Биология миелопролиферативных новообразований

А.Л. Меликян, И.Н. Суборцева

ФГБУ «Гематологический научный центр» Минздрава России, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167

Для переписки: Ирина Николаевна Суборцева, канд. мед. наук, Новый Зыковский пр-д, д. 4а, Москва, Российская Федерация, 125167; тел.: +7(495)612-44-71; e-mail: soubortseva@yandex.ru

Для цитирования: Меликян А.Л., Суборцева И.Н. Биология миелопролиферативных новообразований. Клиническая онкогематология. 2016;9(3):314-25.

DOI: 10.21320/2500-2139-2016-9-3-314-325


РЕФЕРАТ

Хронические миелопролиферативные заболевания (ВОЗ, 2001), или миелопролиферативные новообразования/опухоли (МПН) (ВОЗ, 2008), являются клональными заболеваниями, характеризуются пролиферацией одной или более клеточной линии миелопоэза в костном мозге с признаками сохраняющейся терминальной дифференцировки и, как правило, сопровождаются изменениями показателей крови. В группу классических Ph-негативных МПН отнесены истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз и МПН неклассифицируемое. Приобретенные соматические мутации, лежащие в основе патогенеза Ph-негативных МПН, представлены мутациями генов JAK2 (V617F, экзон 12), MPL, CALR. Мутации перечисленных генов наблюдаются примерно у 90 % больных. Однако данные молекулярные события не являются уникальными в патогенезе заболеваний. Мутации других генов (ТЕТ2, ASXL1, CBL, IDH1/IDH2, IKZF1, DNMT3A, SOCS, EZH2, TP53, RUNX1 и HMGA2) принимают участие в формировании фенотипа заболевания. В настоящем обзоре описываются современные представления о молекулярной биологии МПН.


Ключевые слова: хронические миелопролиферативные заболевания, миелопролиферативные новообразования, истинная полицитемия, эссенциальная тромбоцитемия, первичный миелофиброз, ген JAK2, ген CALR, ген MPL.

Получено: 11 апреля 2016 г.

Принято в печать: 11 апреля 2016 г.

