/annurev.immunol.18.1.217.

  18. Oberlin E, Amara A, Bachelerie F, et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature. 1996;382(6594):833–5. doi: 10.1038/382833a0.

  19. Piazza R, Valletta S, Winkelmann N, et al. Recurrent SETBP1 mutations in atypical chronic myeloid leukemia. Nat Genet. 2013;45(1):18–24. doi: 10.1038/ng.2495.

  20. Blade J, Fernandez de Larrea C, Rosinol L, et al. Soft-tissue plasmacytomas in multiple myeloma: incidence, mechanisms of extramedullary spread, and treatment approach. J Clin Oncol. 2011;29(28):3805–12. doi: 10.1200/JCO.2011.34.9290.

  21. Usmani SZ, Heuck C, Mitchell A, et al. Extramedullary disease portends poor prognosis in multiple myeloma and is over-represented in high-risk disease even in the era of novel agents. Haematologica. 2012;97(11):1761–7. doi: 10.3324/haematol.2012.065698.

  22. Varettoni M, Corso A, Pica G, et al. Incidence, presenting features and outcome of extramedullary disease in multiple myeloma: a longitudinal study on 1003 consecutive patients. Ann Oncol. 2009;21(2):325–30. doi: 10.1093/annonc/mdp329.

  23. Weinstock M, Aljawai Y, Morgan EA, et al. Incidence and clinical features of extramedullary multiple myeloma in patients who underwent stem cell transplantation. Br J Haematol. 2015;169(6):851–8. doi: 10.1111/bjh.13383.

  24. Bao L, Lai Y, Liu Y, et al. CXCR4 is a good survival prognostic indicator in multiple myeloma patients. Leuk Res. 2013;37(9):1083–8. doi: 10.1016/j.leukres.2013.06.002.

  25. Xu L, Mohammad KS, Wu H, et al. Cell Adhesion Molecule CD166 Drives Malignant Progression and Osteolytic Disease in Multiple Myeloma. Cancer Res. 2016;76(23):6901–10. doi: 10.1158/0008-5472.CAN-16-0517.

Иммуногистохимический подтип и параметры международного прогностического индекса в новой модели прогноза диффузной B-крупноклеточной лимфомы

С.В. Самарина1, А.С. Лучинин1, Н.В. Минаева1, И.В. Парамонов1, Д.А. Дьяконов1, Е.В. Ванеева1, В.А. Росин1, С.В. Грицаев2

1 ФГБУН «Кировский НИИ гематологии и переливания крови ФМБА », ул. Красноармейская, д. 72, Киров, Российская Федерация, 610027

2 ФГБУ «Российский НИИ гематологии и трансфузиологии ФМБА», ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024

Для переписки: Светлана Валерьевна Самарина, ул. Красноармейская, д. 72, Киров, Российская Федерация, 610027; тел.: +7(912)732-47-56; e-mail: samarinasv2010@mail.ru

Для цитирования: Самарина С.В., Лучинин А.С., Минаева Н.В. и др. Иммуногистохимический подтип и параметры международного прогностического индекса в новой модели прогноза диффузной B-крупноклеточной лимфомы. Клиническая онкогематология. 2019;12(4):385–90.

DOI: 10.21320/2500-2139-2019-12-4-385-390


РЕФЕРАТ

Цель. Разработать комплексную модель прогнозирования течения диффузной В-крупноклеточной лимфомы (ДВКЛ) с использованием иммуногистохимического подтипа опухоли и параметров международного прогностического индекса (IPI).

Материалы и методы. Из 104 больных ДВКЛ в базе данных критериям включения соответствовал 81 (77,9 %). Медиана возраста составила 58 лет (диапазон 23–83 года). Все больные получали лечение по схеме R-СНОР. Для создания прогностической модели общей выживаемости (ОВ) больных ДВКЛ использовали метод машинного обучения — деревья классификации и регрессии. Анализ ОВ проводился по методу Каплана—Мейера. Для сравнения кривых выживаемости применяли лог-ранговый критерий и отношение рисков (ОР). Статистической значимостью любого теста считался полученный двусторонний уровень < 0,05.

Результаты. Согласно построенной модели, выделены три группы пациентов: 1-я — группа низкого риска (сочетание низкого, промежуточного низкого и промежуточного высокого риска по IPI и GCB-подтипа); 2-я — группа промежуточного риска (сочетание низкого, промежуточного низкого и промежуточного высокого риска по IPI и non-GCB-подтипа); 3-я — группа высокого риска (независимо от подтипа). В группе низкого риска (n = 26) 2-летняя ОВ за исследуемый период составила 100 %. В группе промежуточного риска (n = 34) медиана ОВ не достигнута, 2-летняя ОВ составила 74 %, ожидаемая 5-летняя ОВ — 68 %. В группе высокого риска (n = 21) медиана ОВ была 25 мес., 2-летняя ОВ — 46 %, ожидаемая 5-летняя ОВ — 37 % (< 0,0001, лог-ранговый критерий). ОР, рассчитанное для группы высокого риска по сравнению с группами низкого и промежуточного, составило 5,1 (95%-й доверительный интервал 2,1–12,1; = 0,0003).

Заключение. Предложена новая комбинированная система прогноза ДВКЛ, включающая в себя параметры риска по IPI и иммуногистохимический подтип опухоли по алгоритму Ханса. Данная прогностическая система может использоваться в клинической практике для стратификации больных с ДВКЛ и подбора риск-адаптированной терапии.

Ключевые слова: диффузная В-крупноклеточная лимфома, общая выживаемость, прогноз, международный прогностический индекс, машинное обучение.

Получено: 18 марта 2019 г.

Принято в печать: 27 августа 2019 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Martellia M, Ferrerib AJM, Agostinellic C, et al. Diffuse large B-cell lymphoma. Crit Rev Oncol Hematol. 2013;87(2):146–71. doi: 10.1016/j.critrevonc.2012.12.009.

  2. Lynch RC, Gratzinger D, Advani RH. Clinical Impact of the 2016 Update to the WHO Lymphoma Classification. Curr Treat Options Oncol. 2017;18(7):45. doi: 10.1007/s11864-017-0483-z.

  3. Li X, Huang H, Xu B, et al. Dose-Dense Rituximab-CHOP versus Standard Rituximab-CHOP in Newly Diagnosed Chinese Patients with Diffuse Large B-Cell Lymphoma: A Randomized, Multicenter, Open-Label Phase 3 Trial. Cancer Res Treat. 2019;51(3):919–32. doi: 10.4143/crt.2018.230.

  4. Coiffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(4):235–42. doi: 10.1056/NEJMoa011795.

  5. Castellino A, Chiappella A, LaPlant BR, et al. Lenalidomide plus R-CHOP21 in newly diagnosed diffuse large B-cell lymphoma (DLBCL): long-term follow-up results from a combined analysis from two phase 2 trials. Blood Cancer J. 2018;8(11):108. doi: 10.1038/s41408-018-0145-9.

  6. Sharman JP, Forero-Torres A, Costa LJ, et al. Obinutuzumab plus CHOP is effective and has a tolerable safety profile in previously untreated, advanced diffuse large B-cell lymphoma: the phase II GATHER study. Leuk Lymphoma. 2018;60(4):894–903. doi: 10.1080/10428194.2018.1515940.

  7. Kameoka Y, Akagi T, Murai K, et al. Safety and efficacy of high-dose ranimustine (MCNU) containing regimen followed by autologous stem cell transplantation for diffuse large B-cell lymphoma. Int J Hematol. 2018;108(5):510–5. doi: 10.1007/s12185-018-2508-1.

  8. Sehn LH, Berry B, Chhanabhai M, et al. The revised International Prognostic Index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B-cell lymphoma treated with R-CHOP. Blood. 2007;109(5):1857–61. doi: 10.1182/blood-2006-08-038257.

  9. Biccler J, Eloranta S, de Nully Brown P, et al. Simplicity at the cost of predictive accuracy in diffuse large B-cell lymphoma: a critical assessment of the R-IPI, IPI, and NCCN-IPI. Cancer Med. 2018;7(1):114–22. doi: 10.1002/cam4.1271.

  10. Shipp MA, Harrington DP, Anderson JR, et al. A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med. 1993;329(14):987–94. doi: 10.1056/NEJM199309303291402.

  11. Li JM, Wang L, Shen Y, et al. Rituximab in combination with CHOP chemotherapy for the treatment of diffuse large B cell lymphoma in Chinese patients. Annals Hematol. 2007;86(9):639–45. doi: 10.1007/s00277-007-0320-8.

  12. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene-expression profiling. Nature. 2000;403(6769):503–51. doi: 10.1038/35000501.

  13. Wang KL, Chen C, Shi PF, et al. Prognostic Value of Morphology and Hans Classification in Diffuse Large B Cell Lymphoma. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2018;26(4):1079–85. doi: 10.7534/j.issn.1009-2137.2018.04.023.

  14. Rashidi A, Oak E, Carson KR, et al. Outcomes with R-CEOP for R-CHOP-ineligible patients with diffuse large B-cell lymphoma are highly dependent on cell of origin defined by Hans criteria. Leuk Lymphoma. 2016;57(5):1191–3. doi: 10.3109/10428194.2015.1096356.

  1. Ye ZY, Cao YB, Lin TY, Lin HL. Subgrouping and outcome prediction of diffuse large B-cell lymphoma by immunohistochemistry. Zhonghua Bing Li Xue Za Zhi. 2007;36(10):654–9.

  1. Montalban C, Diaz-Lopez A, Martin A, et al. Differential prognostic impact of GELTAMO-IPI in cell of origin subtypes of Diffuse Large B Cell Lymphoma as defined by the Hans algorithm. Br J Haematol. 2018;182(4):534–41. doi: 10.1111/bjh.15446.

  2. Tibiletti MG, Martin V, Bernasconi B, et al. BCL2, BCL6, MYC, MALT 1, and BCL10 rearrangements in nodal diffuse large B-cell lymphomas: a multicenter evaluation of a new set of fluorescent in situ hybridization probes and correlation with clinical outcome. Hum Pathol. 2009;40(5):645–52. doi: 10.1016/j.humpath.2008.06.032.

  3. Jaglal MV, Peker D, Tao J, Cultrera JL. Double and Triple Hit Diffuse Large B Cell Lymphomas and First Line Therapy. Blood. 2012;120:4885 [abstract].

  4. Kim M, Suh C, Kim J, Hong JY. Difference of Clinical Parameters between GCB and Non-GCB Subtype DLBCL. Blood. 2017;130:5231 [abstract].

  5. Da Costa CBT. Machine Learning Provides an Accurate Classification of Diffuse Large B-Cell Lymphoma from Immunohistochemical Data. J Pathol Inform. 2018;9(1):21. doi: 10.4103/jpi.jpi_14_18.

  6. Российские клинические рекомендации по диагностике и лечению лимфопролиферативных заболеваний. Под ред. И.В. Поддубной, В.Г. Савченко. М.: Буки Веди, 2016.

    [Poddubnaya IV, Savchenko VG, eds. Rossiiskie klinicheskie rekomendatsii po diagnostike i lecheniyu limfoproliferativnykh zabolevanii. (Russian clinical guidelines on diagnosis and treatment of lymphoproliferative disorders). Moscow: Buki Vedi Publ.; 2016. (In Russ)]

  7. Leval L, Harris NL. Variability in immunophenotype in diffuse large B-cell lymphoma and it‘s clinical relevance. Histopathol. 2003;43(6):509–28. doi: 10.1111/j.1365-2559.2003.01758.x.

  8. Skarbnik AP, Donato ML. Safety and Efficacy Data for Combined Checkpoint Inhibition with Ipilimumab (Ipi) and Nivolumab (Nivo) As Consolidation Following Autologous Stem Cell Transplantation (ASCT) for High-Risk Hematological Malignancies. Blood. 2018;132:256.

