Клиническая эффективность даратумумаба в монотерапии рецидивов и рефрактерной множественной миеломы

С.С. Бессмельцев1, Е.В. Карягина2, Е.Ю. Илюшкина2, Ж.Л. Столыпина2, Р.Р. Мифтахова1, И.И. Кострома1, Т.Л. Шелковская2

1 ФГБУ «Российский НИИ гематологии и трансфузиологии ФМБА», ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024

2 ГБУЗ «Городская больница № 15», ул. Авангардная, д. 4, Санкт-Петербург, Российская Федерация, 198205

Для переписки: Станислав Семенович Бессмельцев, д-р мед. наук, профессор, ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024; тел.: +7(812)717-67-80, +7(911)228-18-01; e-mail: bsshem@hotmail.com, bessmeltsev@yandex.ru

Для цитирования: Бессмельцев С.С., Карягина Е.В., Илюшкина Е.Ю. и др. Клиническая эффективность даратумумаба в монотерапии рецидивов и рефрактерной множественной миеломы. Клиническая онкогематология. 2020;13(1):25–32.

DOI: 10.21320/2500-2139-2020-13-1-25-32


РЕФЕРАТ

Актуальность. Даратумумаб — гуманизированное моноклональное антитело IgG1-κ, направленное против антигена CD38. Он оказывает прямое воздействие на опухоль и обладает иммуномодулирующим механизмом действия.

Цель. Оценить эффективность даратумумаба в монорежиме у больных с прогрессированием, рецидивами и рефрактерной множественной миеломой (ММ), выяснить степень токсичности и безопасности препарата.

Материалы и методы. В исследование включено 10 больных ММ (3 мужчины и 7 женщин) в возрасте 51–74 года (медиана 57 лет). У всех больных установлена III стадия заболевания (по Durie—Salmon), при этом у 2 — IIIВ стадия с клиренсом креатинина менее 30 мл/мин. Согласно критериям ISS (международной системы стадирования), у 6 больных установлена II стадия, у 4 — III стадия. Все пациенты ранее получали бортезомиб и леналидомид, с развитием двойной рефрактерности у 4 из 10 больных. По 1 больному ранее получали бендамустин и карфилзомиб в комбинированных схемах. Число линий предшествующей терапии колебалось от 3 до 6 (медиана 5).

Результаты. Общий ответ составил 50 %, включая 2 (20 %) пациентов, у которых достигнута очень хорошая частичная ремиссия. У 1 (10 %) больного получена полная ремиссия. При периоде наблюдения 6–32 мес. (медиана 15 мес.) медиана общей выживаемости не достигнута. Медиана выживаемости без прогрессирования составила 17,8 мес. Даратумумаб обладает благоприятным профилем безопасности. У 20 % больных наблюдались инфузионно-зависимые реакции I–II степени тяжести. Среди других нежелательных явлений следует отметить слабость (30 %), тошноту (10 %), головную боль (10 %), снижение аппетита (10 %), тромбоцитопению (20 %) и нейтропению (30 %). Серьезные осложнения не встречались.

Заключение. Лечение даратумумабом является безопасным и эффективным методом лекарственного противоопухолевого воздействия при рецидивах и рефрактерном течении ММ.

Ключевые слова: даратумумаб, множественная миелома, полная ремиссия, общий ответ, выживаемость, двойная рефрактерность.

Получено: 22 августа 2019 г.

Принято в печать: 10 декабря 2019 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Бессмельцев С.С., Абдулкадыров К.М. Множественная миелома: руководство для врачей. М.: СИМК, 2016. 512 с.

    [Bessmeltsev SS, Abdulkadyrov KM. Mnozhestvennaya mieloma: rukovodstvo dlya vrachei. (Multiple myeloma: manual for physicians.) Moscow: SIMK Publ.; 2016. 512 p. (In Russ)]

  2. Kumar SK, Lee JH, Lahuerta JJ, et al. Risk of progression and survival in multiple myeloma relapsed after therapy with IMiDs and bortezomib: a multicenter international myeloma working group study. 2012;26(1):149–57. doi: 10.1038/leu.2011.196.

  3. Usmani S, Ahmadi T, Ng Y, et al. Analysis of Real-World Data on Overall Survival in Multiple Myeloma Patients With ≥ 3 Prior Lines of Therapy Including a Proteasome Inhibitor (PI) and an Immunomodulatory Drug (IMiD), or Double Refractory to a PI and an IMiD.  2016;21(11):1–7. doi: 10.1634/theoncologist.2016-0104.

  4. Terpos E, Kanellias N, Christoulas D, et al. Pomalidomide: a novel drug to treat relapsed and refractory multiple myeloma. OncoTargets Ther. 2013;6:531–8. doi: 10.2147/OTT.S34498.

  5. Семочкин С.В., Салогуб Г.Н., Бессмельцев С.С., Капланов К.Д. Практические аспекты применения карфилзомиба при множественной миеломе. Клиническая онкогематология. 2019;12(1):21–31. doi: 10.21320/2500-2139-2019-12-1-21-31.

    [Semochkin SV, Salogub GN, Bessmeltsev SS, Kaplanov KD. Practical Aspects of the Use of Carfilzomib in Multiple Myeloma. Clinical oncohematology. 2019;12(1):21–31. doi: 10.21320/2500-2139-2019-12-1-21-31. (In Russ)]

  6. Moreau P, Masszi T, Grzasko N, et al. Oral ixazomib, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med. 2016;374(17):1621–34. doi: 10.1056/nejmoa1516282.

  7. San Miguel J, Weisel K, Moreau P, et al. Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (MM-003): a randomized, open-label, phase 3 trial. Lancet Oncol. 2013;14(11):1055–66. doi: 10.1016/s1470-2045(13)70380-2.

  8. Stewart AK, Rajkumar SV, Dimopoulos MA, et al. Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N Engl J Med. 2015;372(2):142–52. doi: 10.1056/nejmoa1411321.

  9. Бессмельцев С.С. Анти-CD38 моноклональные антитела в лечении рецидивов/рефрактерных форм множественной миеломы. Вестник гематологии. 2018;XIV(3):5–18.

    [Bessmeltsev SS. CD38 antibodies in patients with relapsed/refractory multiple myeloma. Vestnik gematologii. 2018; XIV(3):5–18. (In Russ)]

  10. Deckert J, Wetzel MC, Bartle LM, et al. SAR650984, a novel humanized CD38-targeting antibody, demonstrates potent antitumor activity in models of multiple myeloma and other CD38 hematologic malignancies. Clin Cancer Res.  2014;20(17):4574–83. doi: 10.1158/1078-0432.CCR-14-0695.

  11. de Weers M, Tai YT, van der Veer MS, et al. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol.  2011;186(3):1840–8. doi: 10.4049/jimmunol.1003032.

  12. van de Donk WCJ, Richardson P, Malavasi F. CD38 antibodies in multiple myeloma: back to the future. 2018;131(1):13–29. doi: 10.1182/blood-2017-06-740944.

  13. Lokhorst HM, Plesner T, Laubach JP, et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma. N Engl J Med. 2015;373(13):1207–19. doi: 10.1056/nejmoa1506348.

  14. Lonial S, Weiss BM, Usmani SZ, et al. Daratumumab monotherapy in patients with treatment refractory multiple myeloma (SIRIUS): an open-label, randomized, phase 2 trial.   2016;387(10027):1551–60. doi: 10.1016/s0140-6736(15)01120-4.

  15. Usmani SZ, Weiss BM, Plesner T, et al. Clinical efficacy of daratumumab monotherapy in patients with heavily pretreated relapsed or refractory multiple myeloma.   2016;128(1):37–44. doi: 10.1182/blood-2016-03-705210.

  16. Durie BGM, San Miguel J, Harousseau J-L, et al. International uniform response criteria for multiple myeloma. 2006;20(9):1467–73. doi: 10.1038/sj.leu.2404284.

  17. Головкина Л.Л., Минеева Н.В., Менделеева Л.П. и др. Модификация преаналитического этапа непрямой пробы Кумбса у больных множественной миеломой при лечении даратумумабом. Гематология и трансфузиология. 2018;63(1):44–54. doi: 10.25837/HAT.2018.45..1..004.

    [Golovkina LL, Mineeva NV, Mendeleeva LP, et al. A Modification of the pre-analytical phase of the indirect Coombs test for multiple myeloma patients treated with daratumumab. Russian journal of hematology and transfusiology. 2018;63(1):44–54. doi: 10.25837/HAT.2018.45..1..004. (In Russ)]

  18. Минеева Н.В., Кробинец И.И., Бодрова Н.Н. и др. Алгоритм индивидуального подбора гемокомпонентов и проведения исследования антигенов эритроцитов и антиэритроцитарных антител в сложно диагностируемых случаях. Методическое пособие. СПб.: ВиТ-принт, 2018. 24 с.

    [Mineeva NV, Krobinets II, Bodrova NN, et al. Algoritm individualnogo podbora gemokomponentov i provedeniya issledovaniya antigenov eritrotsitov i antieritrotsitarnykh antitel v slozhno diagnostiruemykh sluchayakh. Metodicheskoe posobie. (Algorithm of individual hemocomponent management and analysis of erythrocyte antigens and anti-erythrocyte antibodies used in difficult for diagnosis cases. Methodological handbook.) Saint Petersburg: ViT-print Publ.; 2018. 24 p. (In Russ)]

Первичные лимфоидные опухоли костей: 18F-FDG ПЭТ и ПЭТ-КТ как методы диагностики и оценки эффективности противоопухолевого лечения

А.К. Смольянинова1, Э.Р. Москалец2, Г.А. Яцык1, И.Э. Костина1, А.С. Боголюбская3, Н.Г. Габеева1, Э.Г. Гемджян1, С.А. Татарникова1, Д.С. Бадмаджапова1, Е.Е. Звонков1

1 ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167

2 АО «Европейский медицинский центр», ул. Щепкина, д. 35, Москва, Российская Федерация, 129090

3 ФГБОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, ул. Островитянова, д. 1, Москва, Российская Федерация, 117997

Для переписки: Анна Константиновна Смольянинова, канд. мед. наук, Новый Зыковский пр-д, д. 4, Москва, Российская Федерация, 125167; тел.: +7(926)912-31-16; e-mail: annmo8@mail.ru

Для цитирования: Смольянинова А.К., Москалец Э.Р., Яцык Г.А. и др. Первичные лимфоидные опухоли костей: 18F-FDG ПЭТ и ПЭТ-КТ как методы диагностики и оценки эффективности противоопухолевого лечения. Клиническая онкогематология. 2020;13(1):33–49.

DOI: 10.21320/2500-2139-2020-13-1-33-49


РЕФЕРАТ

Актуальность. Первичная лимфома костей (ПЛК) — это редкая злокачественная опухоль. Первичное обследование, предполагающее выявление всех исходных очагов поражения, служит необходимым условием выбора наиболее оптимальной тактики противоопухолевого лечения. Использование стандартных методов диагностики (рентгенография, КТ, МРТ) не всегда позволяет оценить истинную распространенность опухоли. Другой хорошо известной особенностью ПЛК является сложность при оценке эффекта проводимого лечения в связи с выраженными остаточными изменениями в костях, которые сохраняются у большинства пациентов. К тому же данные о применении при ПЛК такого метода метаболической визуализации, как 18F-FDG ПЭТ, в доступной литературе встречаются нечасто.

Цель. Изучить особенности использования ПЭТ-КТ с 18F-FDG при первичном обследовании и оценке эффективности терапии у пациентов с ПЛК.

Материалы и методы. В исследование включен 21 больной ПЛК, которому при первичном обследовании и через 1 мес. после окончания терапии выполнена 18F-FDG ПЭТ. Результаты 18F-FDG ПЭТ сопоставлялись с данными структурных методов диагностики (КТ, МРТ) и исследованием материала биопсии патологических очагов.

Результаты. Интенсивный захват 18F-FDG (SUVmax 8,6–40,1, среднее SUVmax 23,5) по данным ПЭТ отмечался у всех пациентов в очагах опухоли, выявленных по результатам структурных методов диагностики и подтвержденных биопсией. Кроме того, в каждом из 21 наблюдения определялась патологическая инфильтрация прилежащих мягких тканей с высокой метаболической активностью. При ПЭТ-КТ с 18F-FDG обнаружено 13 дополнительных локализаций опухоли у 8 (38 %) больных. После окончания терапии остаточные изменения по данным КТ и МРТ сохранялись у всех (n = 21, 100 %) пациентов. При этом остаточная метаболическая активность в пораженных костях определялась у 13 (62 %) больных (SUVmax 2,91–8,7, среднее SUVmax 4,2). Биопсия остаточного образования выполнена у 4 из них. Ни в одном из 4 случаев данных за опухоль не получено. Только у 1 из 13 пациентов с остаточными метаболическими изменениями развился рецидив опухоли. Общая 10-летняя выживаемость в группах пациентов c FDG+ остаточными изменениями и без таковых составила 91 и 100 % соответственно, однако различия статистически незначимы (= 0,39).

Заключение. ПЭТ-КТ с 18F-FDG является высокочувствительным методом оценки первичного объема поражения у пациентов с ПЛК. В 100 % случаев в костных и мягкотканных очагах наблюдалось интенсивное накопление 18F-FDG. В то же время в нашем исследовании сохранение метаболической активности после противоопухолевого лечения отмечалось более чем у половины пациентов и не было обусловлено опухолью у большинства из них. В связи с этим, по нашему мнению, сохранение резидуальной метаболической активности при ПЛК не всегда может служить показанием к продолжению противоопухолевого лечения или проведению лучевой терапии с целью консолидации.

Ключевые слова: первичная лимфома костей, выживаемость, позитронно-эмиссионная томография, диагностика, оценка эффективности противоопухолевого лечения.

Получено: 2 августа 2019 г.

Принято в печать: 5 декабря 2019 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Matikas A, Briasoulis A, Tzannou I, et al. Primary bone lymphoma: a retrospective analysis of 22 patients treated in a single tertiary center. Acta Haematol. 2013;130(4):291–6. doi: 10.1159/000351051.

  2. Bacci G, Jaffe N, Emiliani E, et al. Therapy for primary non-Hodgkin’s lymphoma of bone and a comparison of results with Ewing’s sarcoma. Ten year’s experience at the Istituto Ortopedico Rizzoli. Cancer. 1986;57(8):1468–72. doi: 10.1002/1097-0142(19860415)57:8<1468::aid-cncr2820570806>3.0.co;2-0.