Читать статью в PDFpdficon


ЛИТЕРАТУРА

  1. Barbui T, Barosi G, Birgegard G, et al. Philadelphia-negative classical myeloproliferative neoplasms: critical concepts and management recommendations from European LeukemiaNet. J Clin Oncol. 2011;29(6):761–70. doi: 10.1200/jco.2010.31.8436.
  2. Tefferi A, Thiele J, Vardiman JW. The 2008 World Health Organization classification system for myeloproliferative neoplasms: order out of chaos. Cancer. 2009;115(17):3842–7. doi: 10.1002/cncr.24440.
  3. Barosi G. Essential thrombocythemia vs. early/prefibrotic myelofibrosis: why does it matter. Best Pract Res Clin Haematol. 2014;27(2):129–40. doi: 10.1016/j.beha.2014.07.004.
  4. Vannucchi AM. Management of myelofibrosis. Am Soc Hematol Educ Program. 2011;2011(1):222–30. doi:10.1182/asheducation-2011.1.222.
  5. Cervantes F, Dupriez B, Pereira A, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009;113(13):2895–901. doi: 10.1182/blood-2008-07-170449.
  6. Gangat N, Caramazza D, Vaidya R, et al. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol. 2011;29(4):392–7. doi: 10.1200/jco.2010.32.2446.
  7. Passamonti F, Cervantes F, Vannucchi AM, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood. 2010;115(9):1703–8. doi: 10.1182/blood-2009-09-245837.
  8. Tefferi A. How I treat myelofibrosis. Blood. 2011;117(13):3494–504. doi: 10.1182/blood-2010-11-315614.
  9. Tefferi A, Guglielmelli P, Lasho TL, et al. CALR and ASXL1 mutations-based molecular prognostication in primary myelofibrosis: an international study of 570 patients. Leukemia. 2014;28(7):1494–500. doi: 10.1038/leu.2014.57.
  10. Agarwal MB, Malhotra H, Chakrabarti P, et al. Myeloproliferative neoplasms working group consensus recommendations for diagnosis and management of primary myelofibrosis, polycythemia vera, and essential thrombocythemia. Indian J Med Paediatr Oncol. 2015;36(1):3–16. doi: 10.4103/0971-5851.151770.
  11. Campregher PV, Santos FP, Perini GF, Hamerschlak N. Molecular biology of Philadelphia-negative myeloproliferative neoplasms. Rev Bras Hematol Hemoter. 2012;34(2):150–5. doi: 10.5581/1516-8484.20120035.
  12. Ghoreschi K, Laurence A, O’Shea JJ. Janus kinases in immune cell signaling. Immunol Rev. 2009;228(1):273–87. doi: 10.1111/j.1600-065X.2008.00754.x.
  13. Liu KD, Gaffen SL, Goldsmith MA. JAK/STAT signaling by cytokine receptors. Curr Opin Immunol. 1998;10(3):271–8. doi: 10.1016/s0952-7915(98)80165-9.
  14. Tefferi A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia. 2010;24(6):1128–38. doi: 10.1038/leu.2010.69.
  15. Riedy MC, Dutra AS, Blake TB, et al. Genomic sequence, organization, and chromosomal localization of human JAK3. Genomics. 1996;37(1):57–61. doi: 10.1006/geno.1996.0520.
  16. Saharinen P, Silvennoinen O. The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine-inducible activation of signal transduction. J Biol Chem. 2002;277(49):47954–63. doi: 10.1074/jbc.M205156200.
  17. Benekli M, Baer MR, Baumann H, Wetzler M. Signal transducer and activator of transcription proteins in leukemias. Blood. 2003;101(8):2940–54. doi: 10.1182/blood-2002-04-1204.
  18. Vainchenker W, Delhommeau F, Constantinescu SN, Bernard OA. New mutations and pathogenesis of myeloproliferative neoplasms. Blood. 2011;118(7):1723–35. doi: 10.1182/blood-2011-02-292102.
  19. Lacout C, Pisani DF, Tulliez M, et al. JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood. 2006;108(5):1652–660. doi: 10.1182/blood-2006-02-002030.
  20. James C, Ugo V, Le Couedic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144–8. doi: 10.1038/nature03546.
  21. Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):1779–90. doi: 10.1056/NEJMoa051113.