  9. Matsuki E, Younes A. Checkpoint Inhibitors and Other Immune Therapies for Hodgkin and Non-Hodgkin Lymphoma. Curr Treat Options Oncol. 2016;17(6):31. doi: 10.1007/s11864-016-0401-9.

  10. Kaneko H, Tsutsumi Y, Fujino T, et al. Favorable event free-survival of high-dose chemotherapy followed by autologous hematopoietic stem cell transplantation for higher risk diffuse large B-cell lymphoma in first complete remission. Hematol Rep. 2015;7(2):5812 [abstract]. doi: 10.4081/hr.2015.5812.

Опыт применения режима кондиционирования Thio/Mel перед трансплантацией аутологичных гемопоэтических стволовых клеток при множественной миеломе

С.В. Грицаев1, И.И. Кострома1, А.А. Жернякова1, И.М. Запреева1, Е.В. Карягина2, Ж.В. Чубукина1, С.А. Тиранова1, И.С. Мартынкевич1, С.С. Бессмельцев1, А.В. Чечеткин1

1 ФГБУ «Российский НИИ гематологии и трансфузиологии ФМБА», ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024

2 ГБУ «Городская больница № 15», ул. Авангардная, д. 4, Санкт-Петербург, Российская Федерация, 198205

Для переписки: Иван Иванович Кострома, канд. мед. наук, ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024; тел.: +7(921)784-82-82; e-mail: obex@rambler.ru

Для цитирования: Грицаев С.В., Кострома И.И., Жернякова А.А. и др. Опыт применения режима кондиционирования Thio/Mel перед трансплантацией аутологичных гемопоэтических стволовых клеток при множественной миеломе. Клиническая онкогематология. 2019;12(3):282–8.

doi: 10.21320/2500-2139-2019-12-3-282-288


РЕФЕРАТ

Актуальность. В связи с продолжающимся поиском комбинированных режимов кондиционирования как способа усиления циторедуктивного воздействия до выполнения одиночной трансплантации аутологичных гемопоэтических стволовых клеток (аутоТГСК) больным множественной миеломой (ММ) привлекательной опцией является добавление тиотепы к мелфалану.

Цель. Анализ данных пилотного исследования по изучению эффективности режима кондиционирования, включающего введение двух алкилирующих препаратов (тиотепа и мелфалан) с последующей аутоТГСК.

Материалы и методы. 9 больным выполнено 10 аутоТГСК с режимом кондиционирования, включавшим введение тиотепы 250 мг/м2 в день –5 и мелфалана 140 мг/м2 в день –2. После проведения аутоТГСК 8 пациентам назначали пегилированный филграстим. Сроки приживления трансплантата рассчитывали по абсолютному числу нейтрофилов ≥ 0,5 × 109/л и уровню тромбоцитов ≥ 20 × 109/л. Токсичность режима оценивали по критериям CTCAE v5.0. Показатели выживаемости рассчитывали с помощью кривых Каплана—Мейера.

Результаты. Введение тиотепы не потребовало назначения дополнительных препаратов. Частота развития мукозита и энтеропатии I–II степени тяжести составила 100 и 70 % соответственно. Повышение температуры тела зафиксировано при проведении 7 аутоТГСК. Пневмония развилась у 1 больной. Инфузия 1–3 доз тромбоконцентрата (медиана 2 дозы) потребовалась всем, за исключением одного, больным. Донорские эритроциты были перелиты 3 больным. Приживление трансплантата констатировано у всех больных в срок 10–14 дней. Медиана длительности госпитализации от дня 0 до выписки составила 16 койко-дней. После аутоТГСК у 6 из 9 больных констатировано улучшение качества ответа. Прогрессирование ММ имело место у больного с комплексным кариотипом. При последующем наблюдении прогрессирование зафиксировано у 2 пациентов. На декабрь 2018 г. медиана наблюдения за 9 больными от даты проведения аутоТГСК составила 9 мес. (диапазон 3–20 мес.), медиана выживаемости без прогрессирования — 17 мес., медиана общей выживаемости не достигнута.

Заключение. Приемлемая токсичность, улучшение качества ответа и его сохранение до 20 мес. дают основание рассматривать комбинированный режим кондиционирования Thio/Mel как возможную альтернативу стандартному режиму Mel200.

Ключевые слова: множественная миелома, трансплантация аутологичных гемопоэтических стволовых клеток, режим кондиционирования, тиотепа, мелфалан.

Получено: 26 декабря 2018 г.

Принято в печать: 25 мая 2019 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Бессмельцев С.С., Абдулкадыров К.М. Множественная миелома: руководство для врачей. М.: СИМК, 2016. 512 с.

    [Bessmeltsev SS, Abdulkadyrov KM. Mnozhestvennaya mieloma: rukovodstvo dlya vrachei. (Multiple myeloma: manual for physicians.) Moscow: SIMK Publ.; 2016. 512 p. (In Russ)]

  2. Менделеева Л.П., Вотякова О.М., Покровская О.С. и др. Национальные клинические рекомендации по диагностике и лечению множественной миеломы. Гематология и трансфузиология. 2016;61(1, прил. 2):1–24. doi: 10.18821/0234-5730-2016-61-1-S2-1-24.

    [Mendeleeva LP, Votyakova OM, Pokrovskaya OS, et al. National clinical guidelines on diagnosis and treatment of multiple myeloma. Gematologiya i transfuziologiya. 2016;61(1, Suppl 2):1–24. doi: 10.18821/0234-5730-2016-61-1-S2-1-24. (In Russ)]

  3. Palumbo A, Anderson K. Multiple myeloma. N Engl J Med. 2011;364(11):1046–60. doi: 10.1056/NEJMra1011442.

  4. Cavo M, Rajkumar SV, Palumbo A, et al. International Myeloma Working Group consensus approach to the treatment of multiple myeloma patients who are candidates for autologous stem cell transplantation. 2011;117(23):6063–73. doi: 10.1182/blood-2011-02-297325.

  5. Engelhardt M, Terpos E, Kleber M, et al. European Myeloma Network recommendations on the evaluation and treatment of newly diagnosed patients with multiple myeloma. Haematologica. 2014;99(2):232–42. doi: 10.3324/haematol.2013.099358.

  6. Sidiqi MH, Aljama MA, Bin Riaz I, et al. Bortezomib, lenalidomide, and dexamethasone (VRd) followed by autologous stem cell transplant for multiple myeloma. Blood Cancer J. 2018;8(8):106. doi: 10.1038/s41408-018-0147-7.

  7. Attal M, Lauwers-Cances V, Hulin C, et al. Lenalidomide, bortezomib, and dexamethasone with transplantation for myeloma. N Engl J Med. 2017;376(14):1311–20. doi: 10.1056/NEJMoa1611750.

  8. Attal M, Harousseau JL, Stoppa AM, et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Francais du Myelome. N Engl J Med. 1996;335(2):91–7.

  9. Palumbo A, Cavallo F, Gay F, et al. Autologous transplantation and maintenance therapy in multiple myeloma. N Engl J Med. 2014;371(10):895–905. doi: 10.1056/NEJMoa1402888.

  10. Thoennissen GB, Gorlich D, Bacher U, et al. Autologous stem cell transplantation in multiple myeloma in the era of novel drug induction: a retrospective single-center analysis. Acta Haematol. 2017;137(3):163–72. doi: 10.1159/000463534.

  11. Ozaki S, Harada T, Saitoh T, et al. Survival of multiple myeloma patients aged 65–70 years in the era of novel agents and autologous stem cell transplantation. A multicenter retrospective collaborative study of the Japanese Society of Myeloma and the European Myeloma Network. Acta Haematol. 2014;132(2):211–9. doi: 10.1159/000357394.

  12. Cavo M, Salwender H, Rosinol L, et al. Double vs single autologous stem cell transplantation after bortezomib-based induction regimens for multiple myeloma: an integrated analysis of patient-level data from phase III European studies. Blood. 2013;122(21):767.

  13. Cavo M, Beksac M, Dimopoulos M, et al. Intensification therapy with bortezomib-melphalan-prednisone versus autologous stem cell transplantation for newly diagnosed multiple myeloma: an intergroup, multicenter, phase III study of the European Myeloma Network (EMN02/HO95 MM trial). 2016;128(22):673.

  14. Sonneveld P, Beksac M, van der Holt B, et al. Consolidation followed by maintenance therapy versus maintenance alone in newly diagnosed, transplant eligible patients with multiple myeloma (MM): a randomized phase 3 study of the European Myeloma Network (EMN02/HO95 MM Trial). 2016;128(22):242.

  15. Stadtmauer EA, Pasquini MC, Blackwell B, et al. Comparison of autologous hematopoietic cell transplant (autoHCT), bortezomib, lenalidomide and dexamethasone (RVD) consolidation with lenalidomide maintenance (ACM), tandem autoHCT with lenalidomide maintenance (TAM), and autoHCT with lenalidomide maintenance (AM) for upfront treatment of patients with multiple myeloma (MM): primary results from the randomized phase III trial of the Blood and Marrow Transplant Clinical Trials Network (BMT CTN 0702 – StaMINA Trial). 2016;128(22):LBA-1.

  16. Yhim HY, Kim K, Kim JS, et al. Matched-pair analysis to compare the outcomes of a second salvage auto-SCT to systemic chemotherapy alone in patients with multiple myeloma who relapsed after front-line auto-SCT. Bone Marrow Transplant. 2013;48(3):425–32. doi: 10.1038/bmt.2012.164.

  17. Olin RL, Vogl DT, Porter DL, et al. Second auto-SCT is safe and effective salvage therapy for relapsed multiple myeloma. Bone Marrow Transplant. 2009;43(5): 417–22. doi: 10.1038/bmt.2008.334.

  18. Abbi KKS, Zheng J, Devlin SM, et al. Second autologous stem cell transplant: an effective therapy for relapsed multiple myeloma. Biol Blood Marrow Transplant. 2015;21(3):468–72. doi: 10.1016/j.bbmt.2014.11.677.

  19. Cook G, Williams C, Brown JM, et al. High-dose chemotherapy plus autologous stem-cell transplantation as consolidation therapy in patients with relapsed multiple myeloma after previous autologous stem-cell transplantation (NCRI Myeloma X Relapse [Intensive trial]): a randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15(8):874–85. doi: 10.1016/S1470-2045(14)70245-1.

  20. Benson DM, Panzner K, Hamadani M, et al. Effects of induction with novel agents versus conventional chemotherapy on mobilization and autologous stem cell transplant outcomes in multiple myeloma. Leuk Lymphoma. 2010;51(2):243–51. doi: 10.3109/10428190903480728.

  21. Kumar SK, Lacy MQ, Dispenzieri A, et al. Early versus delayed autologous transplantation following IMiD-based induction therapy in patients with newly diagnosed multiple myeloma. Cancer. 2012;118(6):1585–92. doi: 10.1002/cncr.26422.

  22. Ashcroft J, Judge D, Dhanasiri S, et al. Chart review across EU5 in MM post-ASCT patients. Int J Hematol Oncol. 2018;7(1):IJH05. doi: 10.2217/ijh-2018-0004.

  23. McCarthy PL, Holstein SA, Petrucci MT, et al. Lenalidomide maintenance after autologous stem-cell transplantation in newly diagnosed multiple myeloma: a meta-analysis. J Clin Oncol. 2017;35(29):3279–89. doi: 10.1200/JCO.2017.72.6679.

  24. Kumar S, Lacy MQ, Dispenzieri A, et al. High-dose therapy and autologous stem cell transplantation for multiple myeloma poorly responsive to initial therapy. Bone Marrow Transplant. 2004;34(2):161–7. doi: 10.1038/sj.bmt.1704545.