  3. Fidias P, Spiro I, Scobczak ML, et al. Long-term results of combined modality therapy in primary bone lymphomas. Int J Radiat Oncol Biol Phys. 1999;45(5):1213–38. doi: 10.1016/s0360-3016(99)00305-3.

  4. Messina C, Ferreri AJ, Govi S, et al. Clinical features, management and prognosis of multifocal primary bone lymphoma: a retrospective study of the international Extranodal Lymphoma Study Group (the IELSG 14 study). Br J Haematol. 2014;164(6):834–40. doi: 10.1111/bjh.12714.

  5. Морозова А.К., Звонков Е.Е., Мамонов В.Е. и др. Первичные лимфатические опухоли костей и мягких тканей: сравнительная оценка результатов лечения. Терапевтический архив. 2012;84(7):42–9.

    [Morozova AK, Zvonkov EE, Mamonov VE, et al. Primary lymphomas of bones and soft tissues: comparative assessment of treatment results. Terapevticheskii arkhiv. 2012;84(7):42–9. (In Russ)]

  6. Gabeeva NG, Zvonkov EE, Morozova AK, et al. Long-term follow-up of primary bone diffuse large B-cell lymphoma treated with m NHL-BFM-90. Blood. 2016;128(22):3025.

  7. Смольянинова А.К., Габеева Н.Г., Мамонов В.Е. и др. Первичная лимфома костей: 10-летние результаты проспективного исследования в одной клинике. Гематология и трансфузиология. 2018;63(S1):181.

    [Smol’yaninova AK, Gabeeva NG, Mamonov VE, et al. Primary bone lymphoma: 10-year results of a prospective single-center trial. Gematologiya i transfuziologiya. 2018;63(S1):181. (In Russ)]

  8. Lewis VO, Primus G, Anastasi J, et al. Oncologic outcomes of primary lymphomas of bone in adults. Clin Orthop Rel Res. 2003;415:90–7. doi: 10.1097/01.blo.0000093901.12372.ad.

  9. Ostrowski ML, Unni KK, Banks PM, et al. Malignant Lymphoma of Bone. Cancer. 1986;58(12):2646–55. doi: 10.1002/1097-0142(19861215)58:12<2646::aid-cncr2820581217>3.0.co;2-u.

  10. Смольянинова А.К., Габеева Н.Г., Мамонов В.Е. и др. Первичные лимфомы костей: долгосрочные результаты проспективного одноцентрового исследования. Клиническая онкогематология. 2019;12(3):247–62. doi: 10.21320/2500-2139-2019-12-3-247-262.

    [Smol’yaninova AK, Gabeeva NG, Mamonov VE, et al. Primary Bone Lymphomas: Long-Term Results of a Prospective Single-Center Trial. Clinical oncohematology. 2019;12(3):247–62. doi: 10.21320/2500-2139-2019-12-3-247-262. (In Russ)]

  11. Ueda T, Aozasa K, Ohsawa M, et al. Malignant lymphomas of bone in Japan. Cancer. 1989;64(11):2387–92. doi: 10.1002/1097-0142(19891201)64:11<2387::aid-cncr2820641132>3.0.co;2-1

  12. Meignan M, Barrington S, Itti E, et al. Report on the 4th international workshop on positron emission tomography in lymphoma held in Menton, France, 3–5 October 2012. Leuk Lymphoma. 2013;55(1):31–7. doi: 10.3109/10428194.2013.802784.

  13. Егорова Е.К., Габеева Н.Г., Мамонов В.Е. и др. Первичные лимфатические опухоли костей: описание двух случаев и обзор литературы. Онкогематология. 2008;3(4):5–10.

    [Egorova EK, Gabeeva NG, Mamonov VE, et al. Primary lymphatic tumors of bones: two case reports and a review of l Onkogematologiya. 2008;3(4):5–10. (In Russ)]

  14. Christie DR, Dear K, Le T, et al. Limited chemotherapy and shrinking field radiotherapy for osteolymphoma (primary bone lymphoma): results from the trans-Tasman Radiation Oncology Group 99.04 and Australasian Leukaemia and Lymphoma Group LY02 prospective trial. Int J Radiat Oncol Biol Phys. 2011;80(4):1164–70. doi: 10.1016/j.ijrobp.2010.03.036.

  15. Iwaya Y, Tekenaka K, Akamatsu T. Primary Gastric Diffuse Large B-cell Lymphoma with Orbital Involvement: Diagnostic Usefulness of 18-fluorodeoxyglucose Positron Emission Tomography. Intern Med. 2011;50(18):1953–6. doi: 10.2169/internalmedicine.50.5524.

  16. Demircay E, Hornicek J, Mankin HJ, at al. Malignant Lymphoma of Bone: A Review of 119 Patients. Clin Orthop Relat Res. 2013;471(8):2684–90. doi: 10.1007/s11999-013-2991-x.

  17. Fletcher CDM, Unni KK, Mertens F. (eds) Pathology and genetics of tumours of soft tissue and bone. World Health Organization Classification of Tumours. 3rd Edition. Lyon: IARC Press; 2002.

  18. Fletcher CDM. The evolving classification of soft tissue tumours: an update based on the new WHO classification. Histopathology. 2006;48(1):3–12. doi: 10.1111/j.1365-2559.2005.02284.x.

  19. Fletcher CDM, Bridge JA, Hogendoorn P, Mertens F. World health organization classification of tumours of soft tissue and bone. 4th edition. Lyon: IARC Press; 2013. 468 p.

  20. Krishnan А, Shirkhoda А, Tehranzadeh Т, et al. Primary Bone Lymphoma: Radiographic–MR Imaging Correlation. RadioGraph. 2003;23(6):1371–87. doi: 10.1148/rg.236025056.

  21. Mulligani ME, Kransdorf MJ. Sequestra in Primary Lymphoma of Bone: Prevalence and Radiologic Features. Am J Roentgenol. 1993;160(6):1245–8. doi: 10.2214/ajr.160.6.8498226.

  22. Canete AN, Bloem HL, Kroon HM. Primary bone tumors of the spine. Radiologia. 2016;58(Suppl 1):68–80. doi: 10.1016/j.rx.2016.01.001.

  23. Mikhaeel NG. Primary bone lymphoma. Clin Oncol. 2012;24(5):366–70. doi: 10.1016/j.clon.2012.02.006.

  24. Hicks DC, Gokan T, O’Keefe RJ, et al. Primary lymphoma of bone: correlation of magnetic resonance imaging features with cytokine production by tumor cells. Cancer. 1995;75(4):973–80. doi: 10.1002/1097-0142(19950215)75:4<973::aid-cncr2820750412>3.0.co;2-8.

  25. Messina C, Christie D, Zucca E, et al. Primary and secondary bone lymphomas. Cancer Treat Rev. 2015;41(3):235–46. doi: 10.1016/j.ctrv.2015.02.001.

  26. Remier RR, Bruce AC, Yong RC, et al. Lymphoma Presenting in Bone. Results of Histopathology, Staging, and Therapy. Ann Inter Med. 1977;87(1):50–5. doi: 10.7326/0003-4819-87-1-50.

  27. Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–67. doi: 10.1200/JCO.2013.54.8800.

  28. Jawad MU, Schneiderbauer MM, Min ES, et al. Primary Lymphoma of Bone in Adult Patients. Cancer. 2010;116(4):871–9. doi: 10.1002/cncr.24828.

  29. Schaefer NG, Strobel K, Taverna C, et al. Bone involvement in patients with lymphoma: the role of FDG-PET/CT. Eur J Nucl Med Mol Imag. 2007;34(1):60–7. doi: 10.1007/s00259-006-0238-8.

  30. Ramadan KM, Shenkier T, Sehn LH, et al. 131 patients with primary bone lymphoma: a population-based study of successively treated cohorts from the British Columbia Cancer Agency. Ann Oncol. 2007;18(1):129–35. doi: 10.1093/annonc/mdl329.

  31. Park YH, Kim S, Choi SJ, et al. Clinical impact of whole-body FDG-PET for evaluation of response and therapeutic decision-making of primary lymphoma of bone. Ann Oncol. 2005;16(8):1401–2. doi: 10.1093/annonc/mdi234.

  32. Park YH, Choi SJ, Ryoo BY, et al. PET imaging with F-18 fluorodeoxyglucose for primary lymphoma of bone. Clin Nucl Med. 2005;30(2):131–4. doi: 10.1097/00003072-200502000-00020.

  33. Singh Т, Satheesh С, Lakshmaiah С, et al. Primary bone lymphoma: A report of two cases and review of the literature. J Cancer Res Ther. 2010;6(3):296–8. doi: 10.4103/0973-1482.73366.

  34. Wang LJ, Wu HB, Wang M, et al. Utility of F-18 FDG PET/CT on the evaluation of primary bone lymphoma. Eur J Radiol. 2015;84(11):2275–9. doi: 10.1016/j.ejrad.2015.09.011.

  35. Baar J, Burkes RL, Gospodarowicz M. Primary non-Hodgkin’s lymphoma of bone. Semin Oncol. 1999;26(3):270–5.

  36. Liu Y. The role of 18F-FDG PET/CT in staging and restaging primary bone lymphoma. Nucl Med Commun. 2017;38(4):319–24. doi: 10.1097/MNM.0000000000000652.

  37. Kim SY, Shin DY, Lee SS. Clinical characteristics and outcomes of primary bone lymphoma in Korea. Korean J Hematol. 2012;47(3):213–8. doi: 10.5045/kjh.2012.47.3.213.

  38. Milks KS, McLean TW, Anthony EY. Imaging of primary pediatric lymphoma of bone. Pediatr Radiol. 2016;46(8):1150–7. doi: 10.1007/s00247-016-3597-8.

  39. Zinzani PL, Carrillo G, Ascani S, et al. Primary bone lymphoma: experience with 52 patients. Haematologica. 2003;88(3):280–5.

  40. Baar J, Burkes R, Bell R. Primary Non-Hodgkin’s Lymphoma of Bone. A clinicopathologic study. Cancer. 1994;73(4):1194–9. doi: 10.1002/1097-0142(19940215)73:4<1194::aid-cncr2820730412>3.0.co;2-r.

  41. Choi J, Raghavan M. Diagnostic imaging and Image-Guided Therapy of Skeletal Metastases. Cancer Control. 2012;19(2):102–12. doi: 10.1177/107327481201900204.

  42. Hwang S. Imaging of lymphoma of musculoskeletal system. Magn Reson Imag Clin N Am. 2010;18(1):75–93. doi: 10.1016/j.mric.2009.09.006.

  43. Rapoport AP, Constine LS, Packman CH, et al. Treatment of Multifocal Lymphoma of Bone With Intensified Promace-Cytabom Chemotherapy and Involved Field Radiotherapy. Am J Hematol. 1998;58(1):1–7. doi: 10.1002/(SICI)1096-8652(199805)58:1<1::AID-AJH1>3.0.CO;2-X.

  44. Seymour JF. Extra-nodal lymphoma in rare localisations: bone, breast and testes. Hematol Oncol. 2013;31(Suppl 1):60–3. doi: 10.1002/hon.2081.

  45. Ng AP, Wirth A, Seymour JF, et al. Early therapeutic response assessment by (18)FDG-positron emission tomography during chemotherapy in patients with diffuse large B-cell lymphoma: Isolated residual positivity involving bone is not usually a predictor of subsequent treatment failure. Leuk Lymphoma. 2007;48(3):596–600. doi: 10.1080/10428190601099965.

  46. Rigacci L, Kovalchuk S, Berti V, et al. The use of Deauville 5-point score could reduce the risk of false-positive fluorodeoxyglucose-positron emission tomography in the posttherapy evaluation of patients with primary bone lymphomas. World J Nucl Med. 2018;17(3):157–65. doi: 10.4103/wjnm.WJNM_42_17.

  47. Juweid ME, Wiseman GA, Vose JM, et al. Response assessment of aggressive non-Hodgkin’s lymphoma by integrated International Workshop Criteria and fluorine-18-fluorodeoxyglucose positron emission tomography. J Clin Oncol. 2005;23(21):4652–61. doi: 10.1200/JCO.2005.01.891.

  48. Cheson BD, Pfistner B, Juweid ME, et al. International Harmonization Project for malignant lymphoma. J Clin Oncol. 2007;25(5):579–86. doi: 10.1200/JCO.2006.09.2403.

  49. Juweid ME, Stroobants S, Hoekstra OS, et al. Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol. 2007;25(5):571–8. doi: 10.1200/JCO.2006.08.2305.

  50. Albano D, Agnello F, Patti C, et al. Whole-body magnetic resonance imaging and FDG-PET/CT for lymphoma staging: Assessment of patient experience. Egypt J Radiol Nucl Med. 2017;48(4):1043–7. doi: 1016/j.ejrnm.2017.06.002.

  51. Wang D, Huo Y, Chen S et al. Whole-body MRI versus 18F-FDG PET/CT for pretherapeutic assessment and staging of lymphoma: a meta-analysis. OncoTarg Ther. 2018;11:3597–608. doi: 10.2147/OTT.S148189.

  52. Galia M, Albano D, Tarella C, et al. Whole body magnetic resonance in indolent lymphomas under watchful waiting: the time is now. Eur Radiol. 2017;28(3):1187–93. doi: 10.1007/s00330-017-5071-x.

  53. Toledano-Massiah S, Luciani A, Itti E, et al. Whole-Body Diffusion-weighted Imaging in Hodgkin Lymphoma and Diffuse Large B-Cell Lymphoma. RadioGraph. 2015;35(3):747–64. doi: 10.1148/rg.2015140145.

  54. Koh D, Collins DJ. Diffusion-Weighted MRI in the Body: Applications and Challenges in Oncology. Am J Roentgenol. 2007;188(6):1622–35. doi: 10.2214/AJR.06.1403.

Особенности гемопоэза у больных фолликулярной лимфомой

М.А. Френкель, А.В. Моженкова, Н.А. Купрышина, Н.А. Фалалеева, Н.Н. Тупицын

ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Москва, Российская Федерация, 115478

Для переписки: Марина Абрамовна Френкель, д-р мед. наук, профессор, Каширское ш., д. 24, Москва, Российская Федерация, 115478; тел.: +7(499)324-45-60; e-mail: marinafren@yandex.ru

Для цитирования: Френкель М.А., Моженкова А.В., Купрышина Н.А. и др. Особенности гемопоэза у больных фолликулярной лимфомой. Клиническая онкогематология. 2020;13(1):50–57.