  22. Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7(4):387–97. doi: 10.1016/j.ccr.2005.03.023.
  23. Baxter EJ, Scott LM, Campbell PJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. The Lancet. 2005;365(9464):1054–61. doi: 10.1016/S0140-6736(05)71142-9.
  24. Butcher CM, Hahn U, To LB, et al. Two novel JAK2 exon 12 mutations in JAK2V617F-negative polycythaemia vera patients. Leukemia. 2008;22(4):870–3. doi: 10.1038/sj.leu.2404971.
  25. Jelinek J, Oki Y, Gharibyan V, et al. JAK2 mutation 1849G>T is rare in acute leukemias but can be found in CMML, Philadelphia chromosome-negative CML, and megakaryocyticleukemia. Blood. 2005;106(10):3370–3. doi: 10.1182/blood-2005-05-1800.
  26. Pich A, Riera L, Sismondi F, et al. JAK2V617F activating mutation is associated with the myeloproliferative type of chronic myelomonocytic leukaemia. J Clin Pathol. 2009;62(9):798–801. doi: 10.1136/jcp.2009.065904.
  27. Johan MF, Goodeve AC, Bowen DT, et al. JAK2 V617F Mutation is uncommon in chronic myelomonocytic leukaemia. Br J Haematol. 2005;130(6):968. doi: 10.1111/j.1365-2141.2005.05719.x.
  28. Renneville A, Quesnel B, Charpentier A, et al. High occurrence of JAK2 V617 mutation in refractory anemia with ringed sideroblasts associated with marked thrombocytosis. Leukemia. 2006;20(11):2067–70. doi: 10.1038/sj.leu.2404405.
  29. Verstovsek S, Silver RT, Cross NC, Tefferi A. JAK2V617F mutational frequency in polycythemia vera: 100%, > 90%, less? Leukemia. 2006;20(11):2067. doi:10.1038/sj.leu.2404379.
  30. Vannucchi AM, Antonioli E, Guglielmelli P, et al. Clinical profile of homozygous JAK2 617V>F mutation in patients with polycythemia vera or essential thrombocythemia. Blood. 2007;110(3):840–6. doi: 10.1182/blood-2006-12-064287.
  31. Barosi G, Bergamaschi G, Marchetti M, et al. JAK2 V617F mutational status predicts progression to large splenomegaly and leukemic transformation in primary myelofibrosis. Blood. 2007;110(12):4030–6. doi: 10.1182/blood-2007-07-099184.
  32. Vannucchi AM, Lasho TL, Guglielmelli P, et al. Mutations and prognosis in primary myelofibrosis. Leukemia. 2013;27(9):1861–9. doi: 10.1038/leu.2013.119.
  33. Lussana F, Caberlon S, Pagani C, et al. Association of V617F Jak2 mutation with the risk of thrombosis among patients with essential thrombocythaemia or idiopathic myelofibrosis: a systematic review. Thromb Res. 2009;124(4):409–17. doi: 10.1016/j.thromres.2009.02.004.
  34. Wang M, He N, Tian T, et al. Mutation analysis of JAK2V617F, FLT3-ITD, NPM1, and DNMT3A in Chinese patients with myeloproliferative neoplasms. BioMed Res Int. 2014;2014:485645. doi: 10.1155/2014/485645.
  35. Passamonti F, Thiele J, Girodon F, et al. A prognostic model to predict survival in 867 World Health Organization-defined essential thrombocythemia at diagnosis: a study by the International Working Group on Myelofibrosis Research and Treatment. Blood. 2012;120(6):1197–201. doi: 10.1182/blood-2012-01-403279.
  36. Barbui T, Carobbio A, Rambaldi A, Finazzi G. Perspectives on thrombosis in essential thrombocythemia and polycythemia vera: is leukocytosis a causative factor? Blood. 2009;114(4):759–63. doi: 10.1182/blood-2009-02-206797.
  37. Barbui T, Finazzi G, Carobbio A, et al. Development and validation of an International Prognostic Score of thrombosis in World Health Organization-essential thrombocythemia (IPSET-thrombosis). Blood. 2012;120(26):5128–33. doi: 10.1182/blood-2012-07-444067.
  38. Tefferi A, Pardanani A. Myeloproliferative neoplasms – a contemporary review. JAMA Oncol. 2015;1(1):97–105. doi: 10.1001/jamaoncol.2015.89.