  25. Kim JS, Kim K, Cheong JW, et al. Complete remission status before autologous stem cell transplantation is an important prognostic factor in patients with multiple myeloma undergoing upfront single autologous transplantation. Biol Blood Marrow Transplant. 2009;15(4):463–70. doi: 10.1016/j.bbmt.2008.12.512.

  26. Gertz MA, Kumar S, Lacy MQ, et al. Stem cell transplantation in multiple myeloma: impact of response failure with thalidomide or lenalidomide induction. Blood. 2010;115(12):2348–53. doi: 10.1182/blood-2009-07-235531.

  27. Грицаев С.В., Кузяева А.А., Бессмельцев С.С. Отдельные аспекты аутологичной трансплантации гемопоэтических стволовых клеток при множественной миеломе. Клиническая онкогематология. 2017;10(1):7–12. doi: 21320/2500-2139-2017-10-1-7-12.

    [Gritsaev SV, Kuzyaeva AA, Bessmeltsev SS. Certain Aspects of Autologous Hematopoietic Stem Cell Transplantation in Patients with Multiple Myeloma. Clinical oncohematology. 2017;10(1):7–12. doi: 10.21320/2500-2139-2017-10-1-7-12. (In Russ)]

  28. Musso M, Messina G, Marcacci G, et al. High-dose melphalan plus thiotepa as conditioning regimen before second autologous stem cell transplantation for “de novo” multiple myeloma patients: a phase II study. Biol Blood Marrow Transplant. 2015;21(11):1932–8. doi: 10.1016/j.bbmt.2015.06.011.

  29. Kumar S, Paiva B, Anderson KC, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17(8):e328–46. doi: 10.1016/S1470-2045(16)30206-6.

  30. Schiffman KS, Bensinger WI, Appelbaum FR, et al. Phase II study of high-dose busulfan, melphalan and thiotepa with autologous peripheral blood stem cell support in patients with malignant disease. Bone Marrow Transplant. 1996;17(6):943–50.

  31. Zaid AB, Abdul-Hai A, Grotto I, et al. Autologous transplant in multiple myeloma with an augmented conditioning protocol. Leuk Lymphoma. 2013;54(11):2480–4. doi: 10.3109/10428194.2013.782608.

  32. Anagnostopoulos A, Aleman A, Ayers G, et al. Comparison of high-dose melphalan with a more intensive regimen of thiotepa, busulfan, and cyclophosphamide for patients with multiple myeloma. Cancer. 2004;100(12):2607–12. doi: 10.1002/cncr.20294.

  33. Hari P, Reece DE, Randhawa J, et al. Final outcomes of escalated melphalan 280 mg/m2 with amifostine cytoprotection followed autologous hematopoietic stem cell transplantation for multiple myeloma: high CR and VGPR rates do not translate into improved survival. Bone Marrow Transplant. 2019;54(2):293–9. doi: 10.1038/s41409-018-0261-y.

  34. Auner HW, Iacobelli S, Sbianchi G, et al. Melphalan 140 mg/m2 or 200 mg/m2 for autologous transplantation in myeloma: results from the collaboration to collect autologous transplant outcomes in lymphoma and myeloma (CALM) study. A report by the EBMT Chronic Malignancies Working Party. Haematologica. 2018;103(3):514–21. doi: 10.3324/haematol.2017.181339.

  35. Dimopoulos M, Wang M, Maisnar V, et al. Response and progression-free survival according to planned treatment duration in patients with relapsed multiple myeloma treated with carfilzomib, lenalidomide, and dexamethasone (KRd) versus lenalidomide and dexamethasone (Rd) in the phase III ASPIRE study. J Hematol Oncol. 2018;11(1):49. doi: 10.1186/s13045-018-0583-7.

  36. Costa LJ, Landau HJ, Chhabra S, et al. Phase 1/2 trial of carfilzomib plus high-dose melphalan preparative regimen for salvage autologous hematopoietic cell transplantation followed by maintenance carfilzomib in patients with relapsed/refractory multiple myeloma. Biol Blood Marrow Transplant. 2018;24(7):1379–85. doi: 10.1016/j.bbmt.2018.01.036.

Применение ибрутиниба при рефрактерном течении хронического лимфолейкоза и у пациентов группы высокого риска

Н.В. Куркина1,2, Е.А. Репина1, Н.Н. Машнина2

1 ФГБОУ ВО «Национальный исследовательский Мордовский государственный университет им. Н.П. Огарева», ул. Большевистская, д. 68, Саранск, Республика Мордовия, Российская Федерация, 430032

2 ГБУЗ РМ «Республиканская клиническая больница № 4», ул. Ульянова, д. 32, Саранск, Республика Мордовия, Российская Федерация, 430032

Для переписки: Надежда Викторовна Куркина, канд. мед. наук, ул. Большевистская, д. 68, Саранск, Республика Мордовия, Российская Федерация, 430032; e-mail: nadya.kurckina@yandex.ru

Для цитирования: Куркина Н.В., Репина Е.А., Машнина Н.Н. Применение ибрутиниба при рефрактерном течении хронического лимфолейкоза и у пациентов группы высокого риска. Клиническая онкогематология. 2019;12(3):278–81.

doi: 10.21320/2500-2139-2019-12-3-278-281


РЕФЕРАТ

Несмотря на успехи иммунохимиотерапии хронического лимфолейкоза, существуют определенные трудности подбора терапии у пациентов с рефрактерным течением заболевания, аутоиммунными гемолитическими осложнениями, а также в группах высокого риска с наличием цитогенетических изменений. Применение препарата из группы ингибиторов тирозинкиназы Брутона — ибрутиниба — позволяет преодолеть резистентность к противоопухолевому лечению без ухудшения качества жизни пациентов.

Ключевые слова: хронический лимфолейкоз, иммунохимиотерапия, ибрутиниб, рефрактерность, рецидив.

Получено: 21 января 2018 г.

Принято в печать: 10 мая 2019 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Zenz T, Gribben JG, Hallek M, et al. Risk categories and refractory CLL in the era of chemoimmunotherapy. Blood. 2012;119(18):4101. doi: 10.1182/blood-2011-11-312421.

  2. Никитин Е.А., Судариков А.Б. Хронический лимфолейкоз высокого риска: история, определение, диагностика и лечение. Клиническая онкогематология. 2013;6(1):59–67.

    [Nikitin EA, Sudarikov AB. High­risk chronic lymphocytic leukemia: history, definition, diagnosis, and management. Klinicheskaya onkogematologiya. 2013;6(1):59–67. (In Russ)]

  3. Byrd JС, Furman RR, Coutre SE, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369(1):32–42. doi: 10.1056/nejmoa1215637.

  4. Kil LP, de Bruijn MJ, van Hulst JA, et al. Bruton’s tyrosine kinase mediated signaling enhances leukemogenesis in a mouse model for chronic lymphocytic leukemia. Am J Blood Res. 2013;3(1):71–83.

  5. Cheson BD, Byrd JC, Rai KR, et al. Novel targeted agents and the need to refine clinical end points in chronic lymphocytic leukemia. J Clin Oncol. 2012;30(23):2820–2. doi: 10.1200/jco.2012.43.3748.

  6. Byrd JС, Furman RR, Coutre SE, et al. Three-year follow-up of treatment-naive and previously treated patients with CLL and SLL receiving single-agent ibrutinib. Blood. 2015;125(16):2497–506. doi: 10.1182/blood-2014-10-606038.

  7. Имбрувика® (инструкция по медицинскому применению). Джонсон & Джонсон (Россия). Доступно по: https://www.vidal.ru/drugs/imbruvica Ссылка активна на 21.01.2019.

    [Imbruvica® (package insert). Johnson & Johnson (Russia). Available from: https://www.vidal.ru/drugs/imbruvica__43861. (accessed 21.01.2019) (In Russ)]

  8. Chavez J, Sahakian E, Pinilla-Ibarz J. Ibrutinib: an evidence-based review of its potential in the treatment of advanced chronic lymphocytic leukemia. Core Evid. 2013;8:37–45. doi: 10.2147/CE.S34068.

  9. Программное лечение заболеваний системы крови: сборник алгоритмов диагностики и протоколов лечения заболеваний системы крови. Под ред. В.Г. Савченко. М.: Практика, 2012. 1056 с.

    [Savchenko VG, ed. Programmnoe lechenie zabolevanii sistemy krovi: sbornik algoritmov diagnostiki i protokolov lecheniya zabolevanii sistemy krovi. (Program treatment of blood system diseases: collection of diagnostic algorithms and treatment protocols for blood system diseases.) Moscow: Praktika Publ.; 1056 p. (In Russ)]

Реаранжировки генов иммуноглобулинов в опухолевых клетках у пациентов c первичной медиастинальной (тимической) В-крупноклеточной лимфомой

Я.К. Мангасарова, Ю.В. Сидорова, А.У. Магомедова, Б.В. Бидерман, Е.Е. Никулина, А.Б. Судариков, А.М. Ковригина, С.К. Кравченко

ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167

Для переписки: Яна Константиновна Мангасарова, канд. мед. наук, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167; тел.: +7(926)395-82-52; e-mail: v.k.jana@mail.ru

Для цитирования: Мангасарова Я.К., Сидорова Ю.В., Магомедова А.У. Реаранжировки генов иммуноглобулинов в опухолевых клетках у пациентов c первичной медиастинальной (тимической) В-крупноклеточной лимфомой. Клиническая онкогематология. 2019;12(3):271–7.

doi: 10.21320/2500-2139-2019-12-3-271-277


РЕФЕРАТ

Актуальность. Первичная медиастинальная (тимическая) В-крупноклеточная лимфома (ПМВКЛ) — это злокачественная опухоль, субстратом которой являются крупные атипичные лимфоидные клетки, экспрессирующие маркеры постгерминальной дифференцировки. Реаранжировки генов иммуноглобулинов при ПМВКЛ выявляются в 30–65 % случаев. При этом молекулы иммуноглобулинов не экспрессируются ни на поверхности, ни в цитоплазме опухолевых клеток.

Цель. Оценить частоту В-клеточной клональности по реаранжировкам генов тяжелой/легких цепей иммуноглобулинов; определить стабильность реаранжировок при развитии рецидивов заболевания; изучить спектр реаранжировок и клональную связь с первичной опухолью при метахронном возникновении медиастинальной лимфомы серой зоны.

Материалы и методы. С целью оценить реаранжировки генов тяжелой/легких цепей иммуноглобулинов был выполнен молекулярный анализ 29 первичных биоптатов опухоли и 4 образцов ткани с верифицированными гистологически и иммуногистохимически рецидивами заболевания или метахронным развитием лимфом.

Результаты. В 16 (55,2 %) из 29 случаев выявлена перестройка генов тяжелой цепи иммуноглобулинов, в 7 (24,1 %) — перестройка генов легких цепей, в 6 (20,7 %) — реаранжировок генов тяжелой/легких цепей иммуноглобулинов не обнаружено. На основании анализа генов иммуноглобулинов у 2 пациентов при развитии раннего рецидива заболевания определялся опухолевый клон, идентичный выявленному в дебюте заболевания. У 2 больных, достигших полной ремиссии, констатировано метахронное развитие медиастинальной лимфомы серой зоны, а молекулярно-генетическое исследование выявило смену/исчезновение исходных клональных реаранжировок генов иммуноглобулинов.

Заключение. Общая частота обнаружения В-клеточной клональности при ПМВКЛ составила 79,3 %. Молекулярно-генетические исследования позволяли подтвердить сохранение исходных клональных реаранжировок генов иммуноглобулинов при развитии ранних рецидивов заболевания и опровергнуть клональное родство опухоли при метахронном развитии медиастинальной лимфомы серой зоны.