DOI: 10.21320/2500-2139-2020-13-1-50-57


РЕФЕРАТ

Цель. Оценка кроветворения у больных фолликулярной лимфомой (ФЛ) на разных этапах течения болезни с различным морфологическим составом опухоли и костномозгового микроокружения.

Материалы и методы. В исследование включено 152 пациента с ФЛ, получавших лечение с 2006 по 2016 г. У всех больных диагноз установлен на основании иммуногистохимического исследования экстрамедуллярной опухоли, а также изучения трепанобиоптатов и аспиратов костного мозга. При поражении костного мозга (n = 33) выполняли детальное иммуноморфофенотипическое исследование опухолевых клеток методом проточной цитометрии и подсчет лимфоцитограммы.

Результаты. У больных ФЛ анемия, тромбоцитопения и моноцитоз в крови наблюдаются независимо от поражения костного мозга. При отсутствии признаков его поражения анемия выявлена у 23 (19 %) больных, тромбоцитопения — у 8 (7 %), моноцитоз — у 11 (9,1 %). У пациентов с поражением костного мозга анемия имела место в 9 (27,2 %) случаях, тромбоцитопения — в 11 (33,8 %), моноцитоз — в 7 (21 %). Глубина цитопении определялась степенью опухолевой инфильтрации костного мозга. На основании подсчета лимфоцитограммы охарактеризованы типы опухолевых клеток в аспирате костного мозга: элементы с бластной структурой хроматина ядер, атипичные лимфоидные клетки и таковые, сходные с нормальными лимфоцитами. Показана иммунофенотипическая гетерогенность опухолевых клеток в костном мозге. Установлено, что уровень гемоглобина и число тромбоцитов, моноцитов крови, Т-лимфоцитов костного мозга не связаны с типом опухолевых клеток.

Заключение. Глубина угнетения гемопоэза и повышение числа моноцитов в крови коррелируют со степенью опухолевой инфильтрации костного мозга и не зависят от иммуноморфологических характеристик опухолевых клеток ФЛ.

Ключевые слова: фолликулярная лимфома, центроцит, центробласт, аспират, трепанобиоптат, иммунофенотип.

Получено: 8 февраля 2019 г.

Принято в печать: 2 декабря 2019 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Swerdlow SH, Campo E, Harris NL, et al. (eds). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (Revised 4th edition). Lyon: IARC Press; 2017. рр. 266–76.

  2. Ковригина А.М., Пробатова Н.А. Дифференциальная диагностика неходжкинских В-клеточных лимфом. Онкогематология. 2017;2(2):4–9.

    [Kovrigina AM, Probatova NA. Differential diagnosis of non-Hodgkin’s B-cell lymphomas. 2017;2(2):4–9. (In Russ)]

  3. Тумян Г.С., Леонтьева А.А., Фалалеева Н.А. и др. Фолликулярная лимфома: 10 лет терапии. Клиническая онкогематология. 2012;5(3):204–13.

    [Tumyan GS, Leont’eva AA, Falaleeva NA, et al. Follicular lymphoma: 10 years of therapy. Klinicheskaya onkogematologiya. 2012;5(3):204–13. (In Russ)]

  4. Morra E, Lazzarino M, Castello A, et al. Bone marrow and blood involvement by non-Hodgkin’s lymphoma: A study of clinicopathologic correlations and prognosis significance in relationship to the Working Formulation. Eur J Haemat. 2089;42(5):445–53. doi: 10.1111/j.1600-0609.1989.tb01469.x.

  5. Bain BJ. Bone marrow aspiration. J Clin Pathol. 2001;54(9):657–63. doi: 10.1136/jcp.54.9.657.

  6. Schwonzen M, Pohl C, Steinmetz T, et al. Bone marrow involvement in non-Hodgkin’s lymphoma: increased sensitivity by combination of immunology, cytomorphology and threphine histology. Br J Haematol. 1992;81(3):362–9. doi: 10.1111/j.1365-2141.1992.tb08240.x.

  7. Sah SP, Matutes E, Wotherspoon P, et al. A comparison of flow cytometry, bone marrow biopsy, and bone marrow aspirates in the detection of lymphoid infiltration in B cell disorders. J Clin Pathol. 2003;56(2):129–32. doi: 10.1136/jcp.56.2.129.

  8. Пластинина Л.В., Ковригина А.М., Нестерова А.С. и др. Поражение костного мозга при фолликулярной лимфоме 3-го цитологического типа. Гематология и трансфузиология. 2018;63(S1):12–4.

    [Plastinina LV, Kovrigina AM, Nesterova AS, et al. Bone marrow lesions in grade 3 follicular lymphoma. Gematologiya i transfuziologiya. 2018;63(S1):12–4. (In Russ)]

  9. Френкель М.А., Чигринова Е.В., Купрышина Н.А., Павловская А.И. Диагностическое значение исследования отпечатков трепанобиоптатов костного мозга при периферических неходжкинских лимфомах. Клиническая лабораторная диагностика. 2007;1:44–7.

    [Frenkel MA, Chigrinova EV, Kupryshina NA, Pavlovskaya AI. Diagnostic value of the analysis of bone marrow core biopsy imprints in peripheral non-Hodgkin’s lymphomas. Klinicheskaya laboratornaya diagnostika. 2007;1:44–7. (In Russ)]

  10. Ruthenford SC, Li V, Chion P, et al. Bone marrow biopsies do not impact response assessment for follicular lymphoma patients treated on clinical trials. Br J Haemat. 2017;179(2):242–5. doi: 10.1111/bjh.14839.

  11. Луговская С.А., Почтарь М.Е. Морфология клеток костного мозга в норме и патологии. Тверь: Триада, 2018. 246 с.

    [Lugovskaya SA, Pochtar ME. Morfologiya kletok kostnogo mozga v norme i patologii. (The morphology of bone marrow cells under normal and pathological conditions.) Tver: Triada Publ.; 2018. 246 p. (In Russ)]

  12. Фалалеева Н.А. Фолликулярная лимфома: клиническое и иммунопатогенетическое обоснование рациональной терапии. Дис. … д-ра мед. наук. М., 2017.

    [Falaleeva NA. Follikulyarnaya limfoma: klinicheskoe i immunopatogeneticheskoe obosnovanie ratsionalnoi terapii. (Follicular lymphoma: clinical and immunopathogenetic justification of rational therapy.) [dissertation] Moscow; 2017. (In Russ)]

  13. Gomyo H, Shimoyama K, Minagava K, et al. Morphologic, cytometric and cytogenetic evaluation of bone marrow involvement in B-cell lymphoma. Haematologica. 2003;88(12):1358–65.

  14. De la Motte Rouge T, Schneider M. Anemia in lymphoma. Bull Cancer. 2005;92(5):429–31.

  15. Moullet I, Salles G, Ketterer N, et al. Frequency and significance of anemia in non–Hodgkin’s lymphoma. Ann Oncol. 1998;9(10):1109–15. doi: 10.1023/a:1008498705032.

  16. Park J. Follicular lymphoma in leukemic phase with unusual morphology at diagnoses. Blood Res. 2015;50(4):193–5. doi: 10.5045/br.2015.50.4.193.

  17. Gine E, Montoto S, Bosch F, et al. The Follicular Lymphoma International Prognostic Index (FLIPI) and histological subtype are most important factors to predict histological transformation in follicular lymphoma. Ann Oncol. 2006;17(10):1539–45. doi: 10.1093/annonc/mdl162.

  18. Solal-Celigny P, Roy P, Colombat P, et al. Follicular lymphoma international prognostic index. Blood. 2004;104(5):1258–65. doi: 10.1182/blood-2003-12-4434.

  19. Jacobi N, Rogers TB, Peterson BA. Prognostic factors in follicular lymphoma: a single institution study. Oncol Rep. 2008;20(1):185–93. doi: 10.3892/or.20.1.185.

  20. Vitolo U, Ferreri AJ, Montoto S. Follicular lymphoma. Crit Rev Oncol Hematol. 2008;66(3):248–61. doi: 10.1016/j.critrevonc.2008.01.014.

  21. Kumagai S, Tashima M, Fujikawa J, et al. Ratio of peripheral blood absolute lymphocyte count to absolute monocyte count at diagnosis is associated with progression-free survival in follicular lymphoma. Int J Hematol. 2014;99(6):737–42. doi: 10.1007/s12185-014-1576-0.

  22. Jelicic J, Balint MT, Jovanovic MP, et al. The role of lymphocyte to monocyte ratio, microvessel density and high СD44 tumor cell expression in non Hodgkin lymphomas. Pathol Oncol Res. 2016;22(3):567–77. doi: 10.1007/s12253-015-0032-7.

  23. Marchtselli L, Bari A, Anastasia A, et al. Prognostic role absolute monocyte and absolute lymphocyte counts in patients with advanced-stage follicular lymphoma in the rituximab era: an analysis from the FOLL05 trial of the Fondazione Italiana Linfomi. Br J Haematol. 2015;169(4):544–51. doi: 10.1111/bjh.13332.

Лимфома Ходжкина: результаты анализа данных регионального регистра (Волгоград)

К.Д. Капланов1,2, Н.П. Волков1, Т.Ю. Клиточенко1, И.В. Матвеева1, А.Л. Шипаева1, М.Н. Широкова1, Н.В. Давыдова3, Э.Г. Гемджян4

1 ГБУЗ «Волгоградский областной клинический онкологический диспансер», ул. Землячки, д. 78, Волгоград, Российская Федерация, 400138

2 ГБУ «Волгоградский медицинский научный центр», ул. Рокоссовского, д. 1Г, Волгоград, Российская Федерация, 400081

3 ГУЗ «Консультативно-диагностическая поликлиника № 2», ул. Ангарская, д. 114А, Волгоград, Российская Федерация, 400081

4 ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167

Для переписки: Камиль Даниялович Капланов, канд. мед. наук, ул. Землячки, д. 78, Волгоград, Российская Федерация, 400138; e-mail: kamilos@mail.ru

Для цитирования: Капланов К.Д., Волков Н.П., Клиточенко Т.Ю. и др. Лимфома Ходжкина: результаты анализа данных регионального регистра (Волгоград). Клиническая онкогематология. 2019;12(4):363–76.

DOI: 10.21320/2500-2139-2019-12-4-363-376


РЕФЕРАТ

Актуальность. В настоящей работе рассматриваются возможности терапии первой и второй линий, а также значение различных факторов риска в популяции всех впервые выявленных больных лимфомой Ходжкина (ЛХ) за 14-летний период, по данным регионального регистра (Волгоград).

Материалы и методы. С 2003 по 2017 г. в популяционный регистр отделения гематологии ГБУЗ «Волгоградский областной клинический онкологический диспансер» включены все пациенты с впервые установленным диагнозом ЛХ (n = 622): 272 (44 %) мужчины, 350 (56 %) женщин, в возрасте 18–84 года (средний возраст 38 лет, медиана 33 года). Пациенты с ранними стадиями без факторов риска — 97 (16 %), ранними стадиями с факторами риска — 165 (27 %), с распространенными стадиями — 360 (59 %), симптомами интоксикации (В-стадия) — 308 (50 %), наличием большого очага опухоли (≥ 10 см) — 179 (29 %). Лечение по схеме ABVD получало 190 (30,5 %) больных, усиленный BEACO(D)PP — 39 (6 %), BEACO(D)PP-14 — 159 (26 %), стандартный BEACO(D)PP — 200 (32 %), IVDG — 25 (4 %), другие режимы — 9 (1,5 %). Вторую линию терапии получало 120 (19 %) из 622 больных. На конец августа 2018 г. под наблюдением оставалось 514 (83 %) человек, умерло — 108 (17 %). Прогностическое значение международного прогностического индекса (IPS), ПЭТ и других факторов было оценено в многофакторном регрессионном анализе Кокса. Фармакоэкономическая составляющая различий между опциями терапии первой линии была проанализирована с помощью модели Маркова.

Результаты. В группе пациентов с распространенными стадиями ЛХ, получавших интенсифицированные варианты BEACO(D)PP (усиленный и BEACO(D)PP-14), 5- и 10-летняя общая выживаемость (ОВ) составила 83 и 74 % соответственно, медиана ОВ не достигнута. На фоне стандартного BEACO(D)PP при распространенных стадиях ЛХ медиана ОВ была 139 мес. (11,6 года), показатели 5- и 10-летней ОВ — 68 и 54 % соответственно (= 0,012). В группе с ранними стадиями и неблагоприятным прогнозом, где применялись интенсифицированные варианты BEACO(D)PP, 5- и 10-летняя ОВ была 100 и 90 % соответственно, в объединенной группе ABVD и стандартного BEACO(D)PP — 83 и 75 % (= 0,035). Замена прокарбазина на дакарбазин в стандартном и усиленных вариантах BEACOPP не отразилась на эффективности терапии. Марковский анализ показал преимущество интенсифицированных вариантов лечения для ранних стадий с неблагоприятным прогнозом и для распространенных стадий в количестве лет добавленной жизни. Из 7 факторов IPS на ОВ значимо влияли мужской пол, возраст ≥ 45 лет, гемоглобин < 105 г/л и альбумин < 40 мг/л. На основании этих данных предложен скорректированный прогностический индекс.

Заключение. Преимущество интенсифицированной стратегии терапии первой линии при ЛХ находит отражение в показателях выживаемости и имеет фармакоэкономическое обоснование. Значение некоторых лабораторных факторов риска IPS может быть пересмотрено; в частности, очевидно возрастающее значение ПЭТ для прогнозирования потребности в терапии «спасения».

Ключевые слова: лимфома Ходжкина, BEACO(D)PP, ABVD, международный прогностический индекс, анализ выживаемости, фармакоэкономика, модель Маркова, «добавленные годы жизни» (LYG), «отношение затраты-эффективность» (ICER).

Получено: 21 февраля 2019 г.

Принято в печать: 17 сентября 2019 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Jaffe ES, Arber DA, Campo E, et al. Hematopathology, 2nd edition. Elsevier Ltd.; 2017. 1216 p.

  2. Glaser SL, Jarrett RF. The epidemiology of Hodgkin’s disease. Baill Clin Haematol. 1996;9(3):401–16. doi: 10.1016/s0950-3536(96)80018-7.

  3. Злокачественные новообразования в России в 2017 г. (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П.А. Герцена, 2018. 250 с.

    [Kaprin AD, Starinskii VV, Petrova GV, eds. Zlokachestvennye novoobrazovaniya v Rossii v 2017 godu (zabolevaemost’ i smertnost’). (Malignancies in Russia in 2017: incidence and mortality.) Moscow: MNIOI im. P.A. Gertsena; 2018. 250 p. (In Russ)]

  4. Grufferman S, Cole P, Smith PG, et al. Hodgkin’s disease in siblings. N Engl J Med. 1977;296(5):248–50. doi: 10.1056/NEJM197702032960504.