  39. Nussenzveig RH, Swierczek SI, Jelinek J, et al. Polycythemia vera is not initiated by JAK2V617F mutation. Exp Hematol. 2007;35(1):32–8. doi: 10.1016/j.exphem.2006.11.012.
  40. Scott LM, Tong W, Levine RL, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007;356(5):459–68. doi: 10.1056/NEJMoa065202.
  41. Williams DM, Kim AH, Rogers O, et al. Phenotypic variations and new mutations in JAK2 V617F-negative polycythemia vera, erythrocytosis, and idiopathic myelofibrosis. Exp Hematol. 2007;35(11):1641–6. doi: 10.1016/j.exphem.2007.08.010.
  42. Passamonti F, Elena C, Schnittger S, et al. Molecular and clinical features of the myeloproliferative neoplasm associated with JAK2 exon 12 mutations. Blood. 2011;117(10):2813–6. doi: 10.1182/blood-2010-11-316810.
  43. Campbell PJ, Griesshammer M, Dohner K, et al. V617F mutation in JAK2 is associated with poorer survival in idiopathic myelofibrosis. Blood. 2006;107(5):2098–100. doi: 10.1182/blood-2005-08-3395.
  44. Martinez-Aviles L, Besses C, Alvarez-Larran A, et al. JAK2 exon 12 mutations in polycythemia vera or idiopathic erythrocytosis. Haematologica. 2007;92(12):1717–8. doi: 10.3324/haematol.12011.
  45. Sangkhae V, Etheridge SL, Kaushansky K, Hitchcock IS. The thrombopoietin receptor, MPL, is critical for development of a JAK2V617F-induced myeloproliferative neoplasm. Blood. 2014;124(26):3956–63. doi: 10.1182/blood-2014-07-587238.
  46. Chou FS, Mulloy JC. The thrombopoietin/MPL pathway in hematopoiesis and leukemogenesis. J Cell Biochem. 2011;112(6):1491-8. doi: 10.1002/jcb.23089.
  47. Abe M, Suzuki K, Inagaki O, et al. A novel MPL point mutation resulting in thrombopoietin-independent activation. Leukemia. 2002;16(8):1500–6. doi: 10.1038/sj.leu.2402554.
  48. Ding J, Komatsu H, Wakita A, et al. Familial essential thrombocythemia associated with a dominant-positive activating mutation of the c-MPL gene, which encodes for the receptor for thrombopoietin. Blood. 2004;103(11):4198–200. doi: 10.1182/blood-2003-10-3471.
  49. Moliterno AR, Williams DM, Gutierrez-Alamillo LI, et al. Mpl Baltimore: A thrombopoietin receptor polymorphism associated with thrombocytosis. Proc Natl Acad Sci USA. 2004;101(31):11444–7. doi: 10.1073/pnas.0404241101.
  50. Pikman Y, Lee BH, Mercher T, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3(7):e270. doi: 10.1371/journal.pmed.0030270.
  51. Staerk J, Lacout C, Sato T, et al. An amphipathic motif at the transmembrane-cytoplasmic junction prevents autonomous activation of the thrombopoietin receptor. Blood. 2006;107(5):1864–71. doi: 10.1182/blood-2005-06-2600.
  52. Boyd EM, Bench AJ, Goday-Fernandez A, et al. Clinical utility of routine MPL exon 10 analysis in the diagnosis of essential thrombocythaemia and primary myelofibrosis. Br J Haematol. 2010;149(2):250–7. doi: 10.1111/j.1365-2141.2010.08083.x.
  53. Lambert MP, Jiang J, Batra V, et al. A novel mutation in MPL (Y252H) results in increased thrombopoietin sensitivity in essential thrombocythemia. Am J Hematol. 2012;87(5):532–4. doi: 10.1002/ajh.23138.
  54. Hussein K, Bock O, Theophile K, et al. MPLW515L mutation in acute megakaryoblastic leukaemia. Leukemia. 2009;23(5):852–5. doi: 10.1038/leu.2008.371.
  55. Beer PA, Campbell PJ, Scott LM, et al. MPL mutations in myeloproliferative disorders: analysis of the PT-1 cohort. Blood. 2008;112(1):141–9. doi: 10.1182/blood-2008-01-131664.
  56. Akpinar TS, Hancer VS, Nalcaci M, Diz-Kucukkaya R. MPL W515L/K Mutations in chronic myeloproliferative neoplasms. Turk J Haematol. 2013;30(1):8–12. doi: 10.4274/tjh.65807.