Ключевые слова: первичная медиастинальная (тимическая) В-крупноклеточная лимфома, реаранжировка генов тяжелой/легких цепей иммуноглобулинов, полимеразная цепная реакция, метахронное развитие лимфомы.

Получено: 2 ноября 2018 г.

Принято в печать: 29 мая 2019 г.

Читать статью в PDF 


ЛИТЕРАТУРА

  1. Evans PA, Pott Ch, Groenen PJ, et al. Significantly improved PCR-based clonality testing in B-cell malignancies by use of multiple immunoglobulin gene targets. Report of the BIOMED-2 Concerted Action BHM4-CT98-3936. Leukemia. 2007;21(2):207–14. doi: 10.1038/sj.leu.2404479.

  2. Мангасарова Я.К., Магомедова А.У., Ковригина А.М. и др. Первичная медиастинальная (тимическая) В-крупноклеточная лимфома: диагностика отдаленных экстрамедиастинальных поражений и возможности лечения. Клиническая онкогематология. 2018;11(3):220–6. doi: 21320/2500-2139-2018-11-3-220-226.

    [Mangasarova YaK, Magomedova AU, Kovrigina AM, et al. Primary Mediastinal (Thymic) Large B-Cell Lymphoma: Diagnostics of Extramediastinal Lesions and Treatment Opportunities. Clinical oncohematology. 2018;11(3):220–6. doi: 10.21320/2500-2139-2018-11-3-220-226. (In Russ)]

  3. Harris NL; The International Lymphoma Study Group. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Curr Diagn Pathol. 1995;2(1):58–9. doi: 10.1016/S0968-6053(00)80051-4.

  4. Rosenwald A, Wright G, Leroy K, et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med. 2003;198(6):851–62. doi: 10.1084/jem.20031074.

  5. Pileri SA, Zinzani PL, Gaidano G, et al. Pathobiology of primary mediastinal B-cell lymphoma. Leuk Lymphoma. 2003;44(Suppl 3):S21–6. doi: 10.1080/10428190310001623810.

  6. Loddenkemper C, Anagnostopoulos I, Hummel M, et al. Differential Emu enhancer activity and expression of BOB.1/OBF.1, Oct2, PU.1, and immunoglobulin in reactive B-cell populations, B-cell non-Hodgkin lymphomas, and Hodgkin lymphomas. J Pathol. 2004;202(1):60–9. doi: 10.1002/path.1485.

  7. De Leval L, Ferry JA, Falini B, et al. Expression of bcl-6 and CD10 in primary Mediastinal large B-cell lymphoma: evidence for derivation from germinal center B cells? Am J Surg Pathol. 2001;25(10):1277–82. doi: 10.1097/00000478-200110000-00008.

  8. Rosenquist R, Lindstrom A, Holmberg D, et al. V(H) gene family utilization in different B-cell lymphoma subgroups. Eur J Haematol. 1999;62(2):123–8. doi: 10.1111/j.1600-0609.1999.tb01732.x.

  9. Zhong DR, Ling Q, Shi XH, et al. Comparative study between primary mediastinal B-cell lymphoma and non-mediastinal diffuse large B-cell lymphoma by immunoglobulin gene rearrangement and Epstein-Barr virus infection detection. J Hematop. 2009;2(1):45–9. doi: 1007/s12308-009-0022-3.

  10. Leithauser F, Bauerle M, Quang Huynh M, et al. Isotype-switched immunoglobulin genes with a high load of somatic hypermutation and lack of ongoing mutational activity are prevalent in mediastinal B-cell lymphoma. 2001;98(9):2762–70; doi: 10.1182/blood.v98.9.2762.

  11. Burack WR, Laughlin TS, Friedberg JW, et al. PCR assays detect B-lymphocyte clonality in formalin-fixed, paraffin-embedded specimens of classical Hodgkin lymphoma without microdissection. Am J Clin Pathol. 2010;134(1):104–11. doi: 10.1309/AJCPK6SBE0XOODHB.

  12. Evens AM, Kanakry JA, Sehn LH, et al. Gray zone lymphoma with features intermediate between classical Hodgkin lymphoma and diffuse large B-cell lymphoma: characteristics, outcomes, and prognostication among a large multicenter cohort. Am J Hematol. 2015;90(9):778–83. doi: 10.1002/ajh.24082.

  13. Eberle FC, Salaverria I, Steidl C, et al. Gray zone lymphoma: chromosomal aberrations with immunophenotypic and clinical correlations. Mod Pathol. 2011;24(12):1586–97. doi: 10.1038/modpathol.2011.116.

  14. Dongen JJ, Langerak AW, Bruggemann M, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2003;17(12):2257–317. doi: 10.1038/sj.leu.2403202.

Мутации гена TP53 в опухолевых клетках у пациентов с агрессивными В-клеточными лимфомами

А.Е. Мисюрина1, С.К. Кравченко1, В.А. Мисюрин2, А.М. Ковригина1, А.У. Магомедова1, Е.А. Барях3, Ф.Э. Бабаева1, А.В. Мисюрин4

1 ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167

2 ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Москва, Российская Федерация, 115478

3 ГБУЗ «Городская клиническая больница № 52 ДЗМ», ул. Пехотная, д. 3, Москва, Российская Федерация, 123182

4 ООО «ГеноТехнология», ул. 800-летия Москвы, д. 11, Москва, Российская Федерация, 127247

Для переписки: Анна Евгеньевна Мисюрина, канд. мед. наук, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167; тел.: +7(909)637-32-49; e-mail: anna.lukina1@gmail.com

Для цитирования: Мисюрина А.Е., Кравченко С.К., Мисюрин В.А. и др. Мутации гена TP53 в опухолевых клетках у пациентов с агрессивными В-клеточными лимфомами. Клиническая онкогематология. 2019;12(3):263–70.

doi: 10.21320/2500-2139-2019-12-3-263-270


РЕФЕРАТ

Актуальность. Наличие мутаций в гене TP53 затрудняет апоптоз в клетках и приводит к возникновению в них дополнительных онкогенных событий, способствующих прогрессированию опухоли.

Цель. Оценить частоту мутаций гена TP53 у пациентов с В-клеточными лимфомами высокой степени злокачественности «double-hit» (HGBL DH) и неуточненной (HGBL NOS); проанализировать связь с прогнозом заболевания.

Материалы и методы. Проанализирован ретроспективный материал из архива 10 больных с HGBL DH и 26 — с HGBL NOS. Медиана наблюдения составила 26,5 мес. (диапазон 0,6–160,9 мес.). Отбор выполняли по принципу наличия доступного биологического материала (парафиновые блоки) для проведения секвенирования по Сэнгеру последовательности гена TP53 с 5-го по 8-й экзон (кодирующих ДНК-связывающий домен гена TP53). Всем больным выполняли FISH-исследование опухоли с целью выявить транслокации с участием локусов генов cMYC/8q24, BCL2/18q21 и BCL6/3q27. Для анализа различий между группами использовались тесты χ2 и Манна—Уитни. Для оценки влияния молекулярных маркеров на прогноз заболевания проведен однофакторный событийный анализ (критерий Каплана—Мейера, лог-ранговый тест) и многофакторный регрессионный анализ Кокса.

Результаты. Мутации гена TP53 в клетках лимфомы выявлены у 13 (36 %) из 36 больных, 10 (77 %) из 13 — патогенные. У 8 из 10 больных с мутациями TP53 обнаружена транслокация гена cMYC/8q24. Группы с диким (TP53-WT) и мутантным (TP53-MUT) типами гена TP53 были сопоставимы по основным клиническим характеристикам. Больные с TP53-MUT в опухолевых клетках имели худшие показатели 3-летней общей выживаемости (ОВ) в сравнении с группой без TP53-MUT (30 vs 73 %; = 0,026) и более высокую вероятность прогрессирования заболевания в течение 3 лет (66 vs 15 %; = 0,004). При многофакторном анализе значимым фактором в отношении ОВ было наличие мутации гена TP53 (= 0,006). Вероятность развития рецидивов/прогрессирования повышалась при сочетании мутаций гена TP53 и транслокации с участием локуса гена cMYC (= 0,0003).

Заключение. Сочетание транслокации с участием гена cMYC/8q24 и мутации гена TP53 в клетках опухоли при HGBL DH и HGBL NOS позволяет стратифицировать больных на группы риска рецидивов/прогрессирования лимфомы.

Ключевые слова: B-клеточная лимфома высокой степени злокачественности «double-hit», B-клеточная лимфома высокой степени злокачественности, неуточненная, мутация TP53 в опухолевых клетках, транслокация с участием локуса гена cMYC.

Получено: 25 января 2019 г.

Принято в печать: 3 июня 2019 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Matlashewski G, Lamb P, Pim D, et al. Isolation and characterization of a human p53 cDNA clone: expression of the human p53 gene. EMBO J. 1984;3(13):3257–62. doi: 10.1002/j.1460-2075.1984.tb02287.x.

  2. Kern SE, Kinzler KW, Bruskin A, et al. Identification of p53 as a sequence-specific DNA-binding protein. Science. 1991;252(5013):1708–11. doi: 10.1126/science.2047879.

  3. McBride OW, Merry D, Givol D. The gene for human p53 cellular tumor antigen is located on chromosome 17 short arm (17p13). Proc Natl Acad Sci USA. 1986;83(1):130–4. doi: 10.1073/pnas.83.1.130.

  4. Levine AJ, Oren M. The first 30 years of p53: growing ever more complex. Nat Rev Cancer. 2009;9(10):749–58. doi: 10.1038/nrc2723.

  5. Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell. 2009;137(3):413–31. doi: 10.1016/j.cell.2009.04.037.

  6. Eischen CM, Weber JD, Roussel MF, et al. Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev. 1999;13(20):2658–69. doi: 10.1101/gad.13.20.2658.

  7. Donehower LA, Harvey M, Slagle BL, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 1992;356(6366):215–21. doi: 10.1038/356215a0.

  8. Gudkov AV, Komarova EA. The role of p53 in determining sensitivity to radiotherapy. Nat Rev Cancer. 2003;3(2):117–29. doi: 10.1038/nrc992.

  9. Xu-Monette ZY, Medeiros LJ, Li Y, et al. Dysfunction of the TP53 tumor suppressor gene in lymphoid malignancies. Blood. 2012;119(16):3668–83. doi: 10.1182/blood-2011-11-366062.

  10. Mihara M, Erster S, Zaika A, et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell. 2003;11(3):577–90. doi: 10.1016/s1097-2765(03)00050-9.

  11. Petitjean A, Mathe E, Kato S, et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat. 2007;28(6):622–9. doi: 10.1002/humu.20495.

  12. Young KH, Weisenburger DD, Dave BJ, et al. Mutations in the DNA-binding codons of TP53, which are associated with decreased expression of TRAIL receptor-2, predict for poor survival in diffuse large B-cell lymphoma. Blood. 2007;110(13):4396–405. doi: 10.1182/blood-2007-02-072082.

  13. Haupt S, Raghu D, Haupt Y. Mutant p53 drives cancer by subverting multiple tumor suppression pathways. Front Oncol. 2016;6:12. doi: 10.3389/fonc.2016.00012.

  14. Soussi T, Beroud C. Assessing TP53 status in human tumours to evaluate clinical outcome. Nat Rev Cancer. 2001;1(3):233–9. doi: 10.1038/35106009.

  15. Soussi T, Lozano G. P53 mutation heterogeneity in cancer. Biochem Biophys Res Commun. 2005;331(3):834–42. doi: 10.1016/j.bbrc.2005.03.190.

  16. Kato S, Han SY, Liu W, et al. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci USA. 2003;100(14):8424–9. doi: 10.1073/pnas.1431692100.

  17. Xu-Monette ZY, Young KH. The TP53 tumor suppressor and autophagy in malignant lymphoma. Autophagy. 2012;8(5):842–5. doi: 10.4161/auto.19703.