  5. Lynch HT, Marcus JN, Lynch JF. Genetics of Hodgkin’s and non-Hodgkin’s lymphoma: a review. Cancer Invest. 1992;10(3):247–56. doi: 10.3109/07357909209032768.

  6. Mack TM, Cozen W, Shibata DK, et al. Concordance for Hodgkin’s disease in identical twins suggesting genetic susceptibility to the young-adult form of the disease. N Engl J Med. 1995;332(7):413–8. doi: 10.1056/NEJM199502163320701.

  7. Horwitz M, Wiernik PH. Pseudoautosomal linkage of Hodgkin disease. Am J Hum Genet. 1999;65(5):1413–22. doi: 10.1086/302608.

  8. Weiss LM, Strickler JG, Warnke RA, et al. Epstein-Barr viral DNA in tissues of Hodgkin’s disease. Am J Pathol. 1987;129(1):86–91.

  9. Alexander FE, Jarrett RF, Lawrence D, et al. Risk factors for Hodgkin’s disease by Epstein-Barr virus (EBV) status: prior infection by EBV and other agents. Br J Cancer. 2000;82(5):1117–21. doi: 10.1054/bjoc.1999.1049.

  10. Andrieu JM, Roithmann S, Tourani JM, et al. Hodgkin’s disease during HIV1 infection: the French registry experience. French Registry of HIV-associated Tumors. Ann Oncol. 1993;4(8):635–41. doi: 10.1093/oxfordjournals.annonc.a058617.

  11. Tirelli U, Errante D, Dolcetti R, et al. Hodgkin’s disease and human immunodeficiency virus infection: clinicopathologic and virologic features of 114 patients from the Italian Cooperative Group on AIDS and Tumors. J Clin Oncol. 1995;13(7):1758–67. doi: 10.1200/JCO.1995.13.7.1758.

  12. Tubiana M, Henry-Amar M, Carde P, et al. Toward comprehensive management tailored to prognostic factors of patients with clinical stages I and II Hodgkin’s disease. The EORTC Lymphoma Group controlled clinical trials: 1964–1987. Blood. 1989;73(1):47–56.

  13. Diehl V, Stein H, Hummel M, et al. Hodgkin’s lymphoma: biology and treatment strategies for primary, refractory, and relapsed disease. Hematology. 2003;2003(1):225–47. doi: 10.1182/asheducation-2003.1.225.

  14. Hasenclever D, Diehl V, Armitage JO, et al. A prognostic score for advanced Hodgkin’s disease. International Prognostic Factors Project on Advanced Hodgkin’s Disease. N Engl J Med. 1998;339(21):1506–14. doi: 10.1056/NEJM199811193392104.

  15. Andre MP, Girinsky T, Federico M, et al. Early positron emission tomography response-adapted treatment in stage I and II Hodgkin lymphoma: final results of the randomized EORTC/LYSA/FIL H10 trial. J Clin Oncol. 2017;35(16):1786–94. doi: 10.1200/JCO.2016.68.6394.

  16. Johnson P, Federico M, Kirkwood A, et al. Adapted treatment guided by interim PET-CT scan in advanced Hodgkin’s lymphoma. N Engl J Med. 2016;374(25):2419–29. doi: 10.1056/NEJMoa1510093.

  17. Green MR, Monti S, Rodig SJ, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116(17):3268–77. doi: 10.1182/blood-2010-05-282780.

  18. Roemer MG, Advani RH, Ligon AH, et al. PD-L1 and PD-L2 genetic alterations define classical Hodgkin lymphoma and predict outcome. J Clin Oncol. 2016;34(23):2690–7. doi: 10.1200/JCO.2016.66.4482.

  19. Roemer MGM, Redd RA, Cader FZ, et al. Major histocompatibility complex Class II and programmed death ligand 1 expression predict outcome after programmed death 1 blockade in classic Hodgkin lymphoma. J Clin Oncol. 2018;36(10):942–50. doi: 10.1200/JCO.2017.77.3994.

  20. Liu L, Giusti F, Schaapveld M, et al. Survival differences between patients with Hodgkin lymphoma treated inside and outside clinical trials. A study based on the EORTC-Netherlands Cancer Registry linked data with 20 years of follow-up. Br J Haematol. 2017;176(1):65–75. doi: 10.1111/bjh.14379.

  21. Капланов К.Д., Шипаева А.Л., Васильева В.А. и др. Эффективность программ химиотерапии первой линии при различных стадиях лимфомы Ходжкина. Клиническая онкогематология. 2012;5(1):22–9.

    [Kaplanov KD, Shipaeva AL, Vasil’eva VA, et al. Efficacy of first line chemotherapy programs for different stages of Hodgkin’s lymphomas. Klinicheskaya onkogematologiya. 2012;5(1):22–9. (In Russ)]

  22. Капланов К.Д., Шипаева А.Л., Васильева В.А. и др. Международный прогностический индекс при распространенных стадиях лимфомы Ходжкина в условиях современной терапии. Клиническая онкогематология. 2013;6(3):294–302.

    [Kaplanov KD, Shipaeva AL, Vasil’eva VA, et al. International prognostic score in advanced Hodgkin’s lymphoma. Klinicheskaya onkogematologiya. 2013;6(3):294–302. (In Russ)]

  23. Капланов К.Д., Волков Н.П., Клиточенко Т.Ю. и др. Первая линия терапии лимфомы из клеток зоны мантии: анализ эффективности и клинико-экономическая оценка. Клиническая онкогематология. 2018;11(2):150–9. doi: 10.21320/2500-2139-2018-11-2-150-159.

    [Kaplanov KD, Volkov NP, Klitochenko TYu, et al. First-Line Treatment of Mantle-Cell Lymphoma: Analysis of Effectiveness and Cost-Effectiveness. Clinical oncohematology. 2018;11(2):150–9. doi: 10.21320/2500-2139-2018-11-2-150-159. (In Russ)]

  24. Капланов К.Д., Волков Н.П., Клиточенко Т.Ю. и др. Результаты анализа регионального регистра пациентов с диффузной В-крупноклеточной лимфомой: факторы риска и проблемы иммунохимиотерапии. Клиническая онкогематология. 2019;12(2):154–64. doi: 10.21320/2500-2139-2019-12-2-154-164.

    [Kaplanov KD, Volkov NP, Klitochenko TYu, et al. Analysis Results of the Regional Registry of Patients with Diffuse Large B-cell Lymphoma: Risk Factors and Chemo-Immunotherapy Issues. Clinical oncohematology. 2019;12(2):154–64. doi: 10.21320/2500-2139-2019-12-2-154-164. (In Russ)]

  25. Kaplanov K, Klitochenko T, Shipaeva A, et al. Combination of idarubicin, vinblastine, dacarbazine, and gemcitabine (IVDG) as therapy for elderly patients with Hodgkin lymphoma with cardiac and pulmonary comorbidity. Hematol Oncol. 2017;35(Suppl 2):317. doi: 1002/hon.2439_57.

  26. Капланов К.Д., Клиточенко Т.Ю., Шипаева А.Л. и др. Программа IVDG — возможный выбор первой линии терапии лимфомы Ходжкина у пациентов пожилого возраста с сопутствующими сердечно-сосудистыми и легочными заболеваниями. Клиническая онкогематология. 2017;10(3):358–65. doi: 10.21320/2500-2139-2017-10-3-358-365.

    [Kaplanov KD, Klitochenko TYu, Shipaeva АL, et al. The IVDG Regimen is the Possible Treatment of Choice as First Line Therapy For Hodgkin’s Lymphoma in Elderly Patients with Cardiovascular and Pulmonary Comorbidity. Clinical oncohematology. 2017;10(3):358–65. doi: 10.21320/2500-2139-2017-10-3-358-365. (In Russ)]

  27. Bosh TM. Pharmacogenomics of drug-metabolizing enzymes and drug transporters in chemotherapy. Meth Mol Biol. 2008;448:63–76. doi: 10.1007/978-1-59745-205-2_5.

  28. Lee NH. Pharmacogenetics of drug metabolizing enzymes and transporters: effects on pharmacokinetics and pharmacodynamics of anticancer agents. Anti-cancer Agents Med Chem. 2010;10(8):583–92. doi: 10.2174/187152010794474019.

  29. Ekhart C, Rodenhuis S, Smits PH, et al. An overview of the relations between polymorphisms in drug metabolising enzymes and drug transporters and survival after cancer drug treatment. Cancer Treat Rev. 2009;35(1):18–31. doi: 10.1016/j.ctrv.2008.07.003.

  30. Von Treschkow B, Kreissl S, Goergen H, et al. Intensive treatment strategies in advanced stage Hodgkin’s lymphoma (HD9 and HD12): analysis of long-term survival in two randomised trial. Lancet Haematol. 2018;5(10):e462–e473. doi: 10.1016/S2352-3026(18)30140-6.

  31. Skoetz N, Will A, Monsef I. Comparison of first-line chemotherapy including escalated BEACOPP versus chemotherapy including ABVD for people with early unfavorable or advanced stage Hodgkin lymphoma. Cochrane Database Syst Rev. 2017;5:CD007941. doi: 10.1002/14651858.CD007941.pub3.

  32. Rancea M, Monsef I, von Tresckow B, et al. High-dose chemotherapy followed by autologous stem cell transplantation for patients with relapsed/refractory Hodgkin lymphoma. Cochrane Database Syst Rev. 2013;6:CD009411. doi: 10.1002/14651858.CD009411.pub2.

  33. von Tresckow B, Moskowitz CH. Treatment of relapsed and refractory Hodgkin lymphoma. Semin Hematol. 2016;53(3):180–5. doi: 10.1053/j.seminhematol.2016.05.010.

  34. Kobe C, Goergen H, Baues C, et al. Outcome-based interpretation of early interim PET in advanced-stage Hodgkin lymphoma. Blood. 2018;132(21):2273–9. doi: 10.1182/blood-2018-05-852129.

  35. Diehl V, Franklin J, Pfreundschuh M, et al. Standard and increased-dose BEACOPP chemotherapy compared with COPP-ABVD for advanced Hodgkin’s disease. N Engl J Med. 2003;348(24):2386–95. doi: 10.1056/NEJMoa022473.

  36. Moccia AA, Donaldson J, Chhanabhai M, et al. International Prognostic Score in Advanced-Stage Hodgkin’s Lymphoma: Altered Utility in the Modern Era. J Clin Oncol. 2012;30(27):3383–8. doi: 10.1200/JCO.2011.41.0910.

  37. Gordon LI, Hong F, Fisher RI, et al. Randomized phase III trial of ABVD versus Stanford V with or without radiation therapy in locally extensive and advanced-stage Hodgkin lymphoma: an intergroup study coordinated by the Eastern Cooperative Oncology Group (E2496). J Clin Oncol. 2013;31(6):684–91. doi: 10.1200/JCO.2012.43.4803.

  38. Dann EJ, Blumenfeld Z, Bar-Shalom R, et al. A 10-year experience with treatment of high and standard risk Hodgkin disease: six cycles of tailored BEACOPP, with interim scintigraphy, are effective and female fertility is preserved. Am J Hematol. 2012;87(1):32–6. doi: 10.1002/ajh.22187.

  39. Dann EJ, Bairey O, Bar-Shalom R, et al. Modification of initial therapy in early and advanced Hodgkin lymphoma, based on interim PET/CT is beneficial: a prospective multicenter trial of 355 patients. Br J Haematol. 2017;178(5):709–18. doi: 10.1111/bjh.14734.

  40. Sieber M, Bredenfeld H, Josting A, et al. 14-day variant of the bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and prednisone regimen in advanced-stage Hodgkin’s lymphoma: results of a pilot study of the German Hodgkin’s Lymphoma Study Group. J Clin Oncol. 2003;21(9):1734–9. doi: 10.1200/JCO.2003.06.028.

  41. Engert A, Haverkamp H, Kobe C, et al. Reduced-intensity chemotherapy and PET-guided radiotherapy in patients with advanced stage Hodgkin’s lymphoma (HD15 trial): a randomised, open-label, phase 3 non-inferiority trial. Lancet. 2012;379(9828):1791–9. doi: 10.1016/S0140-6736(11)61940-5.

  42. Engert A, Diehl V, Franklin J, et al. Escalated-dose BEACOPP in the treatment of patients with advanced-stage Hodgkin’s lymphoma: 10 years of follow-up of the GHSG HD9 study. J Clin Oncol. 2009;27(27):4548–54. doi: 10.1200/JCO.2008.19.8820.

  43. Skoetz N, Trelle S, Rancea M, et al. Effect of initial treatment strategy on survival of patients with advanced-stage Hodgkin’s lymphoma: a systematic review and network meta-analysis. Lancet Oncol. 2013;14(10):943–52. doi: 10.1016/S1470-2045(13)70341-3.

Экспрессия молекулы адгезии CD56 на опухолевых плазматических клетках в костном мозге как фактор прогноза при множественной миеломе

М.В. Фирсова, Л.П. Менделеева, А.М. Ковригина, М.В. Соловьев, Н.Л. Дейнеко, М.Ю. Дроков, В.Г. Савченко

ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167

Для переписки: Майя Валерьевна Фирсова, канд. мед. наук, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167; e-mail: firs-maia@yandex.ru

Для цитирования: Фирсова М.В., Менделеева Л.П., Ковригина А.М. и др. Экспрессия молекулы адгезии CD56 на опухолевых плазматических клетках в костном мозге как фактор прогноза при множественной миеломе. Клиническая онкогематология. 2019;12(4):377–84.

DOI: 10.21320/2500-2139-2019-12-4-377-384


РЕФЕРАТ

Цель. Изучить иммуногистохимические параметры опухолевых плазматических клеток костного мозга и оценить влияние экспрессии молекулы адгезии CD56 на общую выживаемость (ОВ) больных множественной миеломой (ММ).

Материалы и методы. В исследование включено 35 пациентов (19 мужчин, 16 женщин) в возрасте 23–73 года (медиана 58 лет) с впервые диагностированной ММ. В дебюте заболевания плазмоцитома диагностирована у 21 больного. Всем пациентам выполнена трепанобиопсия костного мозга с последующими гистологическим и иммуногистохимическим (ИГХ) исследованиями. Для ИГХ-исследования использовалась панель антител к CD56, CD166, CXCR4, Ki-67, c-MYC/CD138. Кривые выживаемости построены методом Каплана—Мейера с оценкой статистической значимости с помощью F-теста Кокса.