  57. Vannucchi AM, Antonioli E, Guglielmelli P, et al. Characteristics and clinical correlates of MPL 515W>L/K mutation in essential thrombocythemia. Blood. 2008;112(3):844–7. doi: 10.1182/blood-2008-01-135897.
  58. Teofili L, Giona F, Torti L, et al. Hereditary thrombocytosis caused by MPLSer505Asn is associated with a high thrombotic risk, splenomegaly and progression to bone marrow fibrosis. Haematologica. 2010;95(1):65–70. doi: 10.3324/haematol.2009.007542.
  59. Sun C, Zhang S, Li J. Calreticulin gene mutations in myeloproliferative neoplasms without Janus kinase 2 mutations. Leuk Lymphoma. 2015;56(6):1593–8. doi: 10.3109/10428194.2014.953153.
  60. Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379–90. doi: 10.1056/NEJMoa1311347.
  61. Nangalia J, Massie CE, Baxter EJ, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369(25):2391–405. doi: 10.1056/NEJMoa1312542.
  62. Shirane S, Araki M, Morishita S, et al. JAK2, CALR, and MPL mutation spectrum in Japanese myeloproliferative neoplasms patients. Haematologica. 2015;100(2):46–8. doi: 10.3324/haematol.2014.115113.
  63. Lundberg P, Karow A, Nienhold R, et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood. 2014;123(14):2220–8. doi: 10.1182/blood-2013-11-537167.
  64. Lavi N. Calreticulin mutations in myeloproliferative neoplasms. Rambam Maimonides Med J. 2014;5(4):e0035. doi: 10.5041/RMMJ.10169.
  65. Rumi E, Harutyunyan AS, Pietra D, et al. CALR exon 9 mutations are somatically acquired events in familial cases of essential thrombocythemia or primary myelofibrosis. Blood. 2014;123(15):2416–9. doi: 10.1182/blood-2014-01-550434.
  66. Haslam K, Langabeer SE. Incidence of CALR mutations in patients with splanchnic vein thrombosis. Br J Haematol. 2015;168(3):459–60. doi: 10.1111/bjh.13121.
  67. Turon F, Cervantes F, Colomer D, et al. Role of calreticulin mutations in the aetiological diagnosis of splanchnic vein thrombosis. J Hepatol. 2015;62(1):72–4. doi: 10.1016/j.jhep.2014.08.032.
  68. Tefferi A, Wassie EA, Lasho TL, et al. Calreticulin mutations and long-term survival in essential thrombocythemia. Leukemia. 2014;28(12):2300–3. doi: 10.1038/leu.2014.148.
  69. Tefferi A, Lasho TL, Finke CM, et al. CALR vs JAK2 vs MPL-mutated or triple-negative myelofibrosis: clinical, cytogenetic and molecular comparisons. Leukemia. 2014;28(7):1472–7. doi: 10.1038/leu.2014.3.
  70. Tefferi A, Lasho TL, Finke C, et al. Type 1 vs type 2 calreticulin mutations in primary myelofibrosis: differences in phenotype and prognostic impact. Leukemia. 2014;28(7):1568–70. doi: 10.1038/leu.2014.83.
  71. Shide K, Kameda T, Shimoda H, et al. TET2 is essential for survival and hematopoietic stem cell homeostasis. Leukemia. 2012;26(10):2216–23. doi: 10.1038/leu.2012.94.
  72. Ito S, D’Alessio AC, Taranova OV, et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 2010;466(7310):1129–33. doi: 10.1038/nature09303.
  73. Paulsson K, Haferlach C, Fonatsch C, et al. The idic(X)(q13) in myeloid malignancies: breakpoint clustering in segmental duplications and association with TET2 mutations. Hum Mol Genet. 2010;19(8):1507–14. doi: 10.1093/hmg/ddq024.
  74. Tefferi A, Pardanani A, Lim KH, et al. TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. Leukemia. 2009;23(5):905–11. doi: 10.1038/leu.2009.47.
  75. Martinez-Aviles L, Besses C, Alvarez-Larran A, et al. TET2, ASXL1, IDH1, IDH2, and c-CBL genes in JAK2- and MPL-negative myeloproliferative neoplasms. Ann Hematol. 2012;91(4):533–41. doi: 10.1007/s00277-011-1330-0.
  76. Patriarca A, Colaizzo D, Tiscia G, et al. TET2 mutations in Ph-negative myeloproliferative neoplasms: identification of three novel mutations and relationship with clinical and laboratory findings. BioMed Res Int. 2013;2013:929840. doi: 10.1155/2013/929840.