  18. Vousden KH, Prives C. P53 and prognosis: new insights and further complexity. Cell. 2005;120(1):7–10. doi: 10.1016/s0092-8674(04)01252-8.

  19. Young KH, Leroy K, Moller MB, et al. Structural profiles of TP53 gene mutations predict clinical outcome in diffuse large B-cell lymphoma: an international collaborative study. Blood. 2008;112(8):3088–98. doi: 10.1182/blood-2008-01-129783.

  20. Joerger AC, Ang HC, Fersht AR. Structural basis for understanding oncogenic p53 mutations and designing rescue drugs. Proc Natl Acad Sci USA. 2006;103(41):15056–61. doi: 10.1073/pnas.0607286103.

  21. Joerger AC, Fersht AR. Structural biology of the tumor suppressor p53. Annu Rev Biochem. 2008;77(1):557–82. doi: 10.1146/annurev.biochem.77.060806.091238.

  22. Peroja P, Pedersen M, Mantere T, et al. Mutation of TP53, translocation analysis and immunohistochemical expression of MYC, BCL-2 and BCL-6 in patients with DLBCL treated with R-CHOP. Sci Rep. 2018;8(1):14814. doi: 10.1038/s41598-018-33230-3.

  23. Clipson A, Barrans S, Zeng N, et al. The prognosis of MYC translocation positive diffuse large B-cell lymphoma depends on the second hit. J Pathol Clin Res. 2015;1(3):125–33. doi: 10.1002/cjp2.10.

  24. Aukema SM, Kreuz M, Kohler CW, et al. Biological characterization of adult MYC-translocation-positive mature B-cell lymphomas other than molecular Burkitt lymphoma. Haematologica. 2014;99(4):726–35. doi: 10.3324/haematol.2013.091827.

  25. Swerdlow SH, Campo E, Harris NL, et al. Classification of tumours of haematopoietic and lymphoid tissues. WHO classification of tumours. Revised 4th edition, Vol. 2. Lyon: IARC Press; 2017.

  26. Gebauer N, Bernard V, Gebauer W, et al. TP53 mutations are frequent events in double-hit B-cell lymphomas with MYC and BCL2 but not MYC and BCL6 translocations. Leuk Lymphoma. 2015;56(1):179–85. doi: 10.3109/10428194.2014.907896.

  27. Xu-Monette ZY, Wu L, Visco C, et al. Mutational profile and prognostic significance of TP53 in diffuse large B-cell lymphoma patients treated with R-CHOP: report from an International DLBCL Rituximab-CHOP Consortium Program Study. Blood. 2012;120(19):3986–96. doi: 10.1182/blood-2012-05-433334.

  28. Schiefer AI, Kornauth C, Simonitsch-Klupp I, et al. Impact of Single or Combined Genomic Alterations of TP53, MYC, and BCL2 on survival of patients with diffuse large B-cell lymphomas: A retrospective cohort study. Medicine (Baltimore). 2015;94(52):e2388. doi: 10.1097/MD.0000000000002388.

  29. Hu S, Xu-Monette ZY, Tzankov A, et al. MYC/BCL2 protein coexpression contributes to the inferior survival of activated B-cell subtype of diffuse large B-cell lymphoma and demonstrates high-risk gene expression signatures: a report from the international DLBCL rituximab-CHOP consortium program. Blood. 2013;121(20):4021–31. doi: 10.1182/blood-2012-10-460063.

  30. Schuster C, Berger A, Hoelzl MA, et al. The cooperating mutation or “second hit” determines the immunologic visibility toward MYC-induced murine lymphomas. Blood. 2011;118(17):4635–45. doi: 10.1182/blood-2010-10-313098.

  31. Tzankov A, Xu-Monette ZY, Gerhard M, et al. Rearrangements of MYC gene facilitate risk stratification in diffuse large B-cell lymphoma patients treated with rituximab-CHOP. Mod Pathol. 2014;27(7):958–71. doi: 10.1038/modpathol.2013.214.

  32. Moll UM, Wolff S, Speidel D, Deppert W. Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol. 2005;17(6):631–6. doi: 10.1016/j.ceb.2005.09.007.

  33. MacLean KH, Keller UB, Rodriguez-Galindo C, et al. c-Myc augments gamma irradiation-induced apoptosis by suppressing Bcl-XL. Mol Cell Biol 2003;23(20):7256–70. doi: 10.1128/mcb.23.20.7256-7270.2003.

  34. Adams JM, Harris AW, Pinkert CA, et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature. 1985;318(6046):533–8. doi: 10.1038/318533a0.

Первичные лимфомы костей: долгосрочные результаты проспективного одноцентрового исследования

А.К. Смольянинова, Н.Г. Габеева, В.Е. Мамонов, С.А. Татарникова, Л.Г. Горенкова, Д.С. Бадмаджапова, А.М. Ковригина, Э.Г. Гемджян, Е.Е. Звонков

ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167

Для переписки: Анна Константиновна Смольянинова, канд. мед. наук, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167; тел.: +7(495)612-23-61, +7(926)912-31-16; e-mail: annmo8@mail.ru

Для цитирования: Смольянинова А.К., Габеева Н.Г., Мамонов В.Е. и др. Первичные лимфомы костей: долгосрочные результаты проспективного одноцентрового исследования. Клиническая онкогематология. 2019;12 (3):247–62.

doi: 10.21320/2500-2139-2019-12-3-247-262


РЕФЕРАТ

Актуальность. Первичные лимфомы костей (ПЛК) относятся к редким экстранодальным лимфатическим опухолям. Более чем в 90 % наблюдений они представлены диффузной В-крупноклеточной лимфомой (ДВКЛ). Эффективность стандартной иммунохимиотерапии R-CHOP при локальной (IЕ) стадии ПЛК составляет более 90 %. В то же время при наличии таких факторов неблагоприятного прогноза (ФНП), как множественное поражение костей (IVЕ стадия), повышение активности лактатдегидрогеназы (ЛДГ), В-симптомы, большой размер опухоли, отмечается снижение эффективности R-CHOP. Оптимального режима противоопухолевого лечения для больных ПЛК с ФНП в настоящее время нет. Мы предлагаем у данной категории пациентов проводить первичную интенсифицированную многокомпонентную химиотерапию.

Цель. Оценить долгосрочные результаты проспективного одноцентрового исследования по применению высокодозной программы mNHL-BFM-90 у больных с первичной ДВКЛ костей и ФНП.

Материалы и методы. В исследование включено 33 пациента с первичной ДВКЛ костей, наблюдавшихся в ФГБУ «НМИЦ гематологии» с 2006 по 2018 г. Медиана возраста больных составила 44 года (диапазон 16–78 лет). Оценивались основные клинические, лабораторные, рентгенологические и МР-характеристики опухоли, показатели выживаемости, факторы прогноза.

Результаты. ФНП выявлены у 29 (88 %) пациентов, из них распространенная (˃ IE) стадия была у 20 (61 %) больных, повышение активности ЛДГ — у 20 (59 %), В-симптомы — у 15 (45 %), большой размер опухоли — у 23 (71 %). Высокодозное противоопухолевое лечение по программе mNHL-BFM-90 проведено 27 из 33 больных. Общая и выживаемость без прогрессирования за 5 лет составили 92 %. Ни один из ФНП не оказал статистически значимого влияния на показатели выживаемости.

Заключение. Применение высокодозной программы mNHL-BFM-90 при ПЛК, характеризующихся неблагоприятным прогнозом, позволяет достичь длительные ремиссии у 92 % пациентов. Мы рекомендуем mNHL-BFM-90 в качестве терапии выбора у прогностически неблагоприятной группы больных с ПЛК.

Ключевые слова: первичная лимфома костей, диффузная В-крупноклеточная лимфома, высокодозная интенсифицированная многокомпонентная программа mNHL-BFM-90.

Получено: 25 января 2019 г.

Принято в печать: 12 мая 2019 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Matikas A, Briasoulis A, Tzannou I, et al. Primary bone lymphoma: a retrospective analysis of 22 patients treated in a single tertiary center. Acta Haematol. 2013;130(4):291–6. doi: 10.1159/000351051.

  2. Bacci G, Jaffe N, Emiliani E, et al. Therapy for primary non-Hodgkin’s lymphoma of bone and a comparison of results with Ewing’s sarcoma. Ten year’s experience at the Istituto Ortopedico Rizzoli. Cancer. 1986;57(8):1468–72. doi: 10.1002/1097-0142(19860415)57:8<1468::aid-cncr2820570806>3.0.co;2-0.

  3. Fidias P, Spiro I, Scobczak ML, et al. Long-term results of combined modality therapy in primary bone lymphomas. Int J Radiat Oncol Biol Phys. 1999;45(5):1213–8. doi: 10.1016/s0360-3016(99)00305-3.

  4. Lewis VO, Primus G, Anastasi J, et al. Oncologic outcomes of primary lymphomas of bone in adults. Clin Orthop Rel Res. 2003;415:90–7. doi: 10.1097/01.blo.0000093901.12372.ad.

  5. Ostrowski ML, Unni KK, Banks PM, et al. Malignant Lymphoma of Bone. Cancer. 1986;58(12):2646–55. doi: 10.1002/1097-0142(19861215)58:12<2646::aid-cncr2820581217>3.0.co;2-u.

  6. Ramadan KM, Shenkier T, Sehn LH, et al. A clinicopathological retrospective study of 131 patients with primary bone lymphoma: a population-based study of successively treated cohorts from the British Columbia Cancer Agency. Ann Oncol. 2006;18(1):129–35. doi: 10.1093/annonc/mdl329.

  7. Ueda T, Aozasa K, Ohsawa M, et al. Malignant lymphomas of bone in Japan. Cancer. 1989;64(11):2387–92. doi: 10.1002/1097-0142(19891201)64:11<2387::aid-cncr2820641132>3.0.co;2-1.

  8. Звонков Е.Е., Красильникова Б.Б., Махиня В.А. и др. Первый опыт применения модифицированной программы NHL-BFM-90 у взрослых больных первичной диффузной В-крупноклеточной лимфосаркомой желудка с неблагоприятным прогнозом. Терапевтический архив. 2006;78(7):38–46.

    [Zvonkov EE, Krasil’nikova BB, Makhinya VА, et al. Pilot experience with the modified program NHLBFM90 in adult patients with primary diffuse large В-cell gastric lymphosarcoma with unfavorable prognosis. Terapevticheskii arkhiv. 2006;78(7):38–46. (In Russ)]

  9. Кравченко С.К., Барях Е.А., Замятина В.И. и др. Высокодозная терапия лимфомы Беркитта у больных старше 40 лет. Терапевтический архив. 2008;80(7):9–18.

    [Kravchenko SK, Baryakh EA, Zamyatina VI, et al. Highdose therapy of Berkitt’s lymphoma in patients over 40 years of age. Terapevticheskii arkhiv. 2008;80(7):9–18. (In Russ)]

  10. Магомедова А.У., Кравченко С.К., Кременецкая А.М. и др. Модифицированная программа NHL-BFM-90 для лечения больных диффузной В-крупноклеточной лимфосаркомой. Терапевтический архив. 2006;78(10):44–7.

    [Magomedova AU, Kravchenko SK, Kremenetskaya AM, et al. The modified program NHL-BFM-90 in the treatment of patients with diffuse large B-cell lymphosarcoma. Terapevticheskii arkhiv. 2006;78(10):44–7. (In Russ)]

  11. Горенкова Л.Г., Кравченко С.К., Мисюрин А.В. и др. Клиническая и молекулярная оценки эффективности высокодозной химиотерапии при анаплазированной Т-крупноклеточной АЛК-позитивной лимфоме у взрослых. Гематология и трансфузиология. 2012;57(3):43.