Результаты. Средние значения экспрессии большинства исследуемых маркеров (CD56, CXCR4, c-MYC, Ki-67) в костном мозге у больных без плазмоцитомы (n = 14) оказались выше по сравнению с пациентами с плазмоцитомой в дебюте ММ. Под средним значением экспрессии подразумевается процентное отношение плазматических клеток, экспрессирующих исследуемый маркер, к общему числу клеток опухолевого субстрата. Вероятно, высокая экспрессия хемокиновых рецепторов (CXCR4) и молекул адгезии (CD56) сдерживает миграцию плазматических клеток и препятствует экстрамедуллярному росту опухоли. При сравнении экспрессии белков опухолевыми плазматическими клетками в костном мозге в группах с костной экстрамедуллярной плазмоцитомой отчетливая закономерность прослеживается в отношении молекулы адгезии CD56. Так, экспрессия CD56 статистически значимо (< 0,05) ниже по числу экспрессирующих маркер опухолевых плазматических клеток в костном мозге у больных ММ с экстрамедуллярной плазмоцитомой, чем у пациентов с костной плазмоцитомой (1 ± 1 vs 65,71 ± 12,12 %). При сопоставлении ОВ больных ММ в зависимости от экспрессии CD56 опухолевыми плазматическими клетками костного мозга показано, что 4-летняя ОВ пациентов с экспрессией CD56 в костном мозге была статистически значимо выше и составила 80 vs 38 % в группе с экспрессией CD56 менее чем в 10 % опухолевых клеток.

Заключение. Экспрессия молекулы адгезии CD56 на опухолевых плазматических клетках в костном мозге может служить фактором прогноза при ММ. Вероятно, при обнаружении экспрессии CD56 менее чем в 10 % опухолевых плазматических клетках костного мозга в дебюте болезни необходимо более тщательное дополнительное обследование пациента для исключения экстрамедуллярных очагов поражения в различных органах и тканях.

Ключевые слова: множественная миелома, костная плазмоцитома, экстрамедуллярная плазмоцитома, трепанобиопсия костного мозга, CD56.

Получено: 12 мая 2019 г.

Принято в печать: 2 сентября 2019 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Фрейдлин И.С. Система мононуклеарных фагоцитов. М.: Медицина, 1984. 272 c.

    [Freidlin IS. Sistema mononuklearnykh fagotsitov. (The system of mononuclear phagocytes.) Moscow: Meditsina Publ.; 1984. 272 p. (In Russ)]

  2. Van Furth R, Raeburn JA, van Zwet TL. Characteristics of human mononuclear phagocytes. Blood. 1979;54(2):485–500.

  3. Mitsiades CS, McMillin DW, Klippel S, et al. The role of the bone marrow microenvironment in the pathophysiology of myeloma and its significance in the development of more effective therapies. Hematol Oncol Clin N Am. 2007;21(6):1007–34. doi: 10.1016/j.hoc.2007.08.007.

  4. Van Camp B, Durie BG, Spier C, et al. Plasma cells in multiple myeloma express a natural killer cell-associated antigen: CD56 (NKH-1; Leu-19). Blood. 1990;76(2):377–82.

  5. Sahara N, Takeshita A, Shigeno K, et al. Clinicopathological and prognostic characteristics of CD56-negative multiple myeloma. Br J Haematol. 2002;117(4):882–5. doi: 10.1046/j.1365-2141.2002.03513.x.

  6. Cayrol R, Wosik K, Berard JL, et al. Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Nat Immunol. 2008;9(2):137–45. doi: 10.1038/ni1551.

  7. Masedunskas A, King JA, Tan F, et al. Activated leukocyte cell adhesion molecule is a component of the endothelial junction involved in transendothelial monocyte migration. FEBS Lett. 2006;580(11):2637–45. doi: 10.1016/j.febslet.2006.04.013.

  8. Avet-Loiseau H, Gerson F, Magrangeas F, et al. Rearrangements of the c-myc oncogene are present in 15% of primary human multiple myeloma tumors. Blood. 2001;98(10):3082–6. doi: 10.1182/blood.v98.10.3082.

  9. Gabrea A, Martelli ML, Qi Y, et al. Secondary genomic rearrangements involving immunoglobulin or MYC loci show similar prevalences in hyperdiploid and nonhyperdiploid myeloma tumors. Genes Chromos Cancer. 2008;47(7):573–90. doi: 10.1002/gcc.20563.

  10. Gerdes J. Ki-67 and other proliferation markers useful for immunohistological diagnostic and prognostic evaluations in human malignancies. Semin Cancer Biol. 1990;1(3):199–206.

  11. Endl E, Steinbach P, Knuchel R, et al. Analysis of cell cycle-related Ki-67 and p120 expression by flow cytometric BrdUrd-Hoechst/7AAD and immunolabeling technique. Cytometry. 1997;29(3):233–41. doi: 10.1002/(sici)1097-0320(19971101)29:3<233::aid-cyto6>3.3.co;2-3.

  12. Kausch I, Lingnau A, Endl E, et al. Antisense treatment against Ki-67 mRNA inhibits proliferation and tumor growth in vitro and in vivo. Int J Cancer. 2003;105(5):710–6. doi: 10.1002/ijc.11111.

  13. Greipp PR, Lust JA, O’Fallon WM, et al. Plasma cell labeling index and beta 2-microglobulin predict survival independent of thymidine kinase and C-reactive protein in multiple myeloma. Blood. 1993;81(12):3382–7.

  14. Tsirakis G, Pappa CA, Spanoudakis M, et al. Clinical significance of sCD105 in angiogenesis and disease activity in multiple myeloma. Eur J Intern Med. 2012;23(4):368–73. doi: 10.1016/j.ejim.2012.01.012.

  15. Tsirakis G, Pappa CA, Psarakis FE, et al. Serum concentrations and clinical significance of soluble CD40 ligand in patients with multiple myeloma. Med Oncol. 2012;29(4):2396–401. doi: 10.1007/s12032-012-0203-2.

  16. Tsirakis G, Pappa CA, Kaparou M, et al. The relationship between soluble receptor of interleukin-6 with angiogenic cytokines and proliferation markers in multiple myeloma. Tumour Biol. 2013;34(2):859–64. doi: 10.1007/s13277-012-0618-6.

  17. Rossi D, Zlotnik A. The biology of chemokines and their receptors. Annu Rev Immunol. 2000;18(1):217–42. doi: 10.1146/annurev.immunol.18.1.217.

  18. Oberlin E, Amara A, Bachelerie F, et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature. 1996;382(6594):833–5. doi: 10.1038/382833a0.

  19. Piazza R, Valletta S, Winkelmann N, et al. Recurrent SETBP1 mutations in atypical chronic myeloid leukemia. Nat Genet. 2013;45(1):18–24. doi: 10.1038/ng.2495.

  20. Blade J, Fernandez de Larrea C, Rosinol L, et al. Soft-tissue plasmacytomas in multiple myeloma: incidence, mechanisms of extramedullary spread, and treatment approach. J Clin Oncol. 2011;29(28):3805–12. doi: 10.1200/JCO.2011.34.9290.

  21. Usmani SZ, Heuck C, Mitchell A, et al. Extramedullary disease portends poor prognosis in multiple myeloma and is over-represented in high-risk disease even in the era of novel agents. Haematologica. 2012;97(11):1761–7. doi: 10.3324/haematol.2012.065698.

  22. Varettoni M, Corso A, Pica G, et al. Incidence, presenting features and outcome of extramedullary disease in multiple myeloma: a longitudinal study on 1003 consecutive patients. Ann Oncol. 2009;21(2):325–30. doi: 10.1093/annonc/mdp329.

  23. Weinstock M, Aljawai Y, Morgan EA, et al. Incidence and clinical features of extramedullary multiple myeloma in patients who underwent stem cell transplantation. Br J Haematol. 2015;169(6):851–8. doi: 10.1111/bjh.13383.

  24. Bao L, Lai Y, Liu Y, et al. CXCR4 is a good survival prognostic indicator in multiple myeloma patients. Leuk Res. 2013;37(9):1083–8. doi: 10.1016/j.leukres.2013.06.002.

  25. Xu L, Mohammad KS, Wu H, et al. Cell Adhesion Molecule CD166 Drives Malignant Progression and Osteolytic Disease in Multiple Myeloma. Cancer Res. 2016;76(23):6901–10. doi: 10.1158/0008-5472.CAN-16-0517.

Иммуногистохимический подтип и параметры международного прогностического индекса в новой модели прогноза диффузной B-крупноклеточной лимфомы

С.В. Самарина1, А.С. Лучинин1, Н.В. Минаева1, И.В. Парамонов1, Д.А. Дьяконов1, Е.В. Ванеева1, В.А. Росин1, С.В. Грицаев2

1 ФГБУН «Кировский НИИ гематологии и переливания крови ФМБА », ул. Красноармейская, д. 72, Киров, Российская Федерация, 610027

2 ФГБУ «Российский НИИ гематологии и трансфузиологии ФМБА», ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024

Для переписки: Светлана Валерьевна Самарина, ул. Красноармейская, д. 72, Киров, Российская Федерация, 610027; тел.: +7(912)732-47-56; e-mail: samarinasv2010@mail.ru

Для цитирования: Самарина С.В., Лучинин А.С., Минаева Н.В. и др. Иммуногистохимический подтип и параметры международного прогностического индекса в новой модели прогноза диффузной B-крупноклеточной лимфомы. Клиническая онкогематология. 2019;12(4):385–90.

DOI: 10.21320/2500-2139-2019-12-4-385-390


РЕФЕРАТ

Цель. Разработать комплексную модель прогнозирования течения диффузной В-крупноклеточной лимфомы (ДВКЛ) с использованием иммуногистохимического подтипа опухоли и параметров международного прогностического индекса (IPI).

Материалы и методы. Из 104 больных ДВКЛ в базе данных критериям включения соответствовал 81 (77,9 %). Медиана возраста составила 58 лет (диапазон 23–83 года). Все больные получали лечение по схеме R-СНОР. Для создания прогностической модели общей выживаемости (ОВ) больных ДВКЛ использовали метод машинного обучения — деревья классификации и регрессии. Анализ ОВ проводился по методу Каплана—Мейера. Для сравнения кривых выживаемости применяли лог-ранговый критерий и отношение рисков (ОР). Статистической значимостью любого теста считался полученный двусторонний уровень < 0,05.

Результаты. Согласно построенной модели, выделены три группы пациентов: 1-я — группа низкого риска (сочетание низкого, промежуточного низкого и промежуточного высокого риска по IPI и GCB-подтипа); 2-я — группа промежуточного риска (сочетание низкого, промежуточного низкого и промежуточного высокого риска по IPI и non-GCB-подтипа); 3-я — группа высокого риска (независимо от подтипа). В группе низкого риска (n = 26) 2-летняя ОВ за исследуемый период составила 100 %. В группе промежуточного риска (n = 34) медиана ОВ не достигнута, 2-летняя ОВ составила 74 %, ожидаемая 5-летняя ОВ — 68 %. В группе высокого риска (n = 21) медиана ОВ была 25 мес., 2-летняя ОВ — 46 %, ожидаемая 5-летняя ОВ — 37 % (< 0,0001, лог-ранговый критерий). ОР, рассчитанное для группы высокого риска по сравнению с группами низкого и промежуточного, составило 5,1 (95%-й доверительный интервал 2,1–12,1; = 0,0003).

Заключение. Предложена новая комбинированная система прогноза ДВКЛ, включающая в себя параметры риска по IPI и иммуногистохимический подтип опухоли по алгоритму Ханса. Данная прогностическая система может использоваться в клинической практике для стратификации больных с ДВКЛ и подбора риск-адаптированной терапии.

Ключевые слова: диффузная В-крупноклеточная лимфома, общая выживаемость, прогноз, международный прогностический индекс, машинное обучение.

Получено: 18 марта 2019 г.

Принято в печать: 27 августа 2019 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Martellia M, Ferrerib AJM, Agostinellic C, et al. Diffuse large B-cell lymphoma. Crit Rev Oncol Hematol. 2013;87(2):146–71. doi: 10.1016/j.critrevonc.2012.12.009.

  2. Lynch RC, Gratzinger D, Advani RH. Clinical Impact of the 2016 Update to the WHO Lymphoma Classification. Curr Treat Options Oncol. 2017;18(7):45. doi: 10.1007/s11864-017-0483-z.

  3. Li X, Huang H, Xu B, et al. Dose-Dense Rituximab-CHOP versus Standard Rituximab-CHOP in Newly Diagnosed Chinese Patients with Diffuse Large B-Cell Lymphoma: A Randomized, Multicenter, Open-Label Phase 3 Trial. Cancer Res Treat. 2019;51(3):919–32. doi: 10.4143/crt.2018.230.

  4. Coiffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(4):235–42. doi: 10.1056/NEJMoa011795.

  5. Castellino A, Chiappella A, LaPlant BR, et al. Lenalidomide plus R-CHOP21 in newly diagnosed diffuse large B-cell lymphoma (DLBCL): long-term follow-up results from a combined analysis from two phase 2 trials. Blood Cancer J. 2018;8(11):108. doi: 10.1038/s41408-018-0145-9.

  6. Sharman JP, Forero-Torres A, Costa LJ, et al. Obinutuzumab plus CHOP is effective and has a tolerable safety profile in previously untreated, advanced diffuse large B-cell lymphoma: the phase II GATHER study. Leuk Lymphoma. 2018;60(4):894–903. doi: 10.1080/10428194.2018.1515940.

  7. Kameoka Y, Akagi T, Murai K, et al. Safety and efficacy of high-dose ranimustine (MCNU) containing regimen followed by autologous stem cell transplantation for diffuse large B-cell lymphoma. Int J Hematol. 2018;108(5):510–5. doi: 10.1007/s12185-018-2508-1.

  8. Sehn LH, Berry B, Chhanabhai M, et al. The revised International Prognostic Index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B-cell lymphoma treated with R-CHOP. Blood. 2007;109(5):1857–61. doi: 10.1182/blood-2006-08-038257.

  9. Biccler J, Eloranta S, de Nully Brown P, et al. Simplicity at the cost of predictive accuracy in diffuse large B-cell lymphoma: a critical assessment of the R-IPI, IPI, and NCCN-IPI. Cancer Med. 2018;7(1):114–22. doi: 10.1002/cam4.1271.