  77. Schaub FX, Looser R, Li S, et al. Clonal analysis of TET2 and JAK2 mutations suggests that TET2 can be a late event in the progression of myeloproliferative neoplasms. Blood. 2010;115(10):2003–7. doi: 10.1182/blood-2009-09-245381.
  78. Delhommeau F, Dupont S, Della Valle V, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009;360(22):2289–301. doi: 10.1056/NEJMoa0810069.
  79. Beer PA, Delhommeau F, LeCouedic JP, et al. Two routes to leukemic transformation after a JAK2 mutation-positive myeloproliferative neoplasm. Blood. 2010;115(14):2891–900. doi: 10.1182/blood-2009-08-236596.
  80. Ortmann CA, Kent DG, Nangalia J, et al. Effect of mutation order on myeloproliferative neoplasms. N Engl J Med. 2015;372(7):601–12. doi: 10.1056/NEJMoa1412098.
  81. Gelsi-Boyer V, Trouplin V, Adelaide J, et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol. 2009;145(6):788–800. doi: 10.1111/j.1365-2141.2009.07697.x.
  82. Carbuccia N, Murati A, Trouplin V, et al. Mutations of ASXL1 gene in myeloproliferative neoplasms. Leukemia. 2009;23(11):2183–6. doi: 10.1038/leu.2009.141.
  83. Carbuccia N, Trouplin V, Gelsi-Boyer V, et al. Mutual exclusion of ASXL1 and NPM1 mutations in a series of acute myeloid leukemias. Leukemia. 2010;24(2):469–73. doi: 10.1038/leu.2009.218.
  84. Abdel-Wahab O, Adli M, LaFave LM, et al. ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell. 2012;22(2):180–93. doi: 10.1016/j.ccr.2012.06.032.
  85. Brecqueville M, Rey J, Bertucci F, et al. Mutation analysis of ASXL1, CBL, DNMT3A, IDH1, IDH2, JAK2, MPL, NF1, SF3B1, SUZ12, and TET2 in myeloproliferative neoplasms. Genes Chromos Cancer. 2012;51(8):743–55. doi: 10.1002/gcc.21960.
  86. Katoh M. Functional and cancer genomics of ASXL family members. Br J Cancer. 2013;109(2):299–306. doi: 10.1038/bjc.2013.281.
  87. Cervantes F. How I treat myelofibrosis. Blood. 2014;124(17):2635–42. doi: 10.1182/blood-2014-07-575373.
  88. Ernst T, Chase AJ, Score J, et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet. 2010;42(8):722–6. doi: 10.1038/ng.621.
  89. Simon JA, Lange CA. Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res. 2008;647(1–2):21–9. doi: 10.1016/j.mrfmmm.2008.07.010.
  90. Im AP, Sehgal AR, Carroll MP, et al. DNMT3A and IDH mutations in acute myeloid leukemia and other myeloid malignancies: associations with prognosis and potential treatment strategies. Leukemia. 2014;28(9):1774–83. doi: 10.1038/leu.2014.124.
  91. Walter MJ, Ding L, Shen D, et al. Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia. 2011;25(7):1153–8. doi: 10.1038/leu.2011.44.
  92. Yamashita Y, Yuan J, Suetake I, et al. Array-based genomic resequencing of human leukemia. Oncogene. 2010;29(25):3723–31. doi: 10.1038/onc.2010.117.
  93. Abdel-Wahab O, Pardanani A, Rampal R, et al. DNMT3A mutational analysis in primary myelofibrosis, chronic myelomonocytic leukemia and advanced phases of myeloproliferative neoplasms. Leukemia. 2011;25(7):1219–20. doi: 10.1038/leu.2011.82.
  94. Brecqueville M, Cervera N, Gelsi-Boyer V, et al. Rare mutations in DNMT3A in myeloproliferative neoplasms and myelodysplastic syndromes. Blood Cancer J. 2011;1(5):e18. doi: 10.1038/bcj.2011.15.
  95. Rudd CE. Lnk adaptor: novel negative regulator of B cell lymphopoiesis. Sci STKE. 2001;2001(85):pe1. doi: 10.1126/stke.2001.85.pe1.
  96. Gery S, Cao Q, Gueller S, et al. Lnk inhibits myeloproliferative disorder-associated JAK2 mutant, JAK2V617F. J Leuk Biol. 2009;85(6):957–65. doi: 10.1189/jlb.0908575.