    [Gorenkova LG, Kravchenko SK, Misyurin AV, et al. Clinical and molecular evaluation of the efficacy of high-dose chemotherapy in adult patients with anaplastic large T-cell ALK-positive lymphoma. Gematologiya i transfuziologiya. 2012;57(3):43. (In Russ)]

  12. Морозова А.К., Звонков Е.Е., Кременецкая А.М. и др. Первый опыт применения модифицированной программы NHL-BFM-90 при лечении первичной диффузной B-крупноклеточной лимфосаркомы костей и мягких тканей с факторами неблагоприятного прогноза. Терапевтический архив. 2009;81(7):61–5.

    [Morozova AK, Zvonkov EE, Kremenetskaya AM, et al. Initial experience with using modified NHL-BFM-90 program in management of primary diffuse large B-cell lymphosarcoma of bones and soft tissues with unfavorable prognostic factors. Terapevticheskii arkhiv. 2009;81(7):61–5. (In Russ)]

  13. Морозова А.К., Звонков Е.Е., Мамонов В.Е. и др. Первичные лимфатические опухоли костей и мягких тканей: сравнительная оценка результатов лечения. Терапевтический архив. 2012;84(7):42–9.

    [Morozova AK, Zvonkov EE, Mamonov VE, et al. Primary lymphomas of bones and soft tissues: comparative assessment of treatment results. Terapevticheskii arkhiv. 2012;84(7):42–9. (In Russ)]

  14. Gill P, Wenger D, Inwards D. Primary lymphomas of bone. Clin Lymph Myel. 2005;6(2):140–2. doi: 10.3816/CLM.2005.n.041.

  15. Cheson BD, Horning SJ, Coiffier B, et al. Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. NCI Sponsored International Working Group. J Clin Oncol. 1999;17(4):1244. doi: 10.1200/JCO.1999.17.4.1244.

  16. Juweid ME, Wiseman GA, Vose JM, et al. Response assessment of aggressive non-Hodgkin’s lymphoma by integrated International Workshop Criteria and fluorine-18-fluorodeoxyglucose positron emission tomography. J Clin Oncol. 2005;23(21):4652–61. doi: 10.1200/JCO.2005.01.891.

  17. Cheson BD, Pfistner B, Juweid ME, et al. Revised response criteria for malignant lymphoma. J Clin Oncol. 2007; 25(5):579–86. doi: 10.1200/JCO.2006.09.2403.

  18. Juweid ME, Stroobants S, Hoekstra OS, et al. Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol. 2007;25(5):571–8. doi: 10.1200/JCO.2006.08.2305.

  19. Common Terminology Criteria for Adverse Events, version 3.0 (CTCAE). Published August 9, 2006. Available at: http://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/ctcaev3.pdf. (accessed 14.04.2019).

  20. Hans CP, Weisenburger DD, Greiner TC, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103(1):275–82. doi: 10.1182/blood-2003-05-1545.

  21. Messina C, Ferreri AJ, Govi S, et al. Clinical features, management and prognosis of multifocal primary bone lymphoma: a retrospective study of the international Extranodal Lymphoma Study Group (the IELSG 14 study). Br J Haematol. 2014;164(6):834–40. doi: 10.1111/bjh.12714.

  22. Reddy N, Greer JP. Primary bone lymphoma: a set of unique problems in management. Leuk 2009;51(1):1–2. doi: 10.3109/10428190903470877.

  23. Baar J, Burkes R, Bell R, et al. Primary Non-Hodgkin’s Lymphoma of Bone. A clinicopathologic study. Cancer. 1994;73(4):1194–9. doi: 10.1002/1097-0142(19940215)73:4<1194::aid-cncr2820730412>3.0.co;2-r.

  24. Bacci G, Ferraro A, Casadei R, et al. Primary lymphoma of bone: Long term results in patients treated with vincristine–adriamycin–cyclophosphamide and local radiation. J Chemother. 1991;3(3):189–93. doi: 10.1080/1120009x.1991.11739091.

  25. Jones D, Kraus MD, Dorfman DM. Lymphoma presenting as a solitary bone lesion. Am J Clin Pathol. 1999;111(2):171–8. doi: 10.1093/ajcp/111.2.171.

  26. Limb D, Dreghorn C, Murphy JK, Mannion R. Primary lymphoma of bone. Int Orthop. 1994;18(3):180–3. doi: 10.1007/bf00192476.

  27. Govi S, Christie D, Messina C, et al. The clinical features, management and prognostic effects of pathological fractures in a multicenter series of 373 patients with diffuse large B-cell lymphoma of the bone. Ann Oncol. 2013;25(1):176–81. doi: 10.1093/annonc/mdt482.

  28. Pilorge S, Harel S, Ribrag V, et al. Primary bone diffuse large B-cell lymphoma: a retrospective evaluation on 76 cases from French institutional and LYSA studies. Leuk Lymphoma. 2016;57(12):2820–6. doi: 10.1080/10428194.2016.1177180.

  29. Christie DR, Barton MB, Bryant G, et al. Osteolymphoma (primary bone lymphoma): An Australian review of 70 cases. Australasian Radiation Oncology Lymphoma Group (AROLG). Aust N Z J Med. 1999;29(2):214–9. doi: 10.1111/j.1445-5994.1999.tb00686.x.

  30. Santini D, Vincenzi B, Hannon RA, et al. Phase II trial evaluating the palliative benefit of second-line zoledronic acid in breast cancer patients with either a skeletal-related event or progressive bone metastases despite first-line bisphosphonate therapy. J Clin Oncol. 2006;24(30):4895–900. doi: 10.1200/JCO.2006.05.9212.

  31. Shoji H, Miller TR. Primary reticulum cell sarcoma of bone: Significance of clinical features upon the prognosis. Cancer. 1971;28(5):1234–44. doi: 10.1002/1097-0142(1971)28:5<1234::aid-cncr2820280522>3.0.co;2-l.

  32. Hayase E, Kurosawa M, Suzuki H, et al. Primary Bone Lymphoma: A Clinical Analysis of 17 Patients in a Single Institution. Acta Haematol. 2015;134(2):80–5. doi: 10.1159/000375437.

  33. Tao R, Allen PK, Rodriguez A, et al. Benefit of consolidative radiation therapy for primary bone diffuse large B-cell lymphoma. Int J Radiat Oncol Biol Phys. 2015;92(1):122–9. doi: 10.1016/j.ijrobp.2015.01.014.

  34. Ali SM, Demers LM, Leitzel K, et al. Baseline serum NTx levels are prognostic in metastatic breast cancer patients with bone-only metastasis. Ann Oncol. 2004;15(3):455–9. doi: 10.1093/annonc/mdh089.

  35. Doll C, Wulff B, Rossler J, et al. Primary B-cell lymphoma of bone in children. Eur J Pediatr. 2001;160(4):239–42. doi: 10.1007/s004310000711.

  36. Dosoretz DE, Murphy GF, Raymond AK, et al. Radiation Therapy for Primary Lymphoma of Bone. Cancer. 1983;51(1):44–6. doi: 10.1002/1097-0142(19830101)51:1<44::aid-cncr2820510111>3.0.co;2-d.

  37. Kransdorf MJ. Malignant soft-tissue tumors in a large referral population: distribution of diagnoses by age, sex, and location. Am J Roentgenol. 1995;164(1):129–34. doi: 10.2214/ajr.164.1.7998525.

  38. Wang CC. Treatment of primary reticulum-cell sarcoma of bone by radiation. N Engl J Med. 1968;278(24):1331–2. doi: 10.1056/NEJM196806132782407.

  39. Jacobs AJ, Michels R, Stein J, et al. Socioeconomic and demographic factors contributing to outcomes in patients with primary lymphoma of bone. J Bone Oncol. 2015;4(1):32–6. doi: 10.1016/j.jbo.2014.11.002.

  40. Dos Santos TM, Zumarraga JP, Reaes FM, et al. Primary bone lymphomas: retrospective analysis of 42 consecutive cases. Acta Ortop Bras. 2018;26(2):103–7. doi: 10.1590/1413-785220182602185549.

  41. Wu H, Zhang L, Shao M, Sokol L, et al. Prognostic Significance Of Soft Tissue Involvement, International Prognostic Index In Primary Bone Lymphoma: A Single Institutional Experience. Br J Haematol. 2014;166(1):60-8. doi: 10.1111/bjh.12841.

  42. Zhang HY, Zhu J, Song YQ, et al. Clinical characterization and outcome of primary bone lymphoma: a retrospective study of 61 Chinese patients. Sci Rep. 2016;6(1):28834. doi: 10.1038/srep28834.

  43. Alencar A, Pitcher D, Byrne G at al. Primary bone lymphoma – the University of Miami Experience. Leuk Lymphoma. 2009;51(1):39–49. doi. 10.3109/10428190903308007.

  44. Kim SY, Shin DY, Lee SS. Clinical characteristics and outcomes of primary bone lymphoma in Korea. Korean J Hematol. 2012;47(3): 213–8. doi: 10.5045/kjh.2012.47.3.213.

  45. Held G, Zeynalova S, Murawski N, et al. Impact of rituximab and radiotherapy on outcome of patients with aggressive B-cell lymphoma and skeletal involvement. J Clin Oncol. 2013;31(32):4115–22. doi: 10.1200/JCO.2012.48.0467.

  46. Zhu Y, Yue C, Wu B, et al. Clinical characteristics and outcomes of 31 patients with primary bone lymphoma. Nan Fang Yi Ke Da Xue Xue Bao. 2013;33(3):444–7.

  47. Barbieri E, Cammellin C, Mauro F et al. Primary Non-Hodgkin lymphoma of the bone: treatment and analysis of prognostic factors. Int J Radiat Oncol Biol Phys. 2004;59(3):760–4. doi: 10.1016/j.ijrobp.2003.11.020.

  48. Fairbanks RK, Bonner JA, Inwards CY, et al. Treatment stage 1E primary lymphoma of bone. Int J Radiat Oncol Biol Phys. 1994;28(2):363–72. doi. 10.1016/0360-3016(94)90059-0.

  49. Marshall DT, Amdur RJ, Scarborough MT, et al. Stage 1E primary non Hodgkin’s lymphoma of bone. Clin Orthop Rel Res. 2002;405:216–22. doi: 10.1097/00003086-200212000-00028.

  50. Remier RR, Chabner BA, Yong RC, et al. Lymphoma Presenting in Bone. Results of Histopathology, Staging, and Therapy. Ann Intern Med. 1977;87(1):50–5. doi: 10.7326/0003-4819-87-1-50.

  51. Singh Т, Satheesh С, Lakshmaiah С, et al. Primary bone lymphoma: A report of two cases and review of the literature. J Cancer Res Ther. 2010;6(3):296–8. doi: 10.4103/0973-1482.73366.

  52. Coley BL, Higinbotham NL, Groesbeck HP. Primary reliculum-cell sarcoma of bone. Radiology. 1950;55(5):641–58. doi: 10.1148/55.5.641.

  53. Francis KC, Higinbotham NL, Coley BL. Primary reticulum cell sarcoma of bone; report of 44 cases. Surg Gynecol Obstet. 1954;99(2):142–6.

  54. Badoo S, Sidhu GS. Primary Bone Lymphoma (PBL): Impact Of Novel Treatment On Need For Radiation Therapy (RT), a Population Based Study. Blood. 2013;122(21):3059.

  55. Гаврилина О.А., Звонков Е.Е., Паровичникова Е.Н. и др. Лечение больных диффузной В-крупноклеточной лимфомой с факторами неблагоприятного прогноза по протоколу R-DA-EPOCH/R-HMA: первые результаты российского пилотного многоцентрового исследования. Гематология и трансфузиология. 2016;61(1, прил. 1):38.