  10. Shipp MA, Harrington DP, Anderson JR, et al. A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med. 1993;329(14):987–94. doi: 10.1056/NEJM199309303291402.

  11. Li JM, Wang L, Shen Y, et al. Rituximab in combination with CHOP chemotherapy for the treatment of diffuse large B cell lymphoma in Chinese patients. Annals Hematol. 2007;86(9):639–45. doi: 10.1007/s00277-007-0320-8.

  12. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene-expression profiling. Nature. 2000;403(6769):503–51. doi: 10.1038/35000501.

  13. Wang KL, Chen C, Shi PF, et al. Prognostic Value of Morphology and Hans Classification in Diffuse Large B Cell Lymphoma. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2018;26(4):1079–85. doi: 10.7534/j.issn.1009-2137.2018.04.023.

  14. Rashidi A, Oak E, Carson KR, et al. Outcomes with R-CEOP for R-CHOP-ineligible patients with diffuse large B-cell lymphoma are highly dependent on cell of origin defined by Hans criteria. Leuk Lymphoma. 2016;57(5):1191–3. doi: 10.3109/10428194.2015.1096356.

  1. Ye ZY, Cao YB, Lin TY, Lin HL. Subgrouping and outcome prediction of diffuse large B-cell lymphoma by immunohistochemistry. Zhonghua Bing Li Xue Za Zhi. 2007;36(10):654–9.

  1. Montalban C, Diaz-Lopez A, Martin A, et al. Differential prognostic impact of GELTAMO-IPI in cell of origin subtypes of Diffuse Large B Cell Lymphoma as defined by the Hans algorithm. Br J Haematol. 2018;182(4):534–41. doi: 10.1111/bjh.15446.

  2. Tibiletti MG, Martin V, Bernasconi B, et al. BCL2, BCL6, MYC, MALT 1, and BCL10 rearrangements in nodal diffuse large B-cell lymphomas: a multicenter evaluation of a new set of fluorescent in situ hybridization probes and correlation with clinical outcome. Hum Pathol. 2009;40(5):645–52. doi: 10.1016/j.humpath.2008.06.032.

  3. Jaglal MV, Peker D, Tao J, Cultrera JL. Double and Triple Hit Diffuse Large B Cell Lymphomas and First Line Therapy. Blood. 2012;120:4885 [abstract].

  4. Kim M, Suh C, Kim J, Hong JY. Difference of Clinical Parameters between GCB and Non-GCB Subtype DLBCL. Blood. 2017;130:5231 [abstract].

  5. Da Costa CBT. Machine Learning Provides an Accurate Classification of Diffuse Large B-Cell Lymphoma from Immunohistochemical Data. J Pathol Inform. 2018;9(1):21. doi: 10.4103/jpi.jpi_14_18.

  6. Российские клинические рекомендации по диагностике и лечению лимфопролиферативных заболеваний. Под ред. И.В. Поддубной, В.Г. Савченко. М.: Буки Веди, 2016.

    [Poddubnaya IV, Savchenko VG, eds. Rossiiskie klinicheskie rekomendatsii po diagnostike i lecheniyu limfoproliferativnykh zabolevanii. (Russian clinical guidelines on diagnosis and treatment of lymphoproliferative disorders). Moscow: Buki Vedi Publ.; 2016. (In Russ)]

  7. Leval L, Harris NL. Variability in immunophenotype in diffuse large B-cell lymphoma and it‘s clinical relevance. Histopathol. 2003;43(6):509–28. doi: 10.1111/j.1365-2559.2003.01758.x.

  8. Skarbnik AP, Donato ML. Safety and Efficacy Data for Combined Checkpoint Inhibition with Ipilimumab (Ipi) and Nivolumab (Nivo) As Consolidation Following Autologous Stem Cell Transplantation (ASCT) for High-Risk Hematological Malignancies. Blood. 2018;132:256.

  9. Matsuki E, Younes A. Checkpoint Inhibitors and Other Immune Therapies for Hodgkin and Non-Hodgkin Lymphoma. Curr Treat Options Oncol. 2016;17(6):31. doi: 10.1007/s11864-016-0401-9.

  10. Kaneko H, Tsutsumi Y, Fujino T, et al. Favorable event free-survival of high-dose chemotherapy followed by autologous hematopoietic stem cell transplantation for higher risk diffuse large B-cell lymphoma in first complete remission. Hematol Rep. 2015;7(2):5812 [abstract]. doi: 10.4081/hr.2015.5812.

Опыт применения режима кондиционирования Thio/Mel перед трансплантацией аутологичных гемопоэтических стволовых клеток при множественной миеломе

С.В. Грицаев1, И.И. Кострома1, А.А. Жернякова1, И.М. Запреева1, Е.В. Карягина2, Ж.В. Чубукина1, С.А. Тиранова1, И.С. Мартынкевич1, С.С. Бессмельцев1, А.В. Чечеткин1

1 ФГБУ «Российский НИИ гематологии и трансфузиологии ФМБА», ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024

2 ГБУ «Городская больница № 15», ул. Авангардная, д. 4, Санкт-Петербург, Российская Федерация, 198205

Для переписки: Иван Иванович Кострома, канд. мед. наук, ул. 2-я Советская, д. 16, Санкт-Петербург, Российская Федерация, 191024; тел.: +7(921)784-82-82; e-mail: obex@rambler.ru

Для цитирования: Грицаев С.В., Кострома И.И., Жернякова А.А. и др. Опыт применения режима кондиционирования Thio/Mel перед трансплантацией аутологичных гемопоэтических стволовых клеток при множественной миеломе. Клиническая онкогематология. 2019;12(3):282–8.

doi: 10.21320/2500-2139-2019-12-3-282-288


РЕФЕРАТ

Актуальность. В связи с продолжающимся поиском комбинированных режимов кондиционирования как способа усиления циторедуктивного воздействия до выполнения одиночной трансплантации аутологичных гемопоэтических стволовых клеток (аутоТГСК) больным множественной миеломой (ММ) привлекательной опцией является добавление тиотепы к мелфалану.

Цель. Анализ данных пилотного исследования по изучению эффективности режима кондиционирования, включающего введение двух алкилирующих препаратов (тиотепа и мелфалан) с последующей аутоТГСК.

Материалы и методы. 9 больным выполнено 10 аутоТГСК с режимом кондиционирования, включавшим введение тиотепы 250 мг/м2 в день –5 и мелфалана 140 мг/м2 в день –2. После проведения аутоТГСК 8 пациентам назначали пегилированный филграстим. Сроки приживления трансплантата рассчитывали по абсолютному числу нейтрофилов ≥ 0,5 × 109/л и уровню тромбоцитов ≥ 20 × 109/л. Токсичность режима оценивали по критериям CTCAE v5.0. Показатели выживаемости рассчитывали с помощью кривых Каплана—Мейера.

Результаты. Введение тиотепы не потребовало назначения дополнительных препаратов. Частота развития мукозита и энтеропатии I–II степени тяжести составила 100 и 70 % соответственно. Повышение температуры тела зафиксировано при проведении 7 аутоТГСК. Пневмония развилась у 1 больной. Инфузия 1–3 доз тромбоконцентрата (медиана 2 дозы) потребовалась всем, за исключением одного, больным. Донорские эритроциты были перелиты 3 больным. Приживление трансплантата констатировано у всех больных в срок 10–14 дней. Медиана длительности госпитализации от дня 0 до выписки составила 16 койко-дней. После аутоТГСК у 6 из 9 больных констатировано улучшение качества ответа. Прогрессирование ММ имело место у больного с комплексным кариотипом. При последующем наблюдении прогрессирование зафиксировано у 2 пациентов. На декабрь 2018 г. медиана наблюдения за 9 больными от даты проведения аутоТГСК составила 9 мес. (диапазон 3–20 мес.), медиана выживаемости без прогрессирования — 17 мес., медиана общей выживаемости не достигнута.

Заключение. Приемлемая токсичность, улучшение качества ответа и его сохранение до 20 мес. дают основание рассматривать комбинированный режим кондиционирования Thio/Mel как возможную альтернативу стандартному режиму Mel200.

Ключевые слова: множественная миелома, трансплантация аутологичных гемопоэтических стволовых клеток, режим кондиционирования, тиотепа, мелфалан.

Получено: 26 декабря 2018 г.

Принято в печать: 25 мая 2019 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Бессмельцев С.С., Абдулкадыров К.М. Множественная миелома: руководство для врачей. М.: СИМК, 2016. 512 с.

    [Bessmeltsev SS, Abdulkadyrov KM. Mnozhestvennaya mieloma: rukovodstvo dlya vrachei. (Multiple myeloma: manual for physicians.) Moscow: SIMK Publ.; 2016. 512 p. (In Russ)]

  2. Менделеева Л.П., Вотякова О.М., Покровская О.С. и др. Национальные клинические рекомендации по диагностике и лечению множественной миеломы. Гематология и трансфузиология. 2016;61(1, прил. 2):1–24. doi: 10.18821/0234-5730-2016-61-1-S2-1-24.

    [Mendeleeva LP, Votyakova OM, Pokrovskaya OS, et al. National clinical guidelines on diagnosis and treatment of multiple myeloma. Gematologiya i transfuziologiya. 2016;61(1, Suppl 2):1–24. doi: 10.18821/0234-5730-2016-61-1-S2-1-24. (In Russ)]

  3. Palumbo A, Anderson K. Multiple myeloma. N Engl J Med. 2011;364(11):1046–60. doi: 10.1056/NEJMra1011442.

  4. Cavo M, Rajkumar SV, Palumbo A, et al. International Myeloma Working Group consensus approach to the treatment of multiple myeloma patients who are candidates for autologous stem cell transplantation. 2011;117(23):6063–73. doi: 10.1182/blood-2011-02-297325.

  5. Engelhardt M, Terpos E, Kleber M, et al. European Myeloma Network recommendations on the evaluation and treatment of newly diagnosed patients with multiple myeloma. Haematologica. 2014;99(2):232–42. doi: 10.3324/haematol.2013.099358.

  6. Sidiqi MH, Aljama MA, Bin Riaz I, et al. Bortezomib, lenalidomide, and dexamethasone (VRd) followed by autologous stem cell transplant for multiple myeloma. Blood Cancer J. 2018;8(8):106. doi: 10.1038/s41408-018-0147-7.

  7. Attal M, Lauwers-Cances V, Hulin C, et al. Lenalidomide, bortezomib, and dexamethasone with transplantation for myeloma. N Engl J Med. 2017;376(14):1311–20. doi: 10.1056/NEJMoa1611750.

  8. Attal M, Harousseau JL, Stoppa AM, et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Francais du Myelome. N Engl J Med. 1996;335(2):91–7.

  9. Palumbo A, Cavallo F, Gay F, et al. Autologous transplantation and maintenance therapy in multiple myeloma. N Engl J Med. 2014;371(10):895–905. doi: 10.1056/NEJMoa1402888.

  10. Thoennissen GB, Gorlich D, Bacher U, et al. Autologous stem cell transplantation in multiple myeloma in the era of novel drug induction: a retrospective single-center analysis. Acta Haematol. 2017;137(3):163–72. doi: 10.1159/000463534.

  11. Ozaki S, Harada T, Saitoh T, et al. Survival of multiple myeloma patients aged 65–70 years in the era of novel agents and autologous stem cell transplantation. A multicenter retrospective collaborative study of the Japanese Society of Myeloma and the European Myeloma Network. Acta Haematol. 2014;132(2):211–9. doi: 10.1159/000357394.

  12. Cavo M, Salwender H, Rosinol L, et al. Double vs single autologous stem cell transplantation after bortezomib-based induction regimens for multiple myeloma: an integrated analysis of patient-level data from phase III European studies. Blood. 2013;122(21):767.

  13. Cavo M, Beksac M, Dimopoulos M, et al. Intensification therapy with bortezomib-melphalan-prednisone versus autologous stem cell transplantation for newly diagnosed multiple myeloma: an intergroup, multicenter, phase III study of the European Myeloma Network (EMN02/HO95 MM trial). 2016;128(22):673.

  14. Sonneveld P, Beksac M, van der Holt B, et al. Consolidation followed by maintenance therapy versus maintenance alone in newly diagnosed, transplant eligible patients with multiple myeloma (MM): a randomized phase 3 study of the European Myeloma Network (EMN02/HO95 MM Trial). 2016;128(22):242.

  15. Stadtmauer EA, Pasquini MC, Blackwell B, et al. Comparison of autologous hematopoietic cell transplant (autoHCT), bortezomib, lenalidomide and dexamethasone (RVD) consolidation with lenalidomide maintenance (ACM), tandem autoHCT with lenalidomide maintenance (TAM), and autoHCT with lenalidomide maintenance (AM) for upfront treatment of patients with multiple myeloma (MM): primary results from the randomized phase III trial of the Blood and Marrow Transplant Clinical Trials Network (BMT CTN 0702 – StaMINA Trial). 2016;128(22):LBA-1.

  16. Yhim HY, Kim K, Kim JS, et al. Matched-pair analysis to compare the outcomes of a second salvage auto-SCT to systemic chemotherapy alone in patients with multiple myeloma who relapsed after front-line auto-SCT. Bone Marrow Transplant. 2013;48(3):425–32. doi: 10.1038/bmt.2012.164.

  17. Olin RL, Vogl DT, Porter DL, et al. Second auto-SCT is safe and effective salvage therapy for relapsed multiple myeloma. Bone Marrow Transplant. 2009;43(5): 417–22. doi: 10.1038/bmt.2008.334.

  18. Abbi KKS, Zheng J, Devlin SM, et al. Second autologous stem cell transplant: an effective therapy for relapsed multiple myeloma. Biol Blood Marrow Transplant. 2015;21(3):468–72. doi: 10.1016/j.bbmt.2014.11.677.

  19. Cook G, Williams C, Brown JM, et al. High-dose chemotherapy plus autologous stem-cell transplantation as consolidation therapy in patients with relapsed multiple myeloma after previous autologous stem-cell transplantation (NCRI Myeloma X Relapse [Intensive trial]): a randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15(8):874–85. doi: 10.1016/S1470-2045(14)70245-1.

  20. Benson DM, Panzner K, Hamadani M, et al. Effects of induction with novel agents versus conventional chemotherapy on mobilization and autologous stem cell transplant outcomes in multiple myeloma. Leuk Lymphoma. 2010;51(2):243–51. doi: 10.3109/10428190903480728.

  21. Kumar SK, Lacy MQ, Dispenzieri A, et al. Early versus delayed autologous transplantation following IMiD-based induction therapy in patients with newly diagnosed multiple myeloma. Cancer. 2012;118(6):1585–92. doi: 10.1002/cncr.26422.