  97. Soriano G, Heaney M. Polycythemia vera and essential thrombocythemia: new developments in biology with therapeutic implications. Curr Opin Hematol. 2013;20(2):169–75. doi: 10.1097/MOH.0b013e32835d82fe.
  98. Oh ST, Simonds EF, Jones C, et al. Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms. Blood. 2010;116(6):988–92. doi: 10.1182/blood-2010-02-270108.
  99. Lasho TL, Pardanani A, Tefferi A. LNK mutations in JAK2 mutation-negative erythrocytosis. N Engl J Med. 2010;363(12):1189–90. doi: 10.1056/NEJMc1006966.
  100. Rathinam C, Thien CB, Flavell RA, Langdon WY. Myeloid leukemia development in c-Cbl RING finger mutant mice is dependent on FLT3 signaling. Cancer Cell. 2010;18(4):341–52. doi: 10.1016/j.ccr.2010.09.008.
  101. Loh ML, Sakai DS, Flotho C, et al. Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. Blood. 2009;114(9):1859–63. doi: 10.1182/blood-2009-01-198416.
  102. Sanada M, Suzuki T, Shih LY, et al. Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature. 2009;460(7257):904–8. doi: 10.1038/nature08240.
  103. Zhang MY, Fung TK, Chen FY, Chim CS. Methylation profiling of SOCS1, SOCS2, SOCS3, CISH and SHP1 in Philadelphia-negative myeloproliferative neoplasm. J Cell Mol Med. 2013;17(10):1282–90. doi: 10.1111/jcmm.12103.
  104. Fourouclas N, Li J, Gilby DC, et al. Methylation of the suppressor of cytokine signaling 3 gene (SOCS3) in myeloproliferative disorders. Haematologica. 2008;93(11):1635–44. doi: 10.3324/haematol.13043.
  105. Kastner P, Chan S. Role of Ikaros in T-cell acute lymphoblastic leukemia. World J Biol Chem. 2011;2(6):108–14. doi: 10.4331/wjbc.v2.i6.108.
  106. Jager R, Kralovics R. Molecular pathogenesis of Philadelphia chromosome negative chronic myeloproliferative neoplasms. Curr Cancer Drug Targets. 2011;11(1):20–30. doi: 10.2174/156800911793743628.
  107. Ikeda K, Ogawa K, Takeishi Y. The role of HMGA2 in the proliferation and expansion of a hematopoietic cell in myeloproliferative neoplasms. Fukushima J Med Sci. 2012;58(2):91–100. doi: 10.5387/fms.58.91.
  108. Harada-Shirado K, Ikeda K, Ogawa K, et al. Dysregulation of the MIRLET7/HMGA2 axis with methylation of the CDKN2A promoter in myeloproliferative neoplasms. Br J Haematol. 2015;168(3):338–49. doi: 10.1111/bjh.13129.
  109. Raza S, Viswanatha D, Frederick L, et al. TP53 mutations and polymorphisms in primary myelofibrosis. Am J Hematol. 2012;87(2):204–6. doi: 10.1002/ajh.22216.
  110. Lu M, Hoffman R. p5 as a target in myeloproliferative neoplasms. Oncotarget. 2012;3(10):1052–3. doi: 10.18632/oncotarget.719.
  111. Gurney AL, Wong SC, Henzel WJ, de Sauvage FJ. Distinct regions of c-Mpl cytoplasmic domain are coupled to the JAK-STAT signal transduction pathway and Shc phosphorylation. Proc Natl Acad Sci USA. 1995;92(12):5292–6. doi: 10.1073/pnas.92.12.5292
  112. Tefferi A, Thiele J, Vannucchi AM, Barbui T. An overview on CALR and CSF3R mutations and a proposal for revision of WHO diagnostic criteria for myeloproliferative neoplasms. Leukemia. 2014;28(7):1407–13. doi: 10.1038/leu.2014.35.
  113. Broseus J, Park JH, Carillo S, et al. Presence of calreticulin mutations in JAK2-negative polycythemia vera. Blood. 2014;124(26):3964–6. doi: 10.1182/blood-2014-06-583161.
  114. Hasan S, Lacout C, Marty C, et al. JAK2V617F expression in mice amplifies early hematopoietic cells and gives them a competitive advantage that is hampered by IFNa. Blood. 2013;122(8):1464–77. doi: 10.1182/blood-2013-04-498956.
  115. Pardanani A, Lasho T, Finke C, et al. LNK mutation studies in blast-phase myeloproliferative neoplasms, and in chronic-phase disease with TET2, IDH, JAK2 or MPL mutations. Leukemia. 2010;24(10):1713–8. doi: 10.1038/leu.2010.163.