    [Gavrilina OA, Zvonkov EE, Parovichnikova EN, et al. Treatment of diffuse large B-cell lymphoma patients with poor prognosis factors using R-DA-EPOCH/R-HMA regimen: first results of the Russian pilot multi-center trial. Gematologiya i transfuziologiya. 2016;61(1, Suppl 1):38. (In Russ)]

  56. Meignan M, Barrington S, Itti E, et al. Report on the 4th international workshop on positron emission tomography in lymphoma held in Menton, France, 3–5 October 2012. Leuk 2014;55(1):31–7. doi: 10.3109/10428194.2013.802784.

  57. Rigacci L, Kovalchuk S, Berti V, et al. The use of Deauville 5-point score could reduce the risk of false-positive fluorodeoxyglucose-positron emission tomography in the posttherapy evaluation of patients with primary bone lymphomas. W J Nucl Med. 2018;17(3):157–65. doi: 10.4103/wjnm.WJNM_42_17.

  58. Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: The Lugano classification. J Clin Oncol. 2014;32(27):3059–67. doi: 1200/JCO.2013.54.8800.

  59. Reddy N, Greer JP. Primary bone lymphoma: a set of unique problems in management. Leuk 2009;51(1):1–2. doi: 10.3109/10428190903470877.

  60. Borst AJ, States LJ, Reilly AF, et al. Determining response and recurrence in pediatric B-cell lymphomas of the bone. Pediatr Blood Cancer. 2013;60(8):1281–6. doi: 10.1002/pbc.24523.

  61. Ferreri AJ, Reni M, Ceresoli GL, et al. Therapeutic management with adriamycin-containing chemotherapy and radiotherapy of monostotic and polyostotic primary non-Hodgkin’s lymphoma of bone in adults. Cancer Invest. 1998;16(8):554–61. doi: 10.3109/07357909809032885.

  62. Messina C, Christie D, Zucca E, et al. Primary and secondary bone lymphomas. Cancer Treat Rev. 2015;41(3):235–46. doi: 10.1016/j.ctrv.2015.02.001.

  63. Tomita N, Yokoyama M, Yamamoto W, et al. Central nervous system event in patients with diffuse large B-cell lymphoma in the rituximab era. Cancer Sci. 2012;103(2):245–51. doi: 10.1111/j.1349-7006.2011.02139.x.

  64. Seymour JF. Extra-nodal lymphoma in rare localisations: bone, breast and testes. Hematol Oncol. 2013;31(Suppl 1):60–3. doi: 10.1002/hon.2081.

  65. Guirguis HR, Cheung MC, Mahrous M, et al. Impact of central nervous system (CNS) prophylaxis on the incidence and risk factors for CNS relapse in patients with diffuse large B-cell lymphoma treated in the rituximab era: a single center experience and review of the literature. Br J Haematol. 2012;159(1):39–49. doi: 10.1111/j.1365-2141.2012.09247.x.

  66. Dosoretz DE, Raymond AK, Murphy GF, et al. Primary lymphoma of bone. The relationship of morphologic diversity to clinical behavior. Cancer. 1982;50(5):1009–14. doi: 10.1002/1097-0142(19820901)50:5<1009::aid-cncr2820500532>3.0.co;2-0.

  67. Rathmell AJ, Gospodarowicz MK, Sutcliffe SB, et al. Localised lymphoma of bone: prognostic factors and treatment recommendations. The Princess Margaret Hospital Lymphoma Group. Br J Cancer. 1992;66(3):603–6. doi: 10.1038/bjc.1992.322.

  68. Dubey P, Ha CS, Besa PC, et al. Localized primary malignant lymphoma of bone. Int J Radiat Oncol Biol Phys. 1997;37(5):1087–93. 10.1016/S0360-3016(97)00106-5.

  69. Gianelli U, Patriarca C, Moro A, et al. Lymphomas of the bone: a pathological and clinical study of 54 cases. Int J Surg Pathol 2002;10(4):257–66. doi: 1177/106689690201000403.

  70. Zinzani PL, Carrillo G, Ascani S, et al. Primary bone lymphoma: experience with 52 patients. Haematologica. 2003;88(3):280–5.

  71. Bayrakci K, Yildiz Y, Saglik Y, et al. Primary lymphoma of bones. Int Orthop. 2001;25(2):123–6. doi: 10.1007/s002640100224.

  72. Horsman JM, Thomas J, Hough R, Hancock BW. Primary bone lymphoma: a retrospective analysis. Int J Oncol. 2006;28(6):1571–5. doi: 10.3892/ijo.28.6.1571.

  73. Catlett JP, Williams SA, O’Connor SC, et al. Primary lymphoma of bone: an institutional experience. Leuk 2008;49(11):2125–32. doi: 10.1080/10428190802404030.

  74. Heyning FH, Hogenndoorn PC, Kramer MH, et al. Primary lymphoma of bone: extranodal lymphoma with favourable survival independent of germinal centre, post-germinal centre or indeterminate phenotype. J Clin Pathol. 2009;62(9):820–4. doi: 10.1136/jcp.2008.063156.

  75. Jawad MU, Schneiderbauer MM, Min ES, et al. Primary Lymphoma of Bone in Adult Patients. Cancer. 2010;116(4):871–9. doi: 10.1002/cncr.24828.

  76. Nasiri MR, Varshoee F, Mohtashami S, et al. Primary bone lymphoma: a clinicopathological retrospective study of 28 patients in a single institution. J Res Med Sci. 2011;16(6):814–20.

  77. Christie DR, Dear K, Le T, et al. Limited chemotherapy and shrinking field radiotherapy for Osteolymphoma (primary bone lymphoma): results from the trans-Tasman Radiation Oncology Group 99.04 and Australasian Leukaemia and Lymphoma Group LY02 prospective trial. Int J Radiat Oncol Biol Phys. 2011;80(4):1164–70. doi: 10.1016/j.ijrobp.2010.03.036.

  78. Cai L, Stauder MC, Zhang YJ, et al. Early-stage primary bone lymphoma: a retrospective, multicenter rare cancer network (RCN) study. Int J Radiat Oncol Biol Phys. 2012;83(1):284–91. doi: 10.1016/j.ijrobp.2011.06.1976.

  79. Ventre BM, Ferreri AJM, Gospodarowicz M, et al. Clinical features, management, and prognosis of an international series of 161 patients with limited-stage diffuse large B-cell lymphoma of the bone (the IELSG-14 study). Oncologist. 2014;19(3):291–8. doi: 10.1634/theoncologist.2013-0249.

  80. Jamshidi K, Jabalameli MD, Hoseini MG, et al. Stage IE Primary Bone Lymphoma: Limb Salvage for Local Recurrence. Arch Bone Jt Surg. 2015;3(1):39–44.

  81. Ayed BC, Laabidi S, Said N, et al. Primary bone lymphoma: tunisian multicentric retrospective study about 32 cases. Tunis Med. 2018;96(5):269–72.

Клиническое наблюдение волосатоклеточного лейкоза и лимфоплазмоцитарной лимфомы, установленных одновременно методом клеточного биочипа

А.Н. Хвастунова1,2, Л.С. Аль-Ради3, О.С. Федянина1,2, С.А. Луговская4, С.А. Кузнецова1,2

1 ФГБУ «НМИЦ детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России, ул. Саморы Машела, д. 1, Москва, Российская Федерация, 117997

2 ФГБУН «Центр теоретических проблем физико-химической фармакологии РАН», ул. Косыгина, д. 4, Москва, Российская Федерация, 119991

3 ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167

4 ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России, ул. Баррикадная, д. 2/1, Москва, Российская Федерация, 125993

Для переписки: Алина Николаевна Хвастунова, канд. биол. наук, ул. Саморы Машела, д. 1, Москва, Российская Федерация, 117997; тел.: +7(495)287-65-70; e-mail: alina_shunina@mail.ru

Для цитирования: Хвастунова А.Н., Аль-Ради Л.С., Федянина О.С. и др. Клиническое наблюдение волосатоклеточного лейкоза и лимфоплазмоцитарной лимфомы, установленных одновременно методом клеточного биочипа. Клиническая онкогематология. 2019;12(3):243–6.

doi: 10.21320/2500-2139-2019-12-3-243-246


РЕФЕРАТ

В работе представлено клиническое наблюдение сочетания волосатоклеточного лейкоза и лимфоплазмоцитарной лимфомы с секрецией PIgMκ. С помощью клеточного биочипа, позволяющего одновременно исследовать иммунофенотип и проводить морфологический и цитохимический анализы лейкоцитов, в периферической крови у пациента с лейкопенией были обнаружены малые популяции ворсинчатых (3 % от общего числа лимфоцитов) и плазматических клеток (2 %), включая клетки Мотта (0,2 %). Результаты, полученные методом клеточного биочипа, способствовали быстрому установлению предварительного диагноза, который затем был подтвержден стандартными методами диагностики.

Ключевые слова: клеточный биочип, волосатоклеточный лейкоз, лимфоплазмоцитарная лимфома, ворсинчатые клетки, плазматические клетки, клетки Мотта.

Получено: 12 ноября 2018 г.

Принято в печать: 2 мая 2019 г.

Читать статью в PDF 


ЛИТЕРАТУРА

  1. Khvastunova AN, Kuznetsova SA, Al-Radi LS, et al. Anti-CD antibody microarray for human leukocyte morphology examination allows analyzing rare cell populations and suggesting preliminary diagnosis in leukemia. Sci Rep. 2015;5(1):12573. doi: 10.1038/srep12573.

  2. Хвастунова А.Н., Аль-Ради Л.С., Капранов Н.М. и др. Использование клеточного биочипа в диагностике волосатоклеточного лейкоза. Онкогематология. 2015;10(1):37–45. doi: 10.17650/1818-8346-2015-1-37-45.

    [Khvastunova AN, Al-Radi LS, Kapranov NM, et al. Cell-binding microarray application in diagnosis of hairy cell leukemia. Oncohematology. 2015;10(1):37–45. doi: 10.17650/1818-8346-2015-1-37-45. (In Russ)]

  3. Khvastunova AN, Al‐Radi LS, Fedyanina OS, Kuznetsova SA. Simultaneous finding of chronic lymphocytic leukemia and residual hairy cell leukemia using a lymphocyte‐binding anti‐CD antibody microarray. Clin Case Rep. 2018;6(4):753–5. doi: 10.1002/ccr3.1416.

  4. Bain BJ. Leukemia Diagnosis. 4th edition. Singapore: Blackwell Publishing; 2010. doi: 10.1002/9781444318470.

  5. Луговская С.А., Почтарь М.Е. Гематологический атлас. М. – Тверь: Триада, 2011. 368 с.

    [Lugovskaya SA, Pochtar ME. Gematologicheskii atlas. (Hematology atlas.) Moscow – Tver: Triada Publ.; 2011. 368 р. (In Russ)]

  6. Shao H, Calvo KR, Gronborg M, et al. Distinguishing hairy cell leukemia variant from hairy cell leukemia: Development and validation of diagnostic criteria. Leuk Res. 2013;37(4):401–9. doi: 10.1016/j.leukres.2012.11.021.

  7. Robak T. Hairy-cell leukemia variant: recent view on diagnosis, biology and treatment. Cancer Treat Rev. 2011;37(1):3–10. doi: 10.1016/j.ctrv.2010.05.003.

  8. Traverse-Glehen A, Baseggio L, Callet-Bauchu E, et al. Splenic red pulp lymphoma with numerous basophilic villous lymphocytes: a distinct clinicopathologic and molecular entity? Blood. 2008;111(4):2253–60. doi: 10.1182/blood-2007-07-098848.