  22. Ashcroft J, Judge D, Dhanasiri S, et al. Chart review across EU5 in MM post-ASCT patients. Int J Hematol Oncol. 2018;7(1):IJH05. doi: 10.2217/ijh-2018-0004.

  23. McCarthy PL, Holstein SA, Petrucci MT, et al. Lenalidomide maintenance after autologous stem-cell transplantation in newly diagnosed multiple myeloma: a meta-analysis. J Clin Oncol. 2017;35(29):3279–89. doi: 10.1200/JCO.2017.72.6679.

  24. Kumar S, Lacy MQ, Dispenzieri A, et al. High-dose therapy and autologous stem cell transplantation for multiple myeloma poorly responsive to initial therapy. Bone Marrow Transplant. 2004;34(2):161–7. doi: 10.1038/sj.bmt.1704545.

  25. Kim JS, Kim K, Cheong JW, et al. Complete remission status before autologous stem cell transplantation is an important prognostic factor in patients with multiple myeloma undergoing upfront single autologous transplantation. Biol Blood Marrow Transplant. 2009;15(4):463–70. doi: 10.1016/j.bbmt.2008.12.512.

  26. Gertz MA, Kumar S, Lacy MQ, et al. Stem cell transplantation in multiple myeloma: impact of response failure with thalidomide or lenalidomide induction. Blood. 2010;115(12):2348–53. doi: 10.1182/blood-2009-07-235531.

  27. Грицаев С.В., Кузяева А.А., Бессмельцев С.С. Отдельные аспекты аутологичной трансплантации гемопоэтических стволовых клеток при множественной миеломе. Клиническая онкогематология. 2017;10(1):7–12. doi: 21320/2500-2139-2017-10-1-7-12.

    [Gritsaev SV, Kuzyaeva AA, Bessmeltsev SS. Certain Aspects of Autologous Hematopoietic Stem Cell Transplantation in Patients with Multiple Myeloma. Clinical oncohematology. 2017;10(1):7–12. doi: 10.21320/2500-2139-2017-10-1-7-12. (In Russ)]

  28. Musso M, Messina G, Marcacci G, et al. High-dose melphalan plus thiotepa as conditioning regimen before second autologous stem cell transplantation for “de novo” multiple myeloma patients: a phase II study. Biol Blood Marrow Transplant. 2015;21(11):1932–8. doi: 10.1016/j.bbmt.2015.06.011.

  29. Kumar S, Paiva B, Anderson KC, et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016;17(8):e328–46. doi: 10.1016/S1470-2045(16)30206-6.

  30. Schiffman KS, Bensinger WI, Appelbaum FR, et al. Phase II study of high-dose busulfan, melphalan and thiotepa with autologous peripheral blood stem cell support in patients with malignant disease. Bone Marrow Transplant. 1996;17(6):943–50.

  31. Zaid AB, Abdul-Hai A, Grotto I, et al. Autologous transplant in multiple myeloma with an augmented conditioning protocol. Leuk Lymphoma. 2013;54(11):2480–4. doi: 10.3109/10428194.2013.782608.

  32. Anagnostopoulos A, Aleman A, Ayers G, et al. Comparison of high-dose melphalan with a more intensive regimen of thiotepa, busulfan, and cyclophosphamide for patients with multiple myeloma. Cancer. 2004;100(12):2607–12. doi: 10.1002/cncr.20294.

  33. Hari P, Reece DE, Randhawa J, et al. Final outcomes of escalated melphalan 280 mg/m2 with amifostine cytoprotection followed autologous hematopoietic stem cell transplantation for multiple myeloma: high CR and VGPR rates do not translate into improved survival. Bone Marrow Transplant. 2019;54(2):293–9. doi: 10.1038/s41409-018-0261-y.

  34. Auner HW, Iacobelli S, Sbianchi G, et al. Melphalan 140 mg/m2 or 200 mg/m2 for autologous transplantation in myeloma: results from the collaboration to collect autologous transplant outcomes in lymphoma and myeloma (CALM) study. A report by the EBMT Chronic Malignancies Working Party. Haematologica. 2018;103(3):514–21. doi: 10.3324/haematol.2017.181339.

  35. Dimopoulos M, Wang M, Maisnar V, et al. Response and progression-free survival according to planned treatment duration in patients with relapsed multiple myeloma treated with carfilzomib, lenalidomide, and dexamethasone (KRd) versus lenalidomide and dexamethasone (Rd) in the phase III ASPIRE study. J Hematol Oncol. 2018;11(1):49. doi: 10.1186/s13045-018-0583-7.

  36. Costa LJ, Landau HJ, Chhabra S, et al. Phase 1/2 trial of carfilzomib plus high-dose melphalan preparative regimen for salvage autologous hematopoietic cell transplantation followed by maintenance carfilzomib in patients with relapsed/refractory multiple myeloma. Biol Blood Marrow Transplant. 2018;24(7):1379–85. doi: 10.1016/j.bbmt.2018.01.036.

Применение ибрутиниба при рефрактерном течении хронического лимфолейкоза и у пациентов группы высокого риска

Н.В. Куркина1,2, Е.А. Репина1, Н.Н. Машнина2

1 ФГБОУ ВО «Национальный исследовательский Мордовский государственный университет им. Н.П. Огарева», ул. Большевистская, д. 68, Саранск, Республика Мордовия, Российская Федерация, 430032

2 ГБУЗ РМ «Республиканская клиническая больница № 4», ул. Ульянова, д. 32, Саранск, Республика Мордовия, Российская Федерация, 430032

Для переписки: Надежда Викторовна Куркина, канд. мед. наук, ул. Большевистская, д. 68, Саранск, Республика Мордовия, Российская Федерация, 430032; e-mail: nadya.kurckina@yandex.ru

Для цитирования: Куркина Н.В., Репина Е.А., Машнина Н.Н. Применение ибрутиниба при рефрактерном течении хронического лимфолейкоза и у пациентов группы высокого риска. Клиническая онкогематология. 2019;12(3):278–81.

doi: 10.21320/2500-2139-2019-12-3-278-281


РЕФЕРАТ

Несмотря на успехи иммунохимиотерапии хронического лимфолейкоза, существуют определенные трудности подбора терапии у пациентов с рефрактерным течением заболевания, аутоиммунными гемолитическими осложнениями, а также в группах высокого риска с наличием цитогенетических изменений. Применение препарата из группы ингибиторов тирозинкиназы Брутона — ибрутиниба — позволяет преодолеть резистентность к противоопухолевому лечению без ухудшения качества жизни пациентов.

Ключевые слова: хронический лимфолейкоз, иммунохимиотерапия, ибрутиниб, рефрактерность, рецидив.

Получено: 21 января 2018 г.

Принято в печать: 10 мая 2019 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Zenz T, Gribben JG, Hallek M, et al. Risk categories and refractory CLL in the era of chemoimmunotherapy. Blood. 2012;119(18):4101. doi: 10.1182/blood-2011-11-312421.

  2. Никитин Е.А., Судариков А.Б. Хронический лимфолейкоз высокого риска: история, определение, диагностика и лечение. Клиническая онкогематология. 2013;6(1):59–67.

    [Nikitin EA, Sudarikov AB. High­risk chronic lymphocytic leukemia: history, definition, diagnosis, and management. Klinicheskaya onkogematologiya. 2013;6(1):59–67. (In Russ)]

  3. Byrd JС, Furman RR, Coutre SE, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369(1):32–42. doi: 10.1056/nejmoa1215637.

  4. Kil LP, de Bruijn MJ, van Hulst JA, et al. Bruton’s tyrosine kinase mediated signaling enhances leukemogenesis in a mouse model for chronic lymphocytic leukemia. Am J Blood Res. 2013;3(1):71–83.

  5. Cheson BD, Byrd JC, Rai KR, et al. Novel targeted agents and the need to refine clinical end points in chronic lymphocytic leukemia. J Clin Oncol. 2012;30(23):2820–2. doi: 10.1200/jco.2012.43.3748.

  6. Byrd JС, Furman RR, Coutre SE, et al. Three-year follow-up of treatment-naive and previously treated patients with CLL and SLL receiving single-agent ibrutinib. Blood. 2015;125(16):2497–506. doi: 10.1182/blood-2014-10-606038.

  7. Имбрувика® (инструкция по медицинскому применению). Джонсон & Джонсон (Россия). Доступно по: https://www.vidal.ru/drugs/imbruvica Ссылка активна на 21.01.2019.

    [Imbruvica® (package insert). Johnson & Johnson (Russia). Available from: https://www.vidal.ru/drugs/imbruvica__43861. (accessed 21.01.2019) (In Russ)]

  8. Chavez J, Sahakian E, Pinilla-Ibarz J. Ibrutinib: an evidence-based review of its potential in the treatment of advanced chronic lymphocytic leukemia. Core Evid. 2013;8:37–45. doi: 10.2147/CE.S34068.

  9. Программное лечение заболеваний системы крови: сборник алгоритмов диагностики и протоколов лечения заболеваний системы крови. Под ред. В.Г. Савченко. М.: Практика, 2012. 1056 с.

    [Savchenko VG, ed. Programmnoe lechenie zabolevanii sistemy krovi: sbornik algoritmov diagnostiki i protokolov lecheniya zabolevanii sistemy krovi. (Program treatment of blood system diseases: collection of diagnostic algorithms and treatment protocols for blood system diseases.) Moscow: Praktika Publ.; 1056 p. (In Russ)]

Реаранжировки генов иммуноглобулинов в опухолевых клетках у пациентов c первичной медиастинальной (тимической) В-крупноклеточной лимфомой

Я.К. Мангасарова, Ю.В. Сидорова, А.У. Магомедова, Б.В. Бидерман, Е.Е. Никулина, А.Б. Судариков, А.М. Ковригина, С.К. Кравченко

ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167

Для переписки: Яна Константиновна Мангасарова, канд. мед. наук, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167; тел.: +7(926)395-82-52; e-mail: v.k.jana@mail.ru

Для цитирования: Мангасарова Я.К., Сидорова Ю.В., Магомедова А.У. Реаранжировки генов иммуноглобулинов в опухолевых клетках у пациентов c первичной медиастинальной (тимической) В-крупноклеточной лимфомой. Клиническая онкогематология. 2019;12(3):271–7.

doi: 10.21320/2500-2139-2019-12-3-271-277


РЕФЕРАТ

Актуальность. Первичная медиастинальная (тимическая) В-крупноклеточная лимфома (ПМВКЛ) — это злокачественная опухоль, субстратом которой являются крупные атипичные лимфоидные клетки, экспрессирующие маркеры постгерминальной дифференцировки. Реаранжировки генов иммуноглобулинов при ПМВКЛ выявляются в 30–65 % случаев. При этом молекулы иммуноглобулинов не экспрессируются ни на поверхности, ни в цитоплазме опухолевых клеток.

Цель. Оценить частоту В-клеточной клональности по реаранжировкам генов тяжелой/легких цепей иммуноглобулинов; определить стабильность реаранжировок при развитии рецидивов заболевания; изучить спектр реаранжировок и клональную связь с первичной опухолью при метахронном возникновении медиастинальной лимфомы серой зоны.

Материалы и методы. С целью оценить реаранжировки генов тяжелой/легких цепей иммуноглобулинов был выполнен молекулярный анализ 29 первичных биоптатов опухоли и 4 образцов ткани с верифицированными гистологически и иммуногистохимически рецидивами заболевания или метахронным развитием лимфом.

Результаты. В 16 (55,2 %) из 29 случаев выявлена перестройка генов тяжелой цепи иммуноглобулинов, в 7 (24,1 %) — перестройка генов легких цепей, в 6 (20,7 %) — реаранжировок генов тяжелой/легких цепей иммуноглобулинов не обнаружено. На основании анализа генов иммуноглобулинов у 2 пациентов при развитии раннего рецидива заболевания определялся опухолевый клон, идентичный выявленному в дебюте заболевания. У 2 больных, достигших полной ремиссии, констатировано метахронное развитие медиастинальной лимфомы серой зоны, а молекулярно-генетическое исследование выявило смену/исчезновение исходных клональных реаранжировок генов иммуноглобулинов.

Заключение. Общая частота обнаружения В-клеточной клональности при ПМВКЛ составила 79,3 %. Молекулярно-генетические исследования позволяли подтвердить сохранение исходных клональных реаранжировок генов иммуноглобулинов при развитии ранних рецидивов заболевания и опровергнуть клональное родство опухоли при метахронном развитии медиастинальной лимфомы серой зоны.

Ключевые слова: первичная медиастинальная (тимическая) В-крупноклеточная лимфома, реаранжировка генов тяжелой/легких цепей иммуноглобулинов, полимеразная цепная реакция, метахронное развитие лимфомы.

Получено: 2 ноября 2018 г.

Принято в печать: 29 мая 2019 г.

Читать статью в PDF 


ЛИТЕРАТУРА

  1. Evans PA, Pott Ch, Groenen PJ, et al. Significantly improved PCR-based clonality testing in B-cell malignancies by use of multiple immunoglobulin gene targets. Report of the BIOMED-2 Concerted Action BHM4-CT98-3936. Leukemia. 2007;21(2):207–14. doi: 10.1038/sj.leu.2404479.

  2. Мангасарова Я.К., Магомедова А.У., Ковригина А.М. и др. Первичная медиастинальная (тимическая) В-крупноклеточная лимфома: диагностика отдаленных экстрамедиастинальных поражений и возможности лечения. Клиническая онкогематология. 2018;11(3):220–6. doi: 21320/2500-2139-2018-11-3-220-226.

    [Mangasarova YaK, Magomedova AU, Kovrigina AM, et al. Primary Mediastinal (Thymic) Large B-Cell Lymphoma: Diagnostics of Extramediastinal Lesions and Treatment Opportunities. Clinical oncohematology. 2018;11(3):220–6. doi: 10.21320/2500-2139-2018-11-3-220-226. (In Russ)]

  3. Harris NL; The International Lymphoma Study Group. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Curr Diagn Pathol. 1995;2(1):58–9. doi: 10.1016/S0968-6053(00)80051-4.

  4. Rosenwald A, Wright G, Leroy K, et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med. 2003;198(6):851–62. doi: 10.1084/jem.20031074.

  5. Pileri SA, Zinzani PL, Gaidano G, et al. Pathobiology of primary mediastinal B-cell lymphoma. Leuk Lymphoma. 2003;44(Suppl 3):S21–6. doi: 10.1080/10428190310001623810.

  6. Loddenkemper C, Anagnostopoulos I, Hummel M, et al. Differential Emu enhancer activity and expression of BOB.1/OBF.1, Oct2, PU.1, and immunoglobulin in reactive B-cell populations, B-cell non-Hodgkin lymphomas, and Hodgkin lymphomas. J Pathol. 2004;202(1):60–9. doi: 10.1002/path.1485.

  7. De Leval L, Ferry JA, Falini B, et al. Expression of bcl-6 and CD10 in primary Mediastinal large B-cell lymphoma: evidence for derivation from germinal center B cells? Am J Surg Pathol. 2001;25(10):1277–82. doi: 10.1097/00000478-200110000-00008.

  8. Rosenquist R, Lindstrom A, Holmberg D, et al. V(H) gene family utilization in different B-cell lymphoma subgroups. Eur J Haematol. 1999;62(2):123–8. doi: 10.1111/j.1600-0609.1999.tb01732.x.

  9. Zhong DR, Ling Q, Shi XH, et al. Comparative study between primary mediastinal B-cell lymphoma and non-mediastinal diffuse large B-cell lymphoma by immunoglobulin gene rearrangement and Epstein-Barr virus infection detection. J Hematop. 2009;2(1):45–9. doi: 1007/s12308-009-0022-3.

  10. Leithauser F, Bauerle M, Quang Huynh M, et al. Isotype-switched immunoglobulin genes with a high load of somatic hypermutation and lack of ongoing mutational activity are prevalent in mediastinal B-cell lymphoma. 2001;98(9):2762–70; doi: 10.1182/blood.v98.9.2762.

  11. Burack WR, Laughlin TS, Friedberg JW, et al. PCR assays detect B-lymphocyte clonality in formalin-fixed, paraffin-embedded specimens of classical Hodgkin lymphoma without microdissection. Am J Clin Pathol. 2010;134(1):104–11. doi: 10.1309/AJCPK6SBE0XOODHB.

  12. Evens AM, Kanakry JA, Sehn LH, et al. Gray zone lymphoma with features intermediate between classical Hodgkin lymphoma and diffuse large B-cell lymphoma: characteristics, outcomes, and prognostication among a large multicenter cohort. Am J Hematol. 2015;90(9):778–83. doi: 10.1002/ajh.24082.

  13. Eberle FC, Salaverria I, Steidl C, et al. Gray zone lymphoma: chromosomal aberrations with immunophenotypic and clinical correlations. Mod Pathol. 2011;24(12):1586–97. doi: 10.1038/modpathol.2011.116.

  14. Dongen JJ, Langerak AW, Bruggemann M, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2003;17(12):2257–317. doi: 10.1038/sj.leu.2403202.

Мутации гена TP53 в опухолевых клетках у пациентов с агрессивными В-клеточными лимфомами

А.Е. Мисюрина1, С.К. Кравченко1, В.А. Мисюрин2, А.М. Ковригина1, А.У. Магомедова1, Е.А. Барях3, Ф.Э. Бабаева1, А.В. Мисюрин4

1 ФГБУ «НМИЦ гематологии» Минздрава России, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167

2 ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России, Каширское ш., д. 24, Москва, Российская Федерация, 115478

3 ГБУЗ «Городская клиническая больница № 52 ДЗМ», ул. Пехотная, д. 3, Москва, Российская Федерация, 123182

4 ООО «ГеноТехнология», ул. 800-летия Москвы, д. 11, Москва, Российская Федерация, 127247

Для переписки: Анна Евгеньевна Мисюрина, канд. мед. наук, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167; тел.: +7(909)637-32-49; e-mail: anna.lukina1@gmail.com

Для цитирования: Мисюрина А.Е., Кравченко С.К., Мисюрин В.А. и др. Мутации гена TP53 в опухолевых клетках у пациентов с агрессивными В-клеточными лимфомами. Клиническая онкогематология. 2019;12(3):263–70.

doi: 10.21320/2500-2139-2019-12-3-263-270


РЕФЕРАТ

Актуальность. Наличие мутаций в гене TP53 затрудняет апоптоз в клетках и приводит к возникновению в них дополнительных онкогенных событий, способствующих прогрессированию опухоли.

Цель. Оценить частоту мутаций гена TP53 у пациентов с В-клеточными лимфомами высокой степени злокачественности «double-hit» (HGBL DH) и неуточненной (HGBL NOS); проанализировать связь с прогнозом заболевания.

Материалы и методы. Проанализирован ретроспективный материал из архива 10 больных с HGBL DH и 26 — с HGBL NOS. Медиана наблюдения составила 26,5 мес. (диапазон 0,6–160,9 мес.). Отбор выполняли по принципу наличия доступного биологического материала (парафиновые блоки) для проведения секвенирования по Сэнгеру последовательности гена TP53 с 5-го по 8-й экзон (кодирующих ДНК-связывающий домен гена TP53). Всем больным выполняли FISH-исследование опухоли с целью выявить транслокации с участием локусов генов cMYC/8q24, BCL2/18q21 и BCL6/3q27. Для анализа различий между группами использовались тесты χ2 и Манна—Уитни. Для оценки влияния молекулярных маркеров на прогноз заболевания проведен однофакторный событийный анализ (критерий Каплана—Мейера, лог-ранговый тест) и многофакторный регрессионный анализ Кокса.

Результаты. Мутации гена TP53 в клетках лимфомы выявлены у 13 (36 %) из 36 больных, 10 (77 %) из 13 — патогенные. У 8 из 10 больных с мутациями TP53 обнаружена транслокация гена cMYC/8q24. Группы с диким (TP53-WT) и мутантным (TP53-MUT) типами гена TP53 были сопоставимы по основным клиническим характеристикам. Больные с TP53-MUT в опухолевых клетках имели худшие показатели 3-летней общей выживаемости (ОВ) в сравнении с группой без TP53-MUT (30 vs 73 %; = 0,026) и более высокую вероятность прогрессирования заболевания в течение 3 лет (66 vs 15 %; = 0,004). При многофакторном анализе значимым фактором в отношении ОВ было наличие мутации гена TP53 (= 0,006). Вероятность развития рецидивов/прогрессирования повышалась при сочетании мутаций гена TP53 и транслокации с участием локуса гена cMYC (= 0,0003).

Заключение. Сочетание транслокации с участием гена cMYC/8q24 и мутации гена TP53 в клетках опухоли при HGBL DH и HGBL NOS позволяет стратифицировать больных на группы риска рецидивов/прогрессирования лимфомы.

Ключевые слова: B-клеточная лимфома высокой степени злокачественности «double-hit», B-клеточная лимфома высокой степени злокачественности, неуточненная, мутация TP53 в опухолевых клетках, транслокация с участием локуса гена cMYC.

Получено: 25 января 2019 г.

Принято в печать: 3 июня 2019 г.

Читать статью в PDF


ЛИТЕРАТУРА

  1. Matlashewski G, Lamb P, Pim D, et al. Isolation and characterization of a human p53 cDNA clone: expression of the human p53 gene. EMBO J. 1984;3(13):3257–62. doi: 10.1002/j.1460-2075.1984.tb02287.x.

  2. Kern SE, Kinzler KW, Bruskin A, et al. Identification of p53 as a sequence-specific DNA-binding protein. Science. 1991;252(5013):1708–11. doi: 10.1126/science.2047879.

  3. McBride OW, Merry D, Givol D. The gene for human p53 cellular tumor antigen is located on chromosome 17 short arm (17p13). Proc Natl Acad Sci USA. 1986;83(1):130–4. doi: 10.1073/pnas.83.1.130.

  4. Levine AJ, Oren M. The first 30 years of p53: growing ever more complex. Nat Rev Cancer. 2009;9(10):749–58. doi: 10.1038/nrc2723.

  5. Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell. 2009;137(3):413–31. doi: 10.1016/j.cell.2009.04.037.

  6. Eischen CM, Weber JD, Roussel MF, et al. Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev. 1999;13(20):2658–69. doi: 10.1101/gad.13.20.2658.

  7. Donehower LA, Harvey M, Slagle BL, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature. 1992;356(6366):215–21. doi: 10.1038/356215a0.

  8. Gudkov AV, Komarova EA. The role of p53 in determining sensitivity to radiotherapy. Nat Rev Cancer. 2003;3(2):117–29. doi: 10.1038/nrc992.

  9. Xu-Monette ZY, Medeiros LJ, Li Y, et al. Dysfunction of the TP53 tumor suppressor gene in lymphoid malignancies. Blood. 2012;119(16):3668–83. doi: 10.1182/blood-2011-11-366062.

  10. Mihara M, Erster S, Zaika A, et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell. 2003;11(3):577–90. doi: 10.1016/s1097-2765(03)00050-9.

  11. Petitjean A, Mathe E, Kato S, et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat. 2007;28(6):622–9. doi: 10.1002/humu.20495.

  12. Young KH, Weisenburger DD, Dave BJ, et al. Mutations in the DNA-binding codons of TP53, which are associated with decreased expression of TRAIL receptor-2, predict for poor survival in diffuse large B-cell lymphoma. Blood. 2007;110(13):4396–405. doi: 10.1182/blood-2007-02-072082.

  13. Haupt S, Raghu D, Haupt Y. Mutant p53 drives cancer by subverting multiple tumor suppression pathways. Front Oncol. 2016;6:12. doi: 10.3389/fonc.2016.00012.

  14. Soussi T, Beroud C. Assessing TP53 status in human tumours to evaluate clinical outcome. Nat Rev Cancer. 2001;1(3):233–9. doi: 10.1038/35106009.

  15. Soussi T, Lozano G. P53 mutation heterogeneity in cancer. Biochem Biophys Res Commun. 2005;331(3):834–42. doi: 10.1016/j.bbrc.2005.03.190.

  16. Kato S, Han SY, Liu W, et al. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci USA. 2003;100(14):8424–9. doi: 10.1073/pnas.1431692100.

  17. Xu-Monette ZY, Young KH. The TP53 tumor suppressor and autophagy in malignant lymphoma. Autophagy. 2012;8(5):842–5. doi: 10.4161/auto.19703.

  18. Vousden KH, Prives C. P53 and prognosis: new insights and further complexity. Cell. 2005;120(1):7–10. doi: 10.1016/s0092-8674(04)01252-8.

  19. Young KH, Leroy K, Moller MB, et al. Structural profiles of TP53 gene mutations predict clinical outcome in diffuse large B-cell lymphoma: an international collaborative study. Blood. 2008;112(8):3088–98. doi: 10.1182/blood-2008-01-129783.

  20. Joerger AC, Ang HC, Fersht AR. Structural basis for understanding oncogenic p53 mutations and designing rescue drugs. Proc Natl Acad Sci USA. 2006;103(41):15056–61. doi: 10.1073/pnas.0607286103.

  21. Joerger AC, Fersht AR. Structural biology of the tumor suppressor p53. Annu Rev Biochem. 2008;77(1):557–82. doi: 10.1146/annurev.biochem.77.060806.091238.

  22. Peroja P, Pedersen M, Mantere T, et al. Mutation of TP53, translocation analysis and immunohistochemical expression of MYC, BCL-2 and BCL-6 in patients with DLBCL treated with R-CHOP. Sci Rep. 2018;8(1):14814. doi: 10.1038/s41598-018-33230-3.

  23. Clipson A, Barrans S, Zeng N, et al. The prognosis of MYC translocation positive diffuse large B-cell lymphoma depends on the second hit. J Pathol Clin Res. 2015;1(3):125–33. doi: 10.1002/cjp2.10.

  24. Aukema SM, Kreuz M, Kohler CW, et al. Biological characterization of adult MYC-translocation-positive mature B-cell lymphomas other than molecular Burkitt lymphoma. Haematologica. 2014;99(4):726–35. doi: 10.3324/haematol.2013.091827.

  25. Swerdlow SH, Campo E, Harris NL, et al. Classification of tumours of haematopoietic and lymphoid tissues. WHO classification of tumours. Revised 4th edition, Vol. 2. Lyon: IARC Press; 2017.

  26. Gebauer N, Bernard V, Gebauer W, et al. TP53 mutations are frequent events in double-hit B-cell lymphomas with MYC and BCL2 but not MYC and BCL6 translocations. Leuk Lymphoma. 2015;56(1):179–85. doi: 10.3109/10428194.2014.907896.

  27. Xu-Monette ZY, Wu L, Visco C, et al. Mutational profile and prognostic significance of TP53 in diffuse large B-cell lymphoma patients treated with R-CHOP: report from an International DLBCL Rituximab-CHOP Consortium Program Study. Blood. 2012;120(19):3986–96. doi: 10.1182/blood-2012-05-433334.

  28. Schiefer AI, Kornauth C, Simonitsch-Klupp I, et al. Impact of Single or Combined Genomic Alterations of TP53, MYC, and BCL2 on survival of patients with diffuse large B-cell lymphomas: A retrospective cohort study. Medicine (Baltimore). 2015;94(52):e2388. doi: 10.1097/MD.0000000000002388.

  29. Hu S, Xu-Monette ZY, Tzankov A, et al. MYC/BCL2 protein coexpression contributes to the inferior survival of activated B-cell subtype of diffuse large B-cell lymphoma and demonstrates high-risk gene expression signatures: a report from the international DLBCL rituximab-CHOP consortium program. Blood. 2013;121(20):4021–31. doi: 10.1182/blood-2012-10-460063.

  30. Schuster C, Berger A, Hoelzl MA, et al. The cooperating mutation or “second hit” determines the immunologic visibility toward MYC-induced murine lymphomas. Blood. 2011;118(17):4635–45. doi: 10.1182/blood-2010-10-313098.

  31. Tzankov A, Xu-Monette ZY, Gerhard M, et al. Rearrangements of MYC gene facilitate risk stratification in diffuse large B-cell lymphoma patients treated with rituximab-CHOP. Mod Pathol. 2014;27(7):958–71. doi: 10.1038/modpathol.2013.214.

  32. Moll UM, Wolff S, Speidel D, Deppert W. Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol. 2005;17(6):631–6. doi: 10.1016/j.ceb.2005.09.007.

  33. MacLean KH, Keller UB, Rodriguez-Galindo C, et al. c-Myc augments gamma irradiation-induced apoptosis by suppressing Bcl-XL. Mol Cell Biol 2003;23(20):7256–70. doi: 10.1128/mcb.23.20.7256-7270.2003.

  34. Adams JM, Harris AW, Pinkert CA, et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature. 1985;318(6046):533–8. doi: 10.1038/318533a0.