  9. Хвастунова А.Н., Аль-Ради Л.С., Федянина О.С. и др. Особенности морфологии и иммунофенотипа опухолевых клеток лимфомы из клеток маргинальной зоны селезенки (исследование с помощью клеточного биочипа). Онкогематология. 2017;12(1):71–7. doi: 10.17650/1818-8346-2017-12-1-71-77.

    [Khvastunova AN, Al-Radi LS, Fedyanina OS, et al. Determination of morphology and immunophenotype of circulating lymphoma cells in patients with splenic marginal zone lymphoma using an anti-CD antibody microarray. Oncohematology. 2017;12(1):71–7. doi: 10.17650/1818-8346-2017-12-1-71-77. (In Russ)]

  10. Mott F. Observations on the brains of men and animals infected with various forms of trypanosomes. Preliminary note. Proc Royal Soc London B. 1905;76(509):235–42. doi: 10.1098/rspb.1905.0016.

  11. Jacob H, Lutcke A. Subakute sklerosierende leukoencephalitis unter dem initialbild einer akuten epidemischen encephalitis (akute parkinsonistische encephalitis) mit ausgepragter entwicklung von Maulbeerzellen und Russell-Korperchen. J Neurol Sci. 1971;12(2):137–53. doi: 10.1016/0022-510X(71)90045-1.

  12. Greenwood BM, Whittle HC. Cerebrospinal fluid IgM in patients with sleeping sickness. Lancet. 1973;302(7828):525–7. doi: 10.1016/s0140-6736(73)92348-9.

  13. Alanen A, Pira U, Lassila O, et al. Mott cells are plasma cells defective in immunoglobulin secretion. Eur J Immunol. 1985;15(3):235–42. doi: 10.1002/eji.1830150306.

  14. Posnett DN, Mouradian J, Mangraviti DJ, Wolf DJ. Mott cells in a patient with a lymphoproliferative disorder. Differentiation of a clone of B lymphocytes into Mott cells. Am J Med. 1984;77(1):125–30. doi: 10.1016/0002-9343(84)90446-7.

  15. El-Okda M, Hyeh Y, Xie SS, Hsu SM. Russell bodies consist of heterogeneous glycoproteins in B-cell lymphoma cells. Am J Clin Pathol. 1992;97(6):866–71. doi: 10.1093/ajcp/97.6.866.

  16. Kurihara K, Sakai H, Hashimoto N. Russell body-like inclusions in oral B-lymphomas. J Oral Pathol.1984;13(6):640–9. doi: 10.1111/j.1600-0714.1984.tb01466.x.

  17. Джулакян У.Л., Двирнык В.Н., Менделеева Л.П. Селезеночная В-клеточная лимфома из клеток маргинальной зоны с выраженной плазмоклеточной дифференцировкой: вариант опухоли из клеток Мотта? Онкогематология. 2015;10(4):34–7. doi: 10.17650/1818-8346-2015-10-4-34-37.

    [Dzhulakyan UL, Dvirnyk VN, Mendeleeva LP. Splenic B-cell marginal zone lymphoma with marked plasmocytic differentiation: tumor variant from Mott cells? Oncohematology. 2015;10(4):34–7. doi: 10.17650/1818-8346-2015-10-4-34-37. (In Russ)]

  18. Mossafa H, Malaure H, Maynadie M, et al. Persistent polyclonal B lymphocytosis with binucleated lymphocytes: a study of 25 cases. Br J Haematol. 1999;104(3):486–93. doi: 10.1046/j.1365-2141.1999.01200.x.

 

 

Клинико-патоморфологическое сопоставление различных иммуноморфологических подвариантов нодулярной лимфомы Ходжкина с лимфоидным преобладанием на этапе первичной диагностики опухоли

И.А. Шуплецова, А.М. Ковригина, Т.Н. Моисеева, Е.И. Дорохина, С.М. Куликов

ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167

Для переписки: Ирина Александровна Шуплецова, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167; тел.: +7(906)757-50-43; e-mail: voda90@inbox.ru

Для цитирования: Шуплецова И.А., Ковригина А.М., Моисеева Т.Н. и др. Клинико-патоморфологическое сопоставление различных иммуноморфологических подвариантов нодулярной лимфомы Ходжкина с лимфоидным преобладанием на этапе первичной диагностики опухоли. Клиническая онкогематология. 2019;12(2):185–93.

DOI: 10.21320/2500-2139-2019-12-2-185-193


РЕФЕРАТ

Актуальность. Нодулярная лимфома Ходжкина с лимфоидным преобладанием (НЛХЛП) — редкий подтип лимфомы Ходжкина с вариабельным характером роста и иммуногистоархитектоникой опухолевого субстрата. Выделение подгрупп пациентов в зависимости от иммуногистохимических (ИГХ) подвариантов опухоли необходимо для оценки прогноза заболевания и разработки новых подходов к дифференцированной терапии.

Цель. Оценить клиническое течение НЛХЛП у пациентов с различными ИГХ-подвариантами заболевания с выделением подгруппы с неблагоприятным прогнозом.

Материалы и методы. В патологоанатомическом отделении ФГБУ «НМИЦ гематологии» Минздрава России с 2010 по 2017 г. проведен морфологический и ИГХ-анализы биоптатов лимфатических узлов и трепанобиоптатов костного мозга 60 пациентов с НЛХЛП. Исследуемую группу составили 47 мужчин и 13 женщин (соотношение мужчин/женщин 3,6:1) в возрастном диапазоне 17–68 лет (медиана 37 лет). ИГХ-исследование с расширенной панелью антител проводилось во всех случаях с определением ИГХ-подвариантов в соответствии с классификацией ВОЗ-2017.

Результаты. Среди случаев НЛХЛП с вариантной иммуногистоархитектоникой проведенное клинико-иммуноморфологическое сопоставление позволило выделить три подгруппы, различающиеся выраженностью участков, подобных В-крупноклеточной лимфоме, богатой Т-клетками/гистиоцитами (THRLBCL), в срезе лимфатического узла/биоптате иной локализации и характеризующиеся различным клиническим течением заболевания. В подгруппе с наличием THRLBCL-подобных участков 50 % и более отмечалось преобладание IV клинической стадии и статистически значимо большее количество экстранодальных зон поражения.

Заключение. При НЛХЛП наиболее неблагоприятное клиническое течение имеет подгруппа пациентов, в биопсийном материале которых содержание THRLBCL-подобных участков составляет 50 % и более. Полуколичественное определение THRLBCL-подобных участков позволило охарактеризовать спектр различных ИГХ-подвариантов НЛХЛП, коррелирующих с клиническим течением заболевания. Истинная трансформация в диффузную В-крупноклеточную лимфому является редким событием и отмечена у 2 (3 %) из 60 пациентов.

Ключевые слова: нодулярная лимфома Ходжкина с лимфоидным преобладанием, THRLBCL-подобные участки, иммуногистоархитектоника, иммуногистохимические подварианты.

Получено: 19 января 2019 г.

Принято в печать: 10 марта 2019 г.

Читать статью в PDF 


ЛИТЕРАТУРА

  1. Демина Е.А., Тумян Г.С., Чекан А.А. и др. Редкое заболевание — нодулярная лимфома Ходжкина с лимфоидным преобладанием: обзор литературы и собственные наблюдения. Клиническая онкогематология. 2014;7(4):522–32.

    [Demina EA, Tumyan GS, Chekan AA, et al. Rare Disease — Nodular Lymphocyte-Predominant Hodgkin’s Lymphoma: Literature Review and Own Data. Klinicheskaya onkogematologiya. 2014;7(4):522–32. (In Russ)]

  2. Моисеева Т.Н., Аль-Ради Л.С., Ковригина А.М. и др. Нодулярная лимфома Ходжкина с лимфоидным преобладанием: принципы диагностики и лечения. Терапевтический архив. 2015;87(11):78–83. doi: 10.17116/terarkh2015871178-83.

    [Moiseeva TN, Al’-Radi LS, Kovrigina AM, et al. Nodular lymphocyte-predominant Hodgkin’s lymphoma: Principles of diagnosis and treatment. Terapevticheskii arkhiv. 2015;87(11):78–83. doi: 10.17116/terarkh2015871178-83. (In Russ)]

  3. Seliem RM, Ferry JA, Hasserjian RP, et al. Nodular Lymphocyte-Predominant Hodgkin Lymphoma (NLPHL) with CD30-Positive Lymphocyte-Predominant (LP) Cells. J Hematopathol. 2011;4(3):175–81. doi: 10.1007/s12308-011-0104-x.

  4. Stein H, Swerdlow SH, Gascoyne RD, et al. Nodular lymphocyte predominant Hodgkin lymphoma. In: SH Swerdlow, E Campo, NL Harris, et al., eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revised 4th Edition. Lyon: IARC Press; pp. 431–4.

  5. Ковригина A.M., Пробатова Н.A. Лимфома Ходжкина и крупноклеточные лимфомы. М.: МИА, 2007. С. 212.

    [Kovrigina AM, Probatova NA. Limfoma Khodzhkina i krupnokletochnye limfomy. (Hodgkin’s lymphoma and large cell lymphomas.) Moscow: MIA Publ.; 2007. pp. 212 (In Russ)]

  6. Brune V, Tiacci E, Pfeil I, et al. Origin and pathogenesis of nodular lymphocyte-predominant Hodgkin lymphoma as revealed by global gene expression analysis. J Exp Med. 2008;205(10):2251–68. doi: 10.1084/jem.20080809.

  7. Hartmann S, Doring C, Jakobus C, et al. Nodular Lymphocyte Predominant Hodgkin Lymphoma and T Cell/Histiocyte Rich Large B Cell Lymphoma – Endpoints of a Spectrum of One Disease? PLoS One. 2013;8(11):e78812. doi: 10.1371/journal.pone.0078812.

  8. Schuhmacher B, Bein J, Rausch T, et al. JUNB, DUSP2, SGK1, SOCS1 and CREBBP are frequently mutated in T-cell/histiocyte rich large B-cell lymphoma. Haematologica. 2018;104(2):330–7. doi: 10.3324/haematol.2018.203224.

  9. Fan Z, Natkunam Y, Bair E, et al. Characterization of variant patterns of nodular lymphocyte predominant Hodgkin lymphoma with immunohistologic and clinical correlation. Am J Surg Pathol. 2003;27(10):1346–56. doi: 10.1097/00000478-200310000-00007.

  10. Hartmann S, Eichenauer DA, Plutschow A, et al. The prognostic impact of variant histology in nodular lymphocyte-predominant Hodgkin lymphoma: a report from the German Hodgkin Study Group (GHSG). Blood. 2013;122(26):4246–52. doi. 10.1182/blood-2013-07-515825.

  11. Agbay RLMC, Loghavi S, Zuo Z, et al. Bone Marrow Involvement in Patients With Nodular Lymphocyte Predominant Hodgkin Lymphoma. Am J Surg Pathol. 2018;42(4):492–9. doi: 10.1097/PAS.0000000000001005.

  12. Xing KH, Connors JM, Lai A, et al. Advanced-stage nodular lymphocyte predominant Hodgkin lymphoma compared with classical Hodgkin lymphoma: a matched pair outcome analysis. Blood. 2014;123(23):3567–73. doi: 10.1182/blood-2013-12-541078.

  13. Fanale MA, Cheah CY, Rich A, et al. Encouraging activity for R-CHOP in Advanced Stage Nodular Lymphocyte Predominant Hodgkin Lymphoma. Blood. 2017;130(4):472–7. doi: 10.1182/blood-2017-02-766121.

  14. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90. doi: 10.1182/blood-2016-01-643569.

  15. Ott G, Delabie J, Gascoyne RD, et al. T-cell/histiocyte-rich large B-cell lymphoma. In: SH Swerdlow, E Campo, NL Harris, et al., eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revised 4th Edition. Lyon: IARC Press; pp. 298–